

DINO

Language Reference Manual

Author: Manu Jain

Table of Contents

TABLE OF CONTENTS ..2

1. INTRODUCTION ...3
2. LEXICAL CONVENTIONS ...3
2.1. TOKENS...3
2.2. COMMENTS...3
2.3. IDENTIFIERS..3
2.4. KEYWORDS...3
2.5. CONSTANTS..3
2.6. OPERATORS...3
3. MEANING OF IDENTIFIERS..4
3.1. BASIC TYPES...4
3.2. DERIVED TYPES..4
4. CONVERSIONS...4
5. EXPRESSIONS ..4
5.1. PRIMARY EXPRESSIONS...4
5.2. DINOSAUR AND THING PROPERTIES...4
5.3. FUNCTIONS ...5
5.4. MULTIPLICATIVE OPERATORS...5
5.5. ADDITIVE OPERATORS..5
5.6. RELATIONAL OPERATORS..5
5.7. EQUALITY OPERATORS..5
5.8. ASSIGNMENT EXPRESSION...5
6. DEFINITIONS ...5
6.1. FUNCTION DEFINITION ..5
6.2. PROPERTY DEFINITION ..6
7. CREATION ...6
7.1. CREATING DINOSAURS..6
7.2. CREATING THINGS ..7
7.3. CREATING LISTS..7
8. STATEMENTS ..7
8.1. SELECTION STATEMENT ..7
8.2. ITERATION STATEMENT...7
9. EXTERNAL DECLARATIONS ..7

1. Introduction

This manual describes the DINO language, developed by the author as a project for the
PLT class of spring 2010 at Columbia University taught by Prof. Stephen Edwards.

This manual is modeled after the C language reference manual, which forms Appendix A
of the “The C Programming Language” book by Kernighan and Ritchie.

2. Lexical Conventions

Converting a program written in DINO to executable code is a multi-step process. The
first step involves running the scanner over the program, which outputs a sequence of
tokens. This is known as lexical transformation.

2.1. Tokens
There are six types of tokens – identifiers, keywords, constants and operators. Tokens
are separated by white spaces (blanks, tabs, new-lines). Comments are ignored.

2.2. Comments
A comment starts with the characters ** and ends with the characters **. Comments
do not nest.

2.3. Identifiers
An identifier is a sequence of letters and digits, starting with a letter. Case distinctions
are ignored.

2.4. Keywords
The following identifiers are reserved as keywords, and may not be used otherwise:

dinosaur named do return eat hide
thing listof times function sleep attack
define int if property wakeup position
create string then tostring drink height
zap while else toint run length
 empty

2.5. Constants
Integer and string constants (string literals) are supported.

2.6. Operators
Supported operators are additive operators, multiplicative operators, relational
operators, equality operators and assignment operator.

3. Meaning of Identifiers
Identifiers can refer to many different things – tags of types (basic types or derived types),
properties of types, functions, and objects or variables of types.

3.1. Basic Types
The fundamental types supported are empty, int, string, dinosaur and thing.
The type empty represents an empty value. It is the type returned by functions that
don’t return any value.
The type int represents signed integer values.
The type string represents a sequence of characters. Strings are surrounded by double
quotes.
The type dinosaur represents a dinosaur. The dinosaur type supports properties that
can be of any basic type or list of basic type.
The type thing is used to represent anything that is not a dinosaur. The thing type
supports properties that can be of any basic type or list of basic type.

3.2. Derived Types
There may be an infinite class of derived types created from the basic types, by
creating lists of basic types, and by creating functions that operate on basic types or
list of basic types and return either a basic type or a list of basic type.

4. Conversions
Conversion from one type to another is generally not supported, except for conversions
between int and string.
Conversion from type int to type string is supported through the tostring keyword.
Conversion from type string to type int is supported through the toint keyword. When the
value of the string doesn’t evaluate to an integer, toint return value is indeterminate.

5. Expressions

5.1. Primary Expressions
Primary expressions are identifiers and constants.

5.2. Dinosaur and Thing Properties
A dinosaur or thing property is an expression that contains an object of dinosaur or
thing type, followed by a dot, followed by a property member of that type.

The dinosaur or thing property expression evaluates to one of the basic types (3.1)
excluding the empty type, or a list of a basic type.

5.3. Functions
A function is an expression that contains an identifier (that represents an object of
dinosaur type), followed by an identifier that represents a function name, followed by
zero or more arguments.

The function expression evaluates to one of the basic types (3.1), or a list of one of
the basic type. In other words, a function returns a basic type or a list of a basic type.

Each argument of a function may be of any basic type, or a list of a basic type, except
the empty type. A function automatically gets the dinosaur object whose identifier
precedes the function-name as the first argument.

5.4. Multiplicative Operators
Supported multiplicative operators are multiplication (*) and division (/). The
operands of these operators must be of type int, and the result is also an int type. For
division, the result is rounded off to the nearest integer.

5.5. Additive Operators
Supported additive operators are plus (+) and minus (-). The operands of these
operators must be of type int, and the result is also an int type.

5.6. Relational Operators
Supported relational operators are < (less), > (greater), <= (less than or equal) and >=
(greater than or equal). The operands of these operators must be of type int, and the
result is either 0 if condition is false or 1 if condition is true.

Relational operators are only allowed within the if conditional statement.

5.7. Equality Operators
The = (equal to) and != (not equal) operators are similar to relational operators,
except that they also support comparison of string types in addition to int types.

Equality operators are only allowed within the if conditional statement.

5.8. Assignment Expression
The assignment operator (=) requires a variable or object of a basic type (except the
empty type) as the left operand, with the right-hand side operand being an expression
that evaluates to the same type. As a result of the assignment, the left hand side
variable or object takes the value of the evaluated expression on the right-hand side.

6. Definitions

6.1. Function Definition
Function definitions are used to define new functions.

An function definition consists of the keyword define, followed by the keyword
function, followed by the function return-type, followed by an identifier (function
name), followed by a list of arguments enclosed in brackets, followed by the
function-body.

The function return-type may be any basic type or a list of a basic type.

The identifier in the function definition becomes the function-name of the newly
defined function. Function-names must be unique.

Each item in the list of arguments contains a type, which can be any basic type or a
list of a basic type, followed by the name of that argument.

The function automatically receives an argument named “dino” that is of type
dinosaur.

The function body contains zero or more expressions. If the function has a return-type
which is not empty, the last statement in the function body is a return keyword
followed by an expression that evaluates to the same type as the function return-type.

6.2. Property Definition
Property definitions are used to define new properties on dinosaur or thing types.

A property definition consists of the keyword define, followed by the keyword
property, followed by the property type, followed by the keyword dinosaur or thing,
followed by a dot, followed by an identifier (property name), followed by an
expression that evaluates to the same type as the property type. The expression in the
end is used to provide a default value to the property.

The property type may be any basic type or a list of a basic type.

7. Creation
New objects are instantiated by using the create keyword.

7.1. Creating Dinosaurs
New dinosaur objects are created by using the create keyword, followed by the
dinosaur keyword, followed by the named keyword, followed by an identifier. The
identifier in the end denotes the object name and has to be unique.

7.2. Creating Things
New thing objects are created by using the create keyword, followed by the thing
keyword, followed by the named keyword, followed by an identifier. The identifier in
the end denotes the object name and has to be unique.

7.3. Creating Lists
Lists are created by using the create keyword, followed by the listof keyword,
followed by one of the basic types.

8. Statements
Statements are executed in sequence. They are of several types.

8.1. Selection Statement
Selection statements may be of two different forms –

if (expression) statement
if (expression) statement else statement

In both forms of the if statement, if the expression evaluates to non-zero, the first sub-
statement is executed. In the second form, the second sub-statement is executed if the
expression evaluates to 0.

Nesting ifs are not permitted.

8.2. Iteration Statement
Iteration statements may be of two different forms –

do expression times statement
while (expression) statement

In the do statement, the sub-statement is executed as many times as the expression
specifies. The expression evaluates to an integer.

In the while statement, the sub-statement is executed repeatedly until the value of the
expression evaluates to 0.

Nesting do or while statements are not permitted.

9. External Declarations
External declarations are not supported. All the source code for a DINO program must
reside in a single unit of input.

