EPSAL

Equity Portfolio Statistical Analysis Language EPSAL

COMS 4115 - Programming Languages and Translators Spring 2009

1. Introduction

The purpose of EPSAL (Equity Portfolio Statistical Analysis Language) is to provide a simple set of tools to analyze a time series set of data points for a data set of S\&P 500 index stocks for a 60 month period. The S\&P 500 represents approximately 70% of the value of the U.S. equity market. The listed companies are highly diverse; spanning every relevant portion of the U.S. economy ${ }^{1}$. This language will be focused providing key words for the descriptive and inferential statistics in measuring an individual stock or against the index population. A population is defined as the entire set of $S \& P$ members but most queries will be focused on subsets. The descriptive statistics will focus on summarizing a set of numerical data into an informative presentation. The Inferential statistics cover algorithms to make forecast estimates and aggregate views on smaller subset in relation to the total population. ${ }^{2}$

An example of the features of this language:

- Performance calculation of index over varying periods
- Comparison of a initial stock against average of index
- Portfolio composition performance metrics - i.e. - \% cash vs. index
- Regression to mean of individual stocks or group of stocks
- Weighted mean of a portfolio return
- Population Variance
- Population standard deviation

2. Data Set Details

These data sets consist of files which are archived together, one for each day. The individual files contain a record for each stock, organized as Ticker, Open, High, Low, Close, and Volume, delimited by commas.

Example

DATE	Ticker	Open	High	Low	Close	Volume
20080207	A	33.38	33.5	32.2	32.42	55187
20080208	A	32.19	32.32	31.81	32	54934
20080211	A	32	32	31.58	31.86	46008
20080212	A	32	32.3	31.79	31.85	38668
20080213	A	32.05	33.16	31.92	32.68	60191
20080214	A	32.68	32.825	31.05	31.54	66854
20080215	A	31.41	31.54	30.48	30.65	36729
20080219	A	30.94	31.1	30.67	30.93	39034
20080220	A	30.61	31.61	30.58	31.53	34482
20080221	A	31.58	31.97	31.46	31.61	39864

[^0]| 20080222 | A | 31.43 | 31.58 | 30.78 | 31.41 | 22253 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 20080225 | A | 31.42 | 31.79 | 31.2 | 31.5 | 30575 |
| 20080226 | A | 31.41 | 31.91 | 31.24 | 31.87 | 65289 |
| 20080227 | A | 31.74 | 32.44 | 31.65 | 32.03 | 20699 |

Total data points for one year's data is 126,492 rows x 7 fields $=885,444$
Close prices are adjusted for dividends and splits
3. Calculation Examples ${ }^{3}$

Arithmetic Return - Annual
$\mathbf{A R}=(($ Price final - Price initial $) /$ Price Initial $) * 100$

Arithmetic Average of Return

$\mathbf{A V G R}=1 / \mathrm{n}(\mathrm{AR}(1)+\mathrm{AR}(2)+\ldots \ldots . .+\operatorname{AR}(\mathrm{n}))$
AR - observed total return for a year
$\mathrm{n}=$ number of years
Variance of Returns var(R)
$\operatorname{VARR}=\Sigma[R t-\operatorname{Avg}(R)]^{\wedge} 2 /(n-1)$
4. Language Specification

Comments - /* Comment */
End of Statements - ;
Data Types
The data types are the individual calculations which will have input date range parameters

[^1]AR - Arithmetic Return

AVGR - Arithmetic Return

SAMPM - sample mean
POPM - Population Mean
VARR - Variance of Return
WMEAN - Weighted Mean
MODE - Mode
GMEAN - Geometric Mean

POPVAR - Population Variance
POPSTDD- Population Standard deviation

Keywords

DELTA
FIND
CALC
IF
THEN
ELSE
RAND
PRINT

RETURN

FROM
TO

SNP

Code Example
/* Calculate Arithmetic Return of Stock 'YHOO' from 2/7/2008 to 2/7/2009 */
D1 $=20080207$;
D2 $=20090207$;
YahooReturn $=$ AR YAHOO FROM D1 TO D2;
PRINT YahooRetrun ;
/* Calculate Arithmetic Return of Stock 'MSFT ' from 1/7/2009 to 2/7/2009 */
D1 $=20090107 ;$
D2 $=20090207$;
MSFTReturn $=$ AR MSFT FROM D1 TO D2;
PRINT MSFTRetrun ;
/* Calculate Population Varaiance in S\&P from 2/7/2005 to 2/7/2008 */
D1 $=20050207$;
D2 $=20080207$;
PopVarince 3yrs = POPVAR SNP D1 TO D2;
PRINT PopVarince 3yrs ;

[^0]: 1 http://www.fool.com/school/indices/sp500.htm
 ${ }^{2}$ Schwesser Study Notes - pg 159 - Statistical Concepts and Market Returns

[^1]: ${ }^{3}$ Frank Fabozzi - / James Grant - Equity Portfolio Analysis - pg 45

