
Petros: A Multi-purpose Text

File Manipulation Language

Language Reference Manual

Joseph Sherrick

js2778@columbia.edu

June 20, 2008



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Lexical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Language Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 White Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.7 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.7.1 Assignment Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.7.2 Concatenation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7.3 End of Set Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7.4 Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7.5 Equality and Relational Operators . . . . . . . . . . . . . . . . . . . . . 5
2.7.6 Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7.7 Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Underlying Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Location Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 delimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.7 insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.8 remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.9 done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 The if and elseif Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 The if-else Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 The while Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 The do Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.5 The for Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.1 Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Logical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



1 Introduction

Petros is a multi-purpose text-processing programming language. Petros utilizes
a pattern matching scheme to extract relevant information from a text file. It is
designed to provide a flexible framework from which a user can manipulate data
by specifying a set of expressions and statements consisting of rules, conditions,
and operations. Relevant information pertaining to a specified relationship or
location is educed from a text file to provide information or knowledge about
the file’s content.

2 Lexical Structure

Programs are written using the Unicode character set. The Unicode characters
resulting from the lexical translations are reduced to a sequence of elements
(Section 2.1) consisting of white space (Section 2.2), comments (Section 2.3),
and tokens. Tokens are comprised of identifiers (Section 2.4), keywords (Section
2.5), literals (Section 4), and operators (Section 2.7) of the syntactic grammar.

2.1 Language Elements

Language elements are the various pieces of a Petros program. These elements
provide the building blocks of text file manipulation by combining elements in
a meaningful sequence. Elements consist of tokens, comments, and white space.
Tokens are comprised of identifiers, keywords, literals, separators, and operators.
White space and comments serve to separate tokens, provide structural organi-
zation, and improve syntactic readability. For example, the keywords else and if

can form the conditional statement token elseif only if there is no intervening
white space or comment.

2.2 White Space

White space represents any non-printable character such as the spacebar, tab,
new line, and form feed. White space is not used to dictate the scope of variables
or program flow. It instead provides a means to separate tokens and is otherwise
ignored by the compiler.

2.3 Comments

The Petros programming language provides two kinds of comments:

/* text */ all the text between /* and */ is ignored
text all the text from // to the end of the line is ignored

3



Both comment types employ the following properties:

– comments do not nest
– both /* and */ have no special meaning in comments that begin with //
– sequential characters // have no special meaning within comments that begin

/* and end with */

As a result, the following example is a single complete comment:
/* this comment /* // /** ends at the end of this sentence */

2.4 Identifiers

Identifiers refer to user-defined variable names which are essential for symbolic
processing. An identifier is a sequence of letters and digits, the first character is
required to be a letter. An identifier cannot have the same spelling as a keyword
or literal. Letters and digits may be draw from the entire character set. This
includes all uppercase and lowercase ASCII letters A through Z and a through z
as well as ASCII digits 0 through 9. Two identifiers are considered equivalent if
they contain the same character for each letter or digit. All identifiers are case
sensitive.

2.5 Keywords

Keywords represent a specific meaning to the Petros language and cannot be
used as identifiers. The comprehensive list of keywords includes:

if elseif else for do while and or delimit print write

read file insert remove contains done

2.6 Separators

The following characters are used as separators:

( ) encapsulates the arguments of a statement
{ } defines the body of a Petros statement
[ ] specifies the structural location of data
; signifies the end of a statement
, separates the arguments of a statement

2.7 Operators

2.7.1 Assignment Operator

= used to initialize a particular identifier.

4



2.7.2 Concatenation Operator

ˆ used to connect multiple series of characters together. A series of
numbers is assumed to be a string.

2.7.3 End of Set Operator

˜ used to signify the final value of either rows or columns in the lo-
cation specification (Section 3.1).

2.7.4 Arithmetic Operators

+ additive operator
- subtraction operator
* multiplication operator
/ division operator

2.7.5 Equality and Relational Operators

Equality and relational operators evaluate a particular relation between two
entities. These operators return true or false depending on whether the condi-
tional relationship between the two operands holds or not. The equality and
relational operators include:

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

2.7.6 Logical Operators

The condition is evaluated true or false as a Boolean expression. On the basis of
the evaluation, the expression invokes some particular action. The conditional
operators include:

– and : evaluates to true if all conditions return true; false otherwise.

– or : evaluates to true if at least one condition returns true; false otherwise.

– contains : evaluates to true if all or some portion of an entity contains the
specified element; false otherwise.

5



2.7.7 Precedence

Expressions are evaluated as left-associative. Parentheses may be used to force
precedence. Table 1 depicts the precedence of operators in the Petros language
from highest to lowest.

Precedence Operator Description

1 ( ) Parentheses
2 * / Multiplication and Division
3 + - Addition and Subtraction
4 ==, !=, >, >=, <,<= Relational and Equality Operators
5 and or contains Logical And, Or, Contains

Table 1. Precedence of Petros operators. Shown from highest to lowest.

3 Underlying Functions

3.1 Location Specification

[x:y,j:k]

An arbitrary location within a text file is specified in terms of a row and col-
umn. The location can be a single row, a range of rows and columns, or a specific
column within a row. The range of rows and columns are separated by a colon.
Rows and columns are separated by a comma with the first parameter being
a row and the second a column. Both row and column numbers begin at the
numerical value of one. If a column value is not explicitly stated, it is assumed
that the entire row is selected.

3.2 delimit

delimit(’symbol’, ... ’symbol’);

The delimit statement provides the organizational structure for a specified text
file. Each delimitation symbol is specified between single quotation marks and
separated using commas. A file’s delimiting factors can be changed at any point
in a program. Expressions and statements apply to the most recently delimited
factors.

3.3 print

print(variable);
print([x:y,j:k]);

6



The print statement displays specified or manipulated data in a text file. Data
may be the contents of a particular variable or from a specific location in the
file.

3.4 write

write(variable);
write(”string”);
write([x:y,j:k]);

The write statement specifies arbitrary text to be written to a file. Text may be
the contents of a variable, a specified string, or some or all of the contents of
another text file. Text is written to a file in sequential order as defined by each
write statement.

3.5 read

read(directory, filename);

The read command specifies the location and filename of the input text file.
The file location is the first parameter passed to the read statement. The loca-
tion is stated by specifying a pathname in either a windows or linux operating
environment. The filename is the second parameter passed to the read statement.
Parameters are separated by a comma.

3.6 file

file(directory, filename);

The file statement specifies the location and filename to perform write oper-
ations to. The file location is the first parameter passed to the file statement.
The location is stated by specifying a pathname in either a window or linux
operating environment. The filename is the second parameter passed to the file
statement. Parameters are separated by a comma.

3.7 insert

insert(variable, [x:y,j:k]);
insert(”string”, [x:y,j:k]);

The insert statement places text in a user specified location of a text file. Text
may be the contents of a variable or a specified string. The text to insert is the
first argument passed to the insert statement. The location in the file is specified
by the second argument passed to the insert statement. Arguments are separated
by a comma. The file that is modified by the insert statement is specified by the
file statement (Section 3.5).

7



3.8 remove

remove(variable);
remove(”string”, [x:y,j:k]);
remove([x:y,j:k]);

The remove statement deletes text in a user specified location of a text file.
Text may be the contents of a variable, a specified string, or all the text con-
tained in a particular location. The text to remove is the first argument passed
to the remove statement. The location in the file is specified by the second argu-
ment passed to the remove statement. Arguments are separated by a comma. If
all the text contained in a specified location is desired for deletion, the location
is the only argument passed to the remove statement. The file that is modified
by the remove statement is specified by the file statement (Section 3.5).

3.9 done

done

Signifies the end of a program.

4 Data Types

The Petros language supports the use of string, integer, and floating point data
types. Depending on the context of a statement, the value of a statement evalu-
ates to either a number or string. Variable representation is not explicitly defined
by the user. Petros distinguishes the contents of a variable and evaluates an ex-
pression accordingly. The following data types are implicitly defined by the user:

– integer : specified by a sequence of digits that do not contain a decimal point.

– float : specified by a sequence of digits that contain a single decimal point
either beginning, within, or at the end of the sequence.

– string: specified within double quotation marks by a sequence of letters,
digits, symbols, or white space.

Strings are prohibited from arithmetic evaluations.

5 Statements

The sequence of program execution is controlled by statements. Statements em-
ploy user specified logic to make execution based decisions depending on whether
a set of conditions are satisified. Conditional consummation may be required be-
fore expressional execution or after the subsequent execution of expressions.

8



5.1 The if and elseif Statement

The if and elseif statement allows conditional execution of a statement or a
conditional choice of two or more statements, executing one or the other but
not both. The elseif statement is only valid if there exists a preceding if state-
ment; however, an if statement does not require an elseif. Execution continues
by making a choice based on the resulting value:

– If the if expression is evaluated as true, then the enclosed statement(s) are
executed.

– If the if expression is evaluated as false, then the elseif expression is evalu-
ated if one exists; otherwise, do nothing.

– If the elseif expression is evaluated as true, then the enclosed statement(s)
are executed.

– If the elseif expression is evaluated as false, no further action is taken.

5.2 The if-else Statement

The if-else statement allows conditional execution of a statement or a conditional
choice of two, executing one or the other but not both. The else statement is only
valid if there exists a preceding if statement; however, an if statement does not
require an else. Execution continues by making a choice based on the resulting
value:

– If the if expression is evaluated as true, then the enclosed statement(s) are
executed.

– If the if expression is evaluated as false, then the else expression is executed
if one exists; otherwise, do nothing.

5.3 The while Statement

The while statement executes an expression and a statement repeatedly until the
value of the expression is false. A while statement is executed by first evaluating
the expression. Execution continues by making a choice based on the resulting
value:

– If the value is true, then the enclosed statement(s) are executed. After state-
ment(s) finish execution, the process reiterates.

– If the value is false, then no further action is taken.

5.4 The do Statement

The do statement executes a statement and an expression repeatedly until the
value of the expression is false. A do statement is executed by first executing
the statement. Execution continues by making a choice based on the resulting
expression value:

9



– If the value is true, then the entire do statement is executed again.
– If the value is false, no further action is taken.

The execution of a do statement always executes the enclosed statement(s)
at least once.

5.5 The for Statement

The for statement executes some initialization code, an expression, a statement,
and some update code repeatedly until the value of the expression is false. The
for statement provides the user a capability to run a segment of code by some
arbitrary number of iterations. Execution continues by making a choice based
on the resulting expression value:

– If the value is true, then the entire for statement is executed.
– If the value is false, no further action is taken.

6 Expressions

Expressions represent the combination of conditions, values, variables, and oper-
ators. They are used to make conditional decisions and arithmetic manipulation
as well as the extraction of data based on equity or location.

6.1 Arithmetic Expressions

Arithmetic expressions are invoked by specifying addition (+), subtraction (−),
multiplication (*), or division (/) operators. Results are either stored in a vari-
able using the assignment operator or used to evaluate some arbitrary condition.
An example arithmetic expression is:

var1 = (25 + 50) * var2 - 10;

Where var2 equals 2, the expression evaluates to var1 equals 140.

6.2 Conditional Expressions

Conditional expressions are invoked by specifying equal to (==), not equal to
(!=), greater than (>), greater than or equal to (>=), less than (<), and less than
or equal to (<=) operators. Results are used to make decisions about whether
arbitrary code segments should be executed as well as matching patterns for
data manipulation. Conditional expressions are commonly used for if, elseif, for,
and while statements. An example conditional expression is:

10



if(var1 > 100) {
statement
...

}

Where statement is executed if var1 is greater than 100.

6.3 Logical Expressions

Logical expressions are a sequence of one or more conditional expressions that
employ user specified logic to make execution based decisions depending on
whether a set of conditions are satifisfied. An example logical expression is:

if(var1 == 50 or var2 > 100) {
statement
...

}

Where statement is executed if either var1 is equal to 50 or var2 is greater than
100.

7 Example Program

In this section, we delineate an example program. The program utilizes both an
integer and string data type. The column structure is specified by the delimit

statement. The read keyword identifies both the file location and filename to be
read and the file keyword identifies the location and filename to write to. The for

statement iterates four times before ceasing execution. Rows one through four
are read and tested to see if they contain the string comprised by the identifier,
var. If var is contained, the numeric value contained in row one through four,
column two is stored in the variable input, a value of six is added to it and i,
the string input=, and input are written to a file. If they do not contain var,
the elseif condition is tested to see whether rows one through four contain a
string. If evaluated true, the value of input is inserted at row i and column two.
If neither the if or elseif statements are satisified, the else statment is executed
where row i is deleted.

In the second half of the program, the delimit statement is used to change the
column structure. The for statement iterates 8 times before ceasing execution.
The value of row i and column 3 is read and tested against the condition stated
by the while expression where while is executed if input is greater than 100 and
less than 200. If evaluated true, a value of two is added to input and stored in
input. Also, the current value of i is concatenated with input and printed to the
screen. The example program syntax includes:

11



var = ”example string”;
delimit(’ !’, ’?’, ’@’, ’&’);
read(/home/js2778/, some file);
file(/home/js2778/, test);
for(i=1; i<5; i++) {

if([i] contains var) {
input = [i,2];
input = input + 6;
write([i]ˆ ”input=”ˆ input);

}
elseif([i] contains ”another string”) {

insert(input, [i,2]);
}
else {

remove([i]);
}

}
delimit(’$’, ’(’, ’)’);
for(i=1; i<9; i++) {

input = [i,3];
while(input > 100 and input < 200) {

input = input + 2;
print(iˆ input);

}
}
end

12


