
Petros: A Multi-purpose Text File Manipulation

Language

Joseph Sherrick

Computer Science Department, Columbia University

500 West 120th Street, New York, NY 10027

js2778@columbia.edu

1 Introduction

Text file parsing and manipulation is a capability that is necessitated among
a broad span of disciplines. It is commonly used for Computer Science related
research where empirical results are often deposited with distinct formats in text
files so that they can later be deciphered for analysis. Programming languages
such as awk and Perl were originally designed to provide text processing facili-
ties. While awk has generally remained unchanged, Perl has been expanded to
include a wide range of tasks including system administration, web development,
network programming, GUI development, and more.

In this paper we propose Petros, a multi-purpose programming language de-
signed for processing text-based data in files. Petros utilizes a pattern matching
scheme to enable the extraction of relevant information from a text file. The
language provides an inherently flexible framework where a user can manipulate
data by specifying a set of expressions consisting of rules, conditions, and oper-
ations. Resultant information can be used to provide knowledge about the text
file’s content. Ease of use is critical to facilitate desired results; therefore, our
language has been designed to accommodate intuitive syntax and semantics.

We describe the functionality of Petros in Section 2. In Section 3 we present
the language functionality in greater detail and delineate each of its data types,
operators, control structures, and conditional logic. Finally, Section 4 presents a
program example to illustrate the syntax and semantics of Petros.

2 Language Functionality

Petros is designed to enable text file manipulation in numerous ways to yield
desired information or knowledge about a file’s content. The generality of Pet-

ros affords the utility for performing simple or complex text-processing tasks.
Relevant information is educed based on equality or location. A user specifies
whether to display data that meets a set of conditions, perform arithmetic op-
erations to acquire statistical information, or conduct manipulation techniques
such as text insertion and deletion.

Petros provides an environment were data can be structurally organized to
incur a set of rows and columns. These structural parameters allow a user to



categorize data and display or perform operations accordingly. Equality and re-
lational operators facilitate the selection of data as well as a user’s ability to
build complex functions. Conditional operators provide a means for data to be
selected if a group or subset of conditions is met. Finally, control structures em-
ploy decision making and looping schemes that enable a program to conditionally
execute particular statements and operations.

3 Language Attributes

3.1 Identifiers and Keywords

Identifiers are lexical tokens that name entities. Naming entities makes it possi-
ble to reference them, which is essential for symbolic processing. Keywords repre-
sent a specific meaning to the Petros language and cannot be used as identifers.
The comprehensive list of keywords includes: column, row, int, float, string, if, el-

seif, else, for, do, while, and, or, delimit, print, write, readFromFile, writeToFile,
insert, remove, beginsWith, endsWith, contains, end.

3.2 Data Types

Data types are the building blocks of any programming language. They define
a set of values and the allowable operations on those values. The data types
encompassed by the Petros language includes:

– integer : specified using the keyword int. Integers represent whole numbers
that can be used for relational and conditional operators, loop iterations,
and arithmetic operations.

– float : specified using the keyword float. Floating point numbers represent
fractional numbers that can be used for relational and conditional operators
as well as arithmetic operations.

– string: specified using the keyword string. Strings represent explicit charac-
ters that can be used for pattern matching, equality and conditional opera-
tors.

3.3 Simple Assignment Operator

= used to initialize a particular identifier.

3.4 Arithmetic Operators

+ additive operator
- subtraction operator
* multiplication operator
/ division operator

2



3.5 Equality and Relational Operators

Equality and relational operators evaluate a particular relation between two en-
tities. These operators return true or false depending on whether the conditional
relationship between the two operands holds or not. The equality and relational
operators include:

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

3.6 Conditional Operators

The condition is evaluated true or false as a Boolean expression. On the basis of
the evaluation, the expression invokes some particular action. The conditional
operators include:

– and : evaluates to true if all conditions return true; false otherwise.
– or : evaluates to true if at least one condition returns true; false otherwise.
– contains : evaluates to true if all or some portion of an entity contains the

specified element; false otherwise.

3.7 Control Structures

Control structures employ user specified logic to make execution based decisions
depending on whether a set of conditions are satisfied. Conditional consum-
mation may be required before expressional execution or after the subsequent
execution of expressions. The Petros language includes the following control
structures:

– if-then-else: enables execution of a particular section of code only if a par-
ticular test evaluates as true.

– while and do-while: continually executes a block of statements while a par-
ticular condition is true.

– for : repeatedly executes a block of statements until a particular condition is
satisified.

4 Example Program

In this section, we delineate an example program. The program defines both an
integer and string data type. The column structure is specified by the delimit

statement. The readFromFile keyword identifies both the file location and file-
name to be read. The for control structure iterates five times before ceasing

3



execution. Rows one through five are read and tested to see if they contain the
string comprised by the identifier, var. The numeric value contained in row one
through five, column two is stored in the variable input.

In the second half of the program, the delimit statement is used to change
the column structure. The while control structure evaluates rows 3 through 27,
column 5 while the result is equal to the value stored in input or the numeri-
cal value of 26. If the while control structure evaluates to true, column five is
displayed to the screen as well as being written to the location and filename
specified by the keyword, writeToFile and write. The example program syntax:

string var = ’example string’;
int input;
delimit(’ !’, ’?’, ’@’, ’&’);
readFromFile(/home/js2778/, some file);
for(i=0; i<5; i++) {

if(row[i] contains var) {
input = row[i]:column[2];
input = input + 6;

}
}
delimit(’$’, ’(’, ’)’);
while(row[3:27]:column[5] == input or 26) {

print(column[5]);
writeToFile(/home/js2778/, test);
write(column[5]);

}
end

4


