
TabPro:
A Table Generation language

Anureet Dhillon Lakshmi Nadig Rajat Dixit

19 December 2008

Contents
1. An Introduction to TabPro ... 6

1.1 Background.. 6

1.2 Goals of TabPro ... 6

2. Language Tutorial... 6

2.1 Preparing Tabpro... 6

2.2 Declaring Variables.. 7

2.3 Declaring and Calling Functions .. 7

2.4 Working with Columns and indexes.. 8

2.5 Generating Table... 8

2.6 Simple function ... 8

2.7 More Examples.. 9

2.8 Exceptions and Errors.. 11

3. Reference Manual .. 14

3.1 Lexical Conventions... 14

3.1.1 whitespace: ... 15

3.1.2 Comments: .. 15

3.1.3 Identifiers: ... 15

3.1.4 Keywords: .. 15

3.1.5 Constants... 15

3.1.6 Declarations... 15

3.1.7 Operators: ... 15

3.1.8 Separators: .. 16

3.1.9 Scope and Name Space: .. 16

3.1.10 Built in functions and reserved keywords:............................ 16

3.2 Types: .. 16

3.3 Expressions.. 17

3.3.1 Primary Expressions .. 17

3.3.2 Indexed expression.. 17

3.3.3 Index range expression.. 18

3.3.4 Column Size expression... 18

3.3.5 Function Calls .. 18

3.3.6 Expressions with Arithmetic Operators 18

3.3.7 Expressions with Relational Operators 18

3.3.8 Expressions with Assignment operators 19

3.3.9 Expression with Comma Operator .. 19

3.4 Statements .. 19

3.4.1 Declaration Statement .. 19

3.4.2 Block Statement .. 20

3.4.3 Conditional statements ... 20

3.4.4 return statement... 20

3.4.5 Iteration Statements ... 20

3.4.6 Function Declaration ... 21

3.5 Pre-Processor/Library Support.. 21

4. Project Plan ... 23

4.1 Team Responsibilities.. 23

4.2 Project Timeline .. 23

4.3 Software Development Environment.. 23

4.4 Project Log... 26

5. Architectural Design ... 26

5.1 Architecture... 26

Statement(list)... 28

5.2 The Runtime Environment .. 28

6. Testing Plan... 28

6.1 Goals.. 28

6.2 Phase 1 – Scanner test .. 28

6.3 Phase 2 – Parser Tests ... 29

6.4 Phase 3 – Interpreter Tests ... 30

6.5 Phase 4 – Regression Tests.. 32

7. Lessons Learned .. 33

8. Potential Enhancements.. 34

8.1 Short Term... 34

8.2 Long Term.. 34

4. Appendix .. 34

4.1 Code Listing for the main interpreter....................................... 34

4.1.1 Scanner_TablePro.mll ... 34

4.1.2 Parser_TablePro.mly ... 36

4.1.3 AST_TablePro.mll .. 39

4.1.4 Interpreter.ml.. 40

4.1.5 Printer.ml... 52

4.1.6 TableUtil.ml ... 54

4.1.7 Tabpro.ml .. 55

4.2 Code Listing for the Preprocessor ... 55

4.2.1 Scanner_TableProPreProcess.mly... 55

4.2.2 Scanner_TableProPreProcess.mly... 56

4.2.3 PreProcessor.ml... 56

4.2.4 TabProPreProcess.ml .. 56

4.3 Other Test Code .. 57

4.4 Regression test script .. 57

4.5 Test Cases.. 58

4.6 Negative Test Cases: .. 64

1.An Introduction to TabPro

1.1 Background
We live on sharing information and we try to do it in as simple way as it can be. One of the simplest ways of
organizing the information is table. Tables are used around the world in various places, for example we need a table to
organize a schedule, to display scores in various sports like basketball, bowling, baseball, etc. A table helps anyone to
interpret the information very easily, since it becomes easier for us to visualize the information. Tables can also be
used to show the balance available in the bank account of a person, etc. As we know there is several numbers of
programming languages, we still feel a need of a language that enables user to create a tabular form of the
data/information. Thus looking at the importance of the table, we developed a programming language, TabPro, which
allows us to create and manipulate data in a tabular form.

1.2 Goals of TabPro
The objective of this language is to give the user both a flexible and simple way of manipulating and generating data
in the form of a table. This language should aid the user in visualizing the data/information. The user should be able to
define the organization of the data in a simple way and at the same time give them the power to manipulate the data
before generating the final data in a table layout. To begin with, this language aims are generating tables in the form
of comma separated files. The comma separated file can be opened using a spread sheet editor. A screen shot of the
sample output is shown below. Further extension would include generation of tables in html files

2. Language Tutorial

This tutorial is for those people who want to learn to work in TabPro. Of course any knowledge of other programming
languages or any general computer skill can be useful to better understand this tutorial, although it is not essential.

2.1 Preparing Tabpro
OCaml has to be installed on the user’s computer. To make TabPro run, the user has to download the TabPro
executable. To run a file test.tab, following command should be used (being in the current directory)-

ocamlrun TabPro test.tab

TeamNames "Score1" "Score2" "Sum" "Ranks" "Bonus" "Avg"
NewYorkKnicks 20. 40. 60. "None" 60. 30.
TeamMiamiHeat 30. 34. 64. "Third" 69. 32.
_ChicagoBulls 25. 22. 47. "None" 47. 23.5
DetroitPistons 33. 44. 77. "First" 97. 38.5
HoustonRockets 42. 28. 70. "Second" 80. 35.

2.2 Declaring Variables
Declaring any variable in TabPro is simple. There can be four basic types of variables (as explained in LRM), and that
can be declared as follow:

To simply declare a variable of type number-

num: i;

To initialize a variable of type number, you have to give the decimal value in the form of [0-9].[0-9]. For example-

i = 1.0;

To declare and initialize a variable of type string, you have to give the value in double inverted commas. For example-

str:name;

name = “Rajat”;

If you want to declare any column, then you must also mention its data type along with its heading.

col:c0<num:,"MyHeading">;

And if you want to give values for the declared column, you can use assign operator along with the declaration and a
pair of curly braces - { }. For example-

col:c0<str:,"MyHeading"> = {“Sno.”}

2.3 Declaring and Calling Functions
To declare a function, we use a keyword function followed by function name and an argument list with their data type
and return type at the end. Here is a small example-

function multiply(num:i, num:j) num:
{
num: k;
k =i* j;
return k;
}

To call this function, you need to declare a variable which is of the type similar to the return type of the function. For
example here in our example it is done as-

num: t;

t = multiply(3,3);
The return type of the function in its definition should be the same as the type of the variable holding its value after
calling it.

2.4 Working with Columns and indexes
Indexing on a column will return the element at that position. For example if you would like to access/retrieve the
3’rd element of a column mycol, you use mycol[3]

With indexing a new element can be appended to the array of the index is the length of the column, so if a column
already has 3 elements, the fourth one can be appended by merely coding it as c[3]. This is especially useful when
initializing a column with values.

An error is given if the column index is greater than the column length. The length of the column can be determined
using c.size.

You can also apply operators +=, *+ , /= and -= on a range of columns in a particular row- For example- to add 13 to
all elements of a column myCol

myCol[3-7] += 13;

Similarly other operators defined in the LRM can also be applied. (See LRM for details)

2.5 Generating Table
generate_table is used to generate the table. The example below demonstrates the generation of a table for the six
columns c0, c1, c2, c3, c4 and c5.

generate_table c0, c1, c2, c3, c4, c5;

The example below will generate a time table for a few courses in fall semester for each day of the week-

col:Days<str:, “Days”> = {“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”};
col:Time1 <str:, “11.00am”> = { “ COMS 4119 ”, “COMS 4156” , “COMS 4119 ”, “COMS 4156” , “ ”};

col:Time2<str:, “1.10pm”> = { “COMS 4115”, “ COMS 4111 ” , “COMS 4115”, “ COMS 4111” , “ ”};

col:Time3<str:, “2.40pm”> = { “COMS 4118”, “ COMS 4187 ” , “ COMS 4118”, “ COMS 4187 ” , “ ”};

generate_table Days, Time1, Time2, Time3

Thus, the output will look like-

Days 11.00 am 1.10 pm 2.40 pm

Monday COMS 4119 COMS 4115 COMS 4118

Tuesday COMS 4156 COMS 4111 COMS 4187

Wednesday COMS 4119 COMS 4115 COMS 4118

Thursday COMS 4156 COMS 4111 COMS 4187

Friday NoData NoData NoData

2.6 Simple function
Let us now learn how to write a simple function in TabPro. Here we will be using a loop that will generate a
Fibonacci Series in one column-

col:Fibonacci<num:,"Series">={1.0};
num: num1;
num: num2;

num: ans;

num1 = 0;
num2 =1.0;

num:loopvar = 2.0;

 Fibonacci[0] = num1;
 Fibonacci[1] = num2;

loop (loopvar < 8.0)
{
 ans = num1 + num2;

 Fibonacci[i] = ans;
 num1 = num2;

 num2 = ans;

 loopvar = loopvar + 1.0;
}
generate_table c0;

The above program explains the use of loop (iteration statement). The table generated will have just one column
Fibonacii with heading Series and datatype num. There are other two variables of type num num1 and num2. The loop
runs from 2 to 7 (6 times) and increments the value of num1 and num2. loopvar here is the loop variable and ans is the
variable that is used to hold the addition of num1 and num2. The output of the program will contain 8 rows of column
Fibonacci with heading ‘Series’. Here is how the output looks like-

Series

0

1.0

1.0

2.0

3.0

5.0

8.0

13.0

2.7 More Examples
The example below demonstrated the use of conditional statements using the “if” syntax. This program generates a
bill as a simple table

col:Items <str:,"ITEMS ">={ “Grocery”, “Grocery”, “Stationary”, “Grocery”, “Stationary”, “Misc”, “GRAND
TOTAL”};
col:Qnty <num:,"QUANTITY ">={ 2.0, 1.0, 3.0, 1.0, 4.0, 3.0};
col:Price <num:,"PRICE ">={ 12.0 10.0, 8.0, 15.0, 7.5, 7.0};
col:Amnt <num:,"AMOUNT ">;

col:Cmnt <str:,"COMMENTS ">;
num: total = 0.0;

num: loopvar = 0.0;

loop (loopvar < 6.0)
{
j = Qnty[loopvar];
k = Price[loopvar];
m = j * k;

Amnt[loopvar] = m;

if (m > 25)

{

str: comment = “10 % Discount”;

Cmnt [i] = comment;

m = m/10;

temp = m * 9;

Amnt [i] = temp;

}

total = total + Amnt[loopvar];
loovar = loopvar + 1;
}

num: totindex;

totindex = loopvar + 1;

Amnt[totindex] = total;

generate_table Items, Qnty, Price, Amnt, Cmnt;

In this program, we are generating a bill for a grocery shop in the form of a table, where you can actually buy
stationary and other stuff as well. It gives its customer a 10% Discount on every purchase if the amount payable of a
single item is more than 25 dollars (no matter what is the quantity of the item you take). So, in the above example, a
customer buys six different items, each of different in quantities, with different prices. Thus, we write the code to
generate the appropriate bill.

Here we put a Boolean condition m > 25 in the if () statement to check whether the amount payable to (loopvar)th
item is more than or less than 25. If the amount is more than 25, it is eligible for the 10% discount and thus the new
(discounted) amount overwrites the older amount, and thus we also put a tag of ‘10% discount’ in the Cmnt column.
Here is the output generated-

ITEMS QUANTITY PRICE AMOUNT COMMENTS

Grocery 2.0 12.0 24.0 nodata

Grocery 1.0 10.0 10.0 nodata

Stationary 3.0 8.0 24.0 nodata

Grocery 1.0 15.0 15.0 nodata

Stationary 4.0 7.5 27.0 10% Discount

Misc 3.0 7.0 21.0 nodata

GRAND TOTAL nodata nodata 121.0 nodata

2.8 Exceptions and Errors
The following table shall help you to diagnose the error that is arising while you write a program in TabPro.

ERROR POSSIBLE CAUSE POSSIBLE SOLUTION

Divide By Zero Error You would have done a
division of two variables in
which denominator has a null
(zero) value or an expression
like- x/0.0;

Try dividing the numerator
by some non-zero value,
otherwise avoid such division

Or Not Supported Trying to perform a Boolean
‘OR’ operation over two
operands. E.g. x = op1 or
op2;

OR operator is not been
supported by TabPro

And Not Supported Trying to perform a Boolean
‘AND’ operation over two
operands. E.g. x = op1 and
op2;

AND operator is not been
supported by TabPro

identifier not initialized The identifier has not been
initialized

Make sure that all the
identifiers have been
declared

Range start index expression
not a number

Or

Index expression not a
number

The starting index of the
range that you are specifying
in your statement is not of
type number. E.g. ‘c’ being a
String type, you write a
statement like

Col[c-9]

Use a valid statement to
specify the range by using
the number type in your
statement E.g.

Col[0-9]

Range end index expression
not a number

Or

The starting index of the
range that you are specifying
in your statement is not of
type number. E.g. ‘c’ being a

Use a valid statement to
specify the range by using
the number type in your
statement E.g.

Index expression not a
number

String type, you write a
statement like

Col[0-c]

Col[0-9]

Id Not Found

Or

Undeclared Identifier

The statement contains an
identifier that is probably not
defined. This may happen
when you try operating on an
undeclared identifier. E.g.
your code is like-

int:x;

int:y;

z = x + y;

Define the identifier in your
program with appropriate
data type. E.g. the example
code can be corrected as-

int:x;

int:y;

int:z;

z = x + y;

Incompatible assignment for
index range

The data type specified in the
index range is not number
type.

The data type specified in the
index range must be of the
number type.

Incompatible assignment

Or

Not the right type

The data type on the right
hand side of the assignment
operator is not compatible to
that on the left hand side.

Make sure the values that
you are assigning are of the
same type as that of the
identifier on the left side.

Cannot determine length of
this retVal

Cannot determine the length
of the column list

Make sure the identifier
corresponds to the column
data type

index id out of range If you are trying to operate
on more number of columns
than you have actually
declared

Try reducing the index to less
than or equal to what you
have declared

Types not compatible in
assignment, Expected
Number type

The data type on the right
hand side of the assignment
operator is not of Number.

Make sure the values that
you are assigning are of the
same type as that of the
identifier on the left side.
Number type is expected

Types not compatible in
assignment, Expected String
type

The data type on the right
hand side of the assignment
operator is not compatible to
that on the left hand side.
String type is expected

Make sure the values that
you are assigning are of the
same type as that of the
identifier on the left side.
String type is expected

Types not compatible in
assignment, Expected

The data type on the right
hand side of the assignment
operator is not compatible to

Make sure the values that
you are assigning are of the
same type as that of the

Number column that on the left hand side. The
type of the column is
expected to be of Number
type.

identifier on the left side. The
type of the column should be
of Number type.

Types not compatible in
assignment, Expected String
column

The data type on the right
hand side of the assignment
operator is not compatible to
that on the left hand side. The
type of the column is
expected to be of String type.

Make sure the values that
you are assigning are of the
same type as that of the
identifier on the left side. The
type of the column should be
of String type.

Column Index Not Found You may have not specified
the column index in the
expression.

Specify a limited index for
the column you are declaring

Not a column type Type mismatch. Column type
expected.

Column type is expected.

Undefined Function Some function has not been
declared in the program

Check whether all the
functions are declared in
your program

Wrong number of arguments
passed to

<function name>

You are trying to pass less or
more number of the
arguments to the function

Check the definition of the
function and make sure the
number of arguments in the
function call is equal to that
in the definition

Redefined Identifier The identifier that you are
trying to declare has already
been declared in the program

Change the name of the
identifier to some other name
that has not been declared in
the program

Content type not supported Data type that you are
declaring in the argument list
of the function is wrong

Make sure you declare the
correct data type in the
argument list of the function

String list assigned to non str
content column

The data type of the column
is not of the String type

Check the definition of the
column on which you are
trying to operate and assign
the appropriate values

Return type not recognized Function declaration is
missing the return type

Specify a proper return type
for the function

Redefined function name The function that you are
trying to declare has already
been declared in the program

Change the name of the
function to some other name
that has not been declared in
the program

Loop Expression not
evaluating to number

The identifier used in the
loop statement is not of type
Number

Make sure the identifier is of
the type Number

If expression not evaluating
to number

If statement is not
syntactically correct

Make sure the syntax of the
if statement is correct

Generate Statement allowed
in main only

You might be using the
generate function outside
main

Make sure you use generate
function in main only

Cannot generate table with
Num/str type identifier

The list to generate the table
contains the identifier having
Num or Str type

Make sure the list have all
the identifiers of type column

Cannot generate table with
str type identifier

The list to generate the table
contains the identifier having
Str type

Make sure the list have all
the identifiers of type column

Cannot generate table with
Num type identifier

The list to generate the table
contains the identifier having
Num type

Make sure the list have all
the identifiers of type column

Not a list The set of arguments that you
are specifying to generate a
table is not a list

Make sure that the list of
arguments is a list of
columns

Undeclared identifier list
ending with id

The list of columns contains
an undeclared identifier

Make sure all the identifiers
are declared

Other Parse errors The file may not contain a
semicolon as a statement
separator.

Add semicolon

3. Reference Manual

3.1 Lexical Conventions
A TabPro program consists of a single translation unit stored in a file which is written using the ASCII
character set. The file is scanned in a forward manner starting from the logical start of the file to the end
of file. Tokens are separated from each other by using a white space or a new line.

All token are listed in the files in the appendix.

3.1.1 whitespace:
TabPro ignores whitespace. Whitespace characters consist of newlines, carriage returns, tabs and spaces.
It could be also combination of the above mentioned characters.

3.1.2 Comments:

Single line comments are supported. The character ‘?’ introduces a comment, which terminates at the end
of that line. Comments do not nest and they do not occur within a string or character literals.

3.1.3 Identifiers:

An identifier represents a variable name or a function name. Identifier is a combination of alphabets
and digits where the first character has to be an alphabet. Special characters are not permitted. The
maximum length of an identifier could be ten. Two identifiers are considered equal if the characters
of their names match.

3.1.4 Keywords:

Below is the list of identifiers that has been reserved by TabPro for the use of keywords:

 num str loop

return function generate_table

col if else

size include

3.1.5 Constants
The kinds of constants used in TabPro are listed below:

Number Constants: These include decimal integers which are a string of decimal digits from [0-9] and
real numbers of the form [0-9][.][0-9].

String Constants: A string constant is enclosed in double quotes. The quotes are not considered as a
part of the constant.

3.1.6 Declarations
TabPro supports the number type, string type and column declarations. More details on this are
covered in 3.4.1

3.1.7 Operators:

(a) All basic arithmetic operators (+, - , *, /) are supported by TabPro. These operators work only on
number types and number constants.

(b) Operators like '+=', '-=', '*=', '/=' are used to indicate the arithmetic operation followed by the
assignment of the result of right side to the identifier of left side.

These assignment arithmetic operators can be applied to range of elements of a column if the column
content type is a number type column. Example:

mycol[0-5]+=10.0

(c) '[]' operator is supported to access a column’s elements.

Therefore, in order to access the 5th element of a column called mycol , one might use mycol[4].

(d) Relational operators like ==, !=, <, >, are supported for evaluating a relational expressions to a 1
or a 0. 1 corresponds to its true counterpart and 0 corresponds to false. These operators work accept
only number types or number constants as their operands.

(The precedence of these operators is same as their counterparts in C language).

3.1.8 Separators:

A semicolon “;” is a statement separator which is the end of an executable statement.

3.1.9 Scope and Name Space:

TabPro supports static scoping. When a function is called a new local scope is created. So broadly
there will be a global scope and a local scope (for every function).

TabPro supports a single name space i.e. only one identifier can have a particular name, be it a
function or an identifier.

3.1.10 Built in functions and reserved keywords:

 generate_table col1, col2, ….
This is used to print the table in a comma separated file. The comma separated file will have the same
name as the source file. The table will be generated for all columns listed after the generate_table
keyword.

 size
This keyword indicates the size of the row/column in context. For instance, mycol.size would refer to
the size of “mycol” column i.e. the number of columns in mycol.

3.2 Types:
TabPro supports the following data types:

1. num: Decimal integers are allowed which are a string of decimal digits from [0-9] or real numbers of
the form [0-9][.][0-9].

2. str: Strings are allowed which are a collection of ASCII characters.

3. col: This data type is used to declare a column of elements. This is a inherently a list of elements.
The list grows whenever the user appends a new element at the end of the list.For Instance, col:
mycol<num:, “scores”> = {4,5,6,7}; declares a column of a table having four columns initialized to 4,
5, 6 and 7.

3.3 Expressions
Left-or right associative property of operators in expression is defined in the respective subsections. The
precedence of the operators used in the expressions or sub-expressions is the same through out-highest
precedence first. In an expression, if the order of evaluation of operator is not coming in the picture, the
expression is independently evaluated.

The handling of exceptions like overflow, divide by zero check, and others in an expression is not defined by
the language.

3.3.1 Primary Expressions

Primary expressions are identifiers, numbers and strings.

 primary-expression
 identifier
 number
 string constant
int constant
number constant

An identifier is a primary expression provided that it has been suitably declared with a specified type. An
identifier basically refers a variable name or a function name (As discussed in 1.3).

A string literal is a primary expression. A string is basically a series of characters and/or integers and/or both.

A constant is a primary expression. Its can be either of the types discussed in 1.5.

It should be noted that parenthesized expressions (like (expression)) are not primary expressions and are not
supported by our language.

3.3.2 Indexed expression
This is of the form <identifier>[<primary expression>] . For e.g. mycol[4] refers to the fifth element of the
column mycol. A primary expression here denotes a number constant or a literal.

Note that this can also be the left hand operand for assignment expression.There are 3 cases in this

Case1: If the indexed position (primary expression) evaluates to a number between the start and end, that
element is replaced by the evaluated expression on the right.

Case2: If the indexed position (primary expression) evaluates to a number that equals the length of the
column, a new element is appended with the value as evaluated expression on the right.

Case3: If the indexed position (primary expression) evaluates to a number greater than the length of the
column, an error message is displayed.

3.3.3 Index range expression
This is of the form <identifier>[<primary expression>-< primary expression >] = <general expression>

For e.g. mycol[4-7] refers to the range of fifth to the eighth elements of the column mycol. This expression
can be used as a left hand operand for arithmetic assignment operators +=, -=, *= and /= if the column types
are columns whose content types are number types. As an example in order to increment elements 5 though 8
of a column mycol by 10, the expression can be written as

mycol[4-7] += 10

3.3.4 Column Size expression
This is of the form <identifier>.size . This returns the length of the column identifier. If the identifier is not of the

type column an error is displayed.

3.3.5 Function Calls
A function call is the identifier (function name) followed by parentheses, containing possibly empty, comma
separated list of assignment expressions, which constitutes to the arguments to the function.

An example for a function call would be changeData (x)

The term argument is given for an expression passed by a function call while the term parameter is used for
an input object received by the function definition.

For instance, my function(num:x,num:y):num is a function declaration with x and y as arguments and my
function(4,6) has 4 and 6 as parameters to this function.

3.3.6 Expressions with Arithmetic Operators
Multiplicative and additive operators * , /,+,- are grouped left to right. The expressions on both sides of
operators should evaluate to a number data type or a number constant. Arithmetic operators are not supported
for string and column data types.

 arithmetic-expression:
arithmetic -expression * arithmetic –expression
arithmetic -expression / arithmetic –expression
arithmetic-expression+arithmetic-expression
arithmetic -expression - arithmetic -expression

3.3.7 Expressions with Relational Operators
The relational operators group left-to-right, but a<b<c is not supported by our language. The result generated
will be 0.0 if the expression is false and 1 if the expression is true. The == (equal to) and the != (not equal to)

operators are analogous to the relational operators except for their lower precedence and are used to compare
the expressions on either side of the operator. The equality operator follows the same rule- if the expression is
true then it will return value 1.0, and if it is false, it would return value 0.0.

relational-expression:
relational-expression<relational-expression
relational-expression>relational-expression
relational-expression==relational-expression
relational-expression != relational-expression

The operators used here hold usual meanings and are supported to compare two expressions.

3.3.8 Expressions with Assignment operators

The basic assignment expression is of the form

<identifier> = expression

The left operand must be modifiable and must not have an incomplete type, or must not be a function. The
type of an assignment expression is that of its left operand, and the value is the value stored in the left operand
after the assignment has taken place. In the simple assignment with =, the value of the expression replaces
that of the object referred to by the lvalue. Both operands must evaluate to the same type.

The left operand can also be an indexed expression as described in 3.3.2

The assignment operator is also used in assigning initial values to a column data type. This is of the form

<column declaration> = { {comma separated string or number constants>}

3.3.9 Expression with Comma Operator

Parts of expressions are separated by a comma, since the comma is used as a separator while declaring a row.
For example-

row:mycol<num:, “numbers”>={1,2,3,4,5,6,7}

declares a column and the elements of the columns “1,2,3,4,5,6,7” are number constants separated by the
comma operator.

The comma is also used as a separator of function arguments and function parameters

3.4 Statements

3.4.1 Declaration Statement
A declaration statement can be either a simple declaration statement , a column declaration statement or a
column declaration statement with initialization.The following types of declarations are supported :

num: <identifier name> to declare a number type

str: <identifier name> to declare the string type

col:<identifiername> < <content type >, <column heading>> to declare a column type.

Examples:

num:i

str: s

col:mycol<num: , “Column A”>

3.4.2 Block Statement

These include one or more statements that are nested within the curly braces. Block statements appear in
Conditional and Iteration statements as explained in the sections below.

3.4.3 Conditional statements

The basic conditional statement consists of the if keyword, followed by an expression that evaluates 1 or 0,
and statements that have to be enclosed within the open and close parenthesis even if it is just one statement

Abstract example:

if expression {

statement(s)

}

else {

statement(s)

}

3.4.4 return statement

The return statement in a function is optional and returns a value.

For example:

return <expression>.

3.4.5 Iteration Statements

loop(expression){

Block of statement(s)

}

This is our basic looping mechanism. The block statements will be executed as long as the expression
evaluates to 1

3.4.6 Function Declaration

A function declaration declares a block of code that can be executed by a function call. A function declaration
can also be made to define a block of statements to be performed on all columns of a row or on all rows of a
passed column.

To define a function, start with the function keyword and follow it with an identifier to serve as the function’s
name, followed by an optional list of function arguments separated by a comma, each having a type
declaration prefix. The return type could be num: or str: or col:<num:, “<heading> “> or col:<str:,
“<heading> “>

A function with an empty body is not supported.

Abstract example:

function <identifier> (list of <type:identifier>) <return type >

{

statement(s);

}

A more concrete example:

function product(num:I, num:j) num:

{

k = I * j;

}

3.5 Pre-Processor/Library Support
The language will provide one library of functions through the preprocessor support.There are a set of
functions written in TabPro and are available in “mathlib” which implements the functions average for
column and number data types, square and power for number types. The user has to run the preprocessor on
the source file including this file. The user can include these functions by using the include directive. The
“include directive” syntax is as below:

include <libname> ;

For instance to include the “mathlib” functions provided with TabPro support, the user would add the
following line to the source file.

include mathlib ;

The Interpreter will ignore all these include directive lines.

The user is expected to run the TabProPreProcess on the source file before running an interpretation of the
file. The Tabpro preprocessor will include all functions in the include file into a new source file appended
with append “PP”

The preprocessor implementation does not perform any checks with respect to the syntax of the library being
included. Only the last encountered library will be included if the source file has multiple include statements.
The verification will be done by the Interpreter when the user runs TabPro on the preprocessed file (.tabPP)

4.Project Plan

4.1 Team Responsibilities

Anureet Dhillon Scanner implementation, LRM preparation,Grammar rules,Parser
(Expressions),Parser Tests , Expressions in AST Interpreter
(Expressions) , TableUtil - Table Generation in csv files, Interpreter
Tests and Debugging Build Regression test env , Demo Test programs
Final report preparation.

Lakshmi Nadig Scanner & Parser Implementation , Scanner & Parser test framework,
LRM preparation , Grammar rules, Interpreter (Statements , Call
expression, & the flow of the all of the environment), AST , TableUtil
(algo to generate a table from the list of lists) Printer functions ,
formulated the regression test plan, Final report preparation

Rajat Dixit LRM preparation, grammar rules for statements, Parser Tests ,
Implemented Preprocessor functionality, wrote the library file, Final
report preparation

4.2 Project Timeline

 The following deadlines were set for key project development goals.

9-22-2008 Proposal
10-22-2008 LRM , Scanner working, Scanner tests, Parser Grammar
11-10-2008 Parser working, Parser Tests
11-22-2008 Symbol Tables and outline of AST walk through
11-30-2008 Interpreter’s first working program
12-09-2008 Initial Interpreter tests
12-15-2008 Final Phase of testing
12-19-2008 Final report ready

4.3 Software Development Environment
 TabPro was developed on Windows environment using Ocaml for Windows. Tools used were:

1. Ocamllex: An Ocaml tool for the scanner.

2. Ocamlyacc: An Ocaml tool for the parser.

3. Windiff : A comparison tool for Regression Testing.

The structure for Google code repository mirrors the development code organization as shown below:

The development environment for Tab Pro includes Tortoise SVN, which would be required for getting
access to the Google code repository, windiff would be required for running the regression tests, and Ocaml
for windows.

Following is the development folder structure:

Code: This contains all the source code

Bin: This contains the executables TabPro, TabProPreProcess and the windiff executable

Docs: All the related documents

Tests: This folder contains the different kinds of tests – Scanner tests, Parser tests, Negative tests, Regression
results, and the regression tests cases. A screen shot of the folder structure is shown below. The Scanner
tests contain the code for testing the scanner and the batch file to build the scanner tests. The Parser tests
contain the code, batch file to build the parser test and the parser test test-files.

A screenshot of running windiff is attached below. It shows that after updating the code, no change in results
occurred.

4.4 Project Log
The major milestones achieved are mentioned below:

9-15-2008
Discussion of project ideas of all team members and
selection of one (TabPro).

9-17-2008 Discussion of basic language features.
9-22-2008 Submission of project proposal.
10-10-2008 In depth discussion of the language grammar.
10-15-2008 Work on scanner started. LRM documentation started.
10-18-2008 Scanner tested.
10-20-2008 Work on parser Grammar started.

LRM finalized and submitted.
10-22-2008 Parser work in progress.
11-10-2008 Parser completed and tested.
11-15-2008 Meeting with TA to decide on AST structure.
11-22-2008 Symbol table completed.
11-25-2008 Major Expressions like Binop, Assignment and id completed.
11-27-2008 Expressions and Statements completed.

11-30-2008
Simple interpreter test run to print Hello World in tabular format &
LRM updated to reflect new change

12-5-2008
Interpreter Tests for testing Expressions. Report documentation
Started.

12-9-2008 Interpreter Tests for testing statements.
12-10-2008 Negative test cases for interpreter added.
12-12-2008 Functionality for generating output in csv file added.
12-13-2008 Functionality for regression testing using windiff added.
12-19-2008 Final Report Submitted.

5. Architectural Design

5.1 Architecture
TabPro design consists of two major parts, design of the front end and the back end. The front end consists of
the lexer, parser and the AST walker. The backend consists of the implementation for data types, expression
evaluation, statement evaluation, type checking, type conversion and generating the output for csv file. The
block diagram representing a high level structure of the interpreter is given below.

The source program of the TabPro in form of .tab or .tabPP is fed to the lexer. The lexer converts this .tab file
into a stream of tokens and passes it onto to the parser. The parser is responsible for analyzing the structure of
the program and confirms whether the program written is in sync with the grammar rules of the language
defined into the parser. The parser then translates the parsed program into a syntax tree. The interpreter relies
on this parse tree where different data nodes are created as the syntax tree is read and symbol table is checked.
The interpreter is mainly responsible for:

Expression Evaluation: Matching expressions, querying the local and the global symbol tables, checking type,
converting types and returning the evaluated expression.

Statement Evaluation: Matching the kind of the statement, checking the scope, querying and updating symbol
tables and calling the expression evaluation method as and when needed.

Generation of the table: After manipulations, the table is generated in the csv file format. It makes use of the
Tableutil file which has functions for operating on the columns and printing them in tabular format.

Figure 2: TabPro Preprocessor Overview

Abstract Syntax Tee

Table Pro Source
Program

Lexer Parser
Interpreter

Printer Tableutil

Output.csv

Preprocessor

Figure 1: TabPro Architecture

Everything in the program is considered to be a statement. The statement further expands to different kinds of
statements as mentioned below. An expression statement can further be divided into different expressions
written below.

Program

Statement(list)

Declarationstmnt Conditionstmnt Block Stmnt ExpressionStmnt loopStmnt ifstmnt …. returnStmnt

BinaryOperator IndexRange IndexAssign Assign IntLiteral Id StringLiteral Index.. .. Call

Figure 3: TabPro language overview

5.2 The Runtime Environment
The user has to download the executable, the file mylib (for some sample math functions) and OCaml for
Windows.

6.Testing Plan
The testing plan is discussed below. All the test related files are attached to the appendix.

6.1 Goals
We had set the goal of testing the scanner, parser and interpreter separately at every step. We moved to the
next stage only after ensuring that the respective components functioned correctly on all possible test cases fed
to them. Interpreter was also tested on a number of negative test cases to ensure that the exceptions are being
raised as desired.

6.2 Phase 1 – Scanner test
By writing a TabProLexer.ml file having the following code, we were able to test whether our scanner accepts
legal tokens.

Code for testing Scanner:

let main () =

 try

 let lexbuf = Lexing.from_channel stdin in

 while true do

 Scanner_TableProTest.expr Scanner_TablePro.token lexbuf

 done

 with End_of_file -> exit 0

let _ = Printexc.print main ()

A number of tokens were fed in form of a simple test file written below. The out put of the current token being
read was displayed on the standard console.

Input given to TabProLexer.ml in order to test some tokens.

if else abcdidentifier loop col: num: string string1 str: 1.6 -5.8 jdhjashdjhs *)

generate_table [] ()

myarr[1] mycol[3-6] ggg { } ()

6.3 Phase 2 – Parser Tests
To test the parser, we printed on the console whatever input program the user gives. After passing through the
scanner and the parser, the input program was printed on the console so as to check whether the parser is
functioning as desired.

Following test cases were fed so as to check the parser:

1. To test simple Binary operator Expression.
num: i;

i=0;
i = i + 1.0;
num: i;
str: t;

2. To test Function declaration statement and generate table statement
col:cdecl<num:,"heading">;

function changeData(num:x) num:
{

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };

}

generate_table cnew, c0, c1;

3. To test the loop statement.

num: i;
col:c0<num:,"Id">={1.0};
num:j ;
i=0;
j =1.0;

loop (i < 10)
{
 c0[i] = j;
 j = j+1;
 i = i+1;
}

4. To test if statement

col:c0<str:,"Myheading">={"Hello"};
num: i;
num:j ;
i=15;
j =0.0;

if (i < j)
{
 c0[j] = "less";
}
else
{
 c0[j] = "greater";
}

6.4 Phase 3 – Interpreter Tests
To test the interpreter, we tried to cover all the combination of different expressions and statements.
Positive and negative test cases were written for the same and fed to the interpreter for testing.

1. The following program takes input as the marks of two subjects and displays the output in a
CSV file as a table having four columns:

(a) Marks of Mathematics
(b) Marks of English
(c) Total Marks
(d) Average
(e) Percentage

The Total, average and Percentage are calculated in the ComputeMarks() function.
num: i;
num: j;
num: k;

num: l;
num: p;

col:c0<num:,"Mathematics">={ 100.0 , 90.0, 95.0};
col:c1<num:,"English">={ 88.0, 77.0 , 90.0 };
col:cnew<num:,"Total">;
col:cavg<num:,"Average">;
col:cper<num:,"Percentage">;
cnew = c0;

function ComputeTotal(num:x) num:
{
loop (i < 3)
{
j = c0[i];
k = c1[i];
j = j + k;
k = j/200;
p = k * 100;
 cnew[i] = j;
 cavg[i] = k;
 cper[i] = p;
 i = i+1;
}
}
i = 0.0;
ComputeTotal(i);

generate_table c0, c1,cnew,cavg,cper;

Output Generated in CSV File:

"Mathematics" "English" "Total" "Average" "Percentage"
100. 88. 188. 0.94 94.
90. 77. 167. 0.835 83.5
95. 90. 185. 0.925 92.5

2. To calculate speed given the time and distance:
The input given to the program is the time and speed and the output generated is the following:
(a) A coulmn representing the Speed
(b) A column representing the Time
(c) A coulmn representing the distance calculated from the first two columns.

num: i;
num: j;
num: k;

col:c0<num:,"Speed">={ 50.0 , 40.0};
col:c1<num:,"Time">={ 18.0, 20.0};
col:cdist<num:,"Distance">;
cdist = c0;

function distancetravelled(num:x) num:
{

loop (i < 2)
{
j = c0[i];
k = c1[i];
j = j * k;
 cdist[i] = j;
 i = i+1;
}
}
i = 0.0;
distancetravelled(i);

generate_table c0, c1,cdist;

The output Generated in CSV file is:

"Speed" "Time" "Distance"
50. 18. 900.
40. 20. 800.

Negative Test Cases:

1. The following code gives a divide by zero error:

num: i;

i=0;
i = i / 0.0;

2. The following code tries to generate a table from string type rather than a column type,
therefore gives the following error:

Cannot generate table with Str/ num type identifier “g”.

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "aa" };

num: i;
str: g;
g = "l";
i = 8-9;
c0[2] =7;

generate_table c0, c1, g;

6.5 Phase 4 – Regression Tests
Regression Tests were conducted using the windiff tool in order to find changes(if any) in the new
generated csv files.

Attached below is the screenshot for the Regression Test Builder File:

Following CSV files were generated as a result of running the above mentioned batch file.

7.Lessons Learned
Ocaml: The project was a very good opportunity to learn Ocaml. It was also a learning experience for functional
programming paradigm.

Interpreters: The project gave an insight into Interpreter functioning and program flow. It helped understanding
the AST concepts very well.

Team oriented development skills: This project also enhanced out team development skills. Both the pros and
cons of team development were experienced.

8.Potential Enhancements

8.1 Short Term
1. Add a row type

2. Add more statistical library functions

3. Add functionality to the preprocessor to make sure this has only functions

8.2 Long Term
1. Add more statistical library functions

2. Enhance the preprocessor to handle a list of includes

3. Generate a html file for the table

4.Appendix

4.1 Code Listing for the main interpreter

4.1.1 Scanner_TablePro.mll

{
open Parser_TablePro

}
let digit = ['0'-'9']
let comma = [',']
let semicolon = [';']
let colon = [':']
let dot = ['.']
let exp = ['e''E']
let signednumber = ['-''+']?['0'-'9']*['.']['0'-'9']+
let signedint = ['-''+']?['0'-'9']*
let alphanum = ['a'-'z' 'A'-'Z' '0'-'9']
let alpha = ['a'-'z' 'A'-'Z' '_']
let numType = "num"
let strType = "str"
let rowType = "row"
let colType = "col"
let add = '+'
let subtract = '-'
let times = '*'
let divide = '/'
let equal = '='
let lessThan = '<'
let greaterThan = '>'
let equality = "=="
let commentStart = '?'
let newLine = '\n' | '\r'
let if = "if"
let else = "else"
let leftParan = '('

let rightParan = ')'
let leftSqParan = '['
let rightSqParan = ']'
let blockBegin = '{'
let blockEnd = '}'
let loop = "loop"
let function = "function"
let size = "size"
let currIndex = "currIndex"
let col_heading = "col_heading"
let row_heading = "row_heading"
let row_limit = "row_limit"
let col_limit = "col_limit"
let col_sort_index = "col_sort_index"
let row_filter_condition = "row_filter_condition"
let return = "return"
let logand= "&&"
let logor = "||"
let quote = "\""
let generateTable = "generate_table"
let includedirective = "include"

rule token =
parse [' ' '\t' '\r' '\n'] { token lexbuf }
 | signednumber as n { NUMBER(float_of_string n) }
 | digit+ as i { INTCONST (int_of_string i) }
 | (numType | strType)colon as n{SIMPLETYPE(n)}
 | (colType) colon as n{ COMPTYPE (n)}
 | quote alpha (alphanum)* quote as s {STRCONST (s)}
 | add {ADD}
 | subtract {SUBTRACT}
 | times {MULTIPLY}
 | divide {DIVIDE}
 | greaterThan {GREATERTHAN}
 | lessThan {LESSTHAN}
 | equality {EQUALITY}

| logand {LOGICALAND}
| logor {LOGICALOR }

 | equal {ASSIGN}
| commentStart {comment lexbuf}
| includedirective { comment lexbuf }
| size {SIZE}
| currIndex {CURRINDEX}
| if {IF}
| else {ELSE}
| leftParan {LEFTPARAN}
| rightParan {RIGHTPARAN}
| leftSqParan {LEFTSQPARAN}
| rightSqParan {RIGHTSQPARAN}
| blockBegin {BLOCKBEGIN}
| blockEnd {BLOCKEND}
| loop {LOOP}
| function {FUNCTION}
| col_heading {COL_HEADING}
| row_heading {ROW_HEADING}
| row_limit {ROW_LIMIT}
| col_limit {COL_LIMIT}
| row_filter_condition {ROW_FILTER_CONDITION}
| col_sort_index {COL_SORT_INDEX}
| return {RETURN}
| comma {COMMA}
| semicolon {SEMICOLON}

 | alpha (alphanum)* as name {IDENTIFIER(name)}
 | alpha (alphanum)* as name {IDENTIFIER(name)}
 | generateTable {GENERATE_TABLE}

 | dot {DOT}

 | size {SIZE}
| eof { EOF}
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
'\n' { token lexbuf } (* End of comment *)
| _ { comment lexbuf } (* Eat everything else *)

{

}

4.1.2 Parser_TablePro.mly

%{ open Ast_TablePro %}
%token EOF
%token <float> NUMBER
%token <int> INTCONST
%token <string> IDENTIFIER
%token <string> SIMPLETYPE
%token <string> COMPTYPE
%token COMMA
%token ADD
%token SUBTRACT
%token MULTIPLY
%token DIVIDE
%token ASSIGN
%token SIZE
%token CURRINDEX
%token IF
%token ELSE
%token LEFTPARAN
%token RIGHTPARAN
%token LEFTSQPARAN
%token RIGHTSQPARAN
%token LEFTPARAN
%token BLOCKBEGIN
%token BLOCKEND
%token LOOP
%token GREATERTHAN
%token LESSTHAN
%token EQUALITY
%token LOGICALAND
%token LOGICALOR
%token FUNCTION
%token COL_HEADING
%token ROW_HEADING
%token ROW_LIMIT
%token COL_LIMIT
%token ROW_FILTER_CONDITION
%token COL_SORT_INDEX
%token RETURN
%token <string> STRCONST
%token SEMICOLON
%token BOGUS
%token DOT
%token SIZE
%token GENERATE_TABLE

%left INTCONST
%right ASSIGN
%left GREATERTHAN LESSTHAN EQUALITY
%left LOGICALAND LOGICALOR
%left ADD SUBTRACT

%left MULTIPLY DIVIDE

%start program
%type <Ast_TablePro.program> program
%%

expr:
genExpr {$1 }

primaryexpr:
 NUMBER { Literal($1) }
| INTCONST { IntLiteral ($1)}
| IDENTIFIER { Id($1) }
| STRCONST { StrLiteral($1) }

genExpr:
 genExpr ADD genExpr { Binop($1, Add, $3) }
| genExpr SUBTRACT genExpr { Binop($1, Sub, $3) }
| genExpr MULTIPLY genExpr { Binop($1, Mult, $3) }
| genExpr DIVIDE genExpr { Binop($1, Div, $3) }
| genExpr GREATERTHAN genExpr {Binop($1, Greater, $3) }
| genExpr LESSTHAN genExpr {Binop($1, Less, $3) }
| genExpr EQUALITY genExpr {Binop($1, Equality, $3) }
| genExpr LOGICALAND genExpr {Binop($1, And, $3) }
| genExpr LOGICALOR genExpr {Binop($1, Or, $3) }
| IDENTIFIER ASSIGN genExpr {Assign($1, $3) }
| indexExpr {$1 }
| indexRelExpr {$1 }
| IDENTIFIER LEFTPARAN argList RIGHTPARAN {Call ($1, $3) }
| NUMBER { Literal($1) }
| INTCONST { IntLiteral ($1)}
| IDENTIFIER { Id($1) }
| STRCONST { StrLiteral($1) }

indexExpr:

 IDENTIFIER LEFTSQPARAN primaryexpr RIGHTSQPARAN ASSIGN genExpr { IndexAsn($1, $3 , $6) }
| IDENTIFIER LEFTSQPARAN primaryexpr RIGHTSQPARAN {Index($1, $3)}
| IDENTIFIER DOT SIZE {IndexSize($1)}

indexRelExpr:
IDENTIFIER LEFTSQPARAN primaryexpr SUBTRACT primaryexpr RIGHTSQPARAN ADD ASSIGN

genExpr {IndexRange($1, $3, $5, Add, $9)}
| IDENTIFIER LEFTSQPARAN primaryexpr SUBTRACT primaryexpr RIGHTSQPARAN SUBTRACT

ASSIGN genExpr {IndexRange($1, $3, $5,Sub, $9)}
| IDENTIFIER LEFTSQPARAN primaryexpr SUBTRACT primaryexpr RIGHTSQPARAN MULTIPLY

ASSIGN genExpr {IndexRange($1, $3, $5, Mult, $9)}
| IDENTIFIER LEFTSQPARAN primaryexpr SUBTRACT primaryexpr RIGHTSQPARAN DIVIDE ASSIGN

genExpr {IndexRange($1, $3, $5, Div, $9)}

argList: argList COMMA genExpr {List.rev($3::$1)}
 | genExpr {[$1]}

stmnt:
sdeclstmnt{ $1 }
| cdeclstmnt{ $1 }

| cdeclAsnstmnt{ $1 }
| exprstmnt {$1}
| blockstmnt{$1 }
| condstmnt{$1 }
| iterstmnt{$1 }
| returnstmnt{$1 }
| funcdeclstmnt{ $1 }
| gentablestmnt {$1 }

gentablestmnt: GENERATE_TABLE identifierList SEMICOLON {GenerateStmnt($2)};

identifierList: identifierList COMMA IDENTIFIER { $3::$1 }
| IDENTIFIER {[$1]};

sdeclstmnt:
SIMPLETYPE IDENTIFIER SEMICOLON{ SDeclstmnt($1, $2) }

cdeclstmnt:
COMPTYPE IDENTIFIER LESSTHAN SIMPLETYPE COMMA STRCONST GREATERTHAN

SEMICOLON{CDeclstmnt($1, $4, $6, $2)}

cdeclAsnstmnt:
COMPTYPE IDENTIFIER LESSTHAN SIMPLETYPE COMMA STRCONST GREATERTHAN ASSIGN

BLOCKBEGIN strconstList BLOCKEND SEMICOLON {CStrdeclAsnstmnt ($1, $4, $6, $2, $10)}
| COMPTYPE IDENTIFIER LESSTHAN SIMPLETYPE COMMA STRCONST GREATERTHAN ASSIGN

BLOCKBEGIN numberList BLOCKEND SEMICOLON {CNumdeclAsnstmnt ($1, $4, $6, $2, $10)}

strconstList: STRCONST COMMA strconstList {$1::$3}
| STRCONST {[$1] }

numberList: NUMBER COMMA numberList {$1::$3}
| NUMBER {[$1]}

exprstmnt:
expr SEMICOLON {Stmnt($1)}

blockstmnt:
 BLOCKBEGIN stmnt_list BLOCKEND {Block(List.rev($2)) }

stmnt_list:

stmnt_list stmnt {($2::$1)}
| stmnt {[$1]}

condstmnt:
IF LEFTPARAN genExpr RIGHTPARAN BLOCKBEGIN stmnt_list BLOCKEND ELSE BLOCKBEGIN

stmnt_list BLOCKEND { If ($3, List.rev($6), List.rev($10))}

iterstmnt:
 LOOP LEFTPARAN genExpr RIGHTPARAN BLOCKBEGIN stmnt_list BLOCKEND{Loop ($3, List.rev($6))}

returnstmnt:
RETURN IDENTIFIER SEMICOLON{ Return($2)}

| RETURN SEMICOLON {Return("")}

funcdeclstmnt:
FUNCTION IDENTIFIER LEFTPARAN fargList RIGHTPARAN SIMPLETYPE BLOCKBEGIN stmnt_list

BLOCKEND
{Func_decl($2, $4, $6, List.rev $8) }

fargList: fargList COMMA farg {List.rev($3::$1)}
 | farg {[$1]}

farg: SIMPLETYPE IDENTIFIER {Sarg($1,$2)}
| COMPTYPE IDENTIFIER LESSTHAN SIMPLETYPE COMMA STRCONST GREATERTHAN { Carg ($1,

$2, $4,$6)}

program :
/* nothing */ { [] }

 | stmnt_list { List.rev $1}

4.1.3 AST_TablePro.mll

type op = Add | Sub | Mult | Div | Greater| Less | Equality| And | Or

type expr = (* Expressions *)
 Literal of float (* 1.0 *)
| IntLiteral of int (* 5 *)
| StrLiteral of string (* "PLT" *)
| Id of string (* foo *)
| Binop of expr * op * expr (* a + b *)
| Assign of string * expr (* foo = 42 *)
| IndexAsn of string * expr * expr (* a[i] = 1.0 *)
| Index of string * expr (* row[4], row[j] *)
| IndexSize of string
| IndexRange of string * expr * expr * op * expr (* for rindex ranges *)
| Call of string * expr list(* foo(1, 25) *)

type stmnt=

 SDeclstmnt of string * string
| CDeclstmnt of string * string * string * string
| CStrdeclAsnstmnt of string * string * string * string * string list
| CNumdeclAsnstmnt of string * string * string * string * float list

| Stmnt of expr
| Block of stmnt list
| If of expr * stmnt list * stmnt list
| Loop of expr * stmnt list
| Return of string
| Func_decl of func_decl
| GenerateStmnt of string list

and

func_decl = string * formal list * string * stmnt list

and formal = Sarg of string * string | Carg of string * string * string * string

type program = stmnt list

type retVal = F of float | S of string | SLi of string list | FLi of float list

type t = Num | Str | Col of colHeading
and
colHeading =
{
colName: string;
colContentType: t;

}

type var_decl =
{

vname: string;
vtype: t;
vVal: retVal;

}

type functionDetail =
{
fname : string; (* Name of the function *)
formals : formal list; (* Formal argument names *)
retType : t ; (* saving return type*)
body : stmnt list;
retValue: retVal;

}

4.1.4 Interpreter.ml

open Ast_TablePro
open Printer
open Tableutil

let rec runprogram program sourcefile=

let rec run locals globals functions env currfname statements =

(*print_endline (string_of_bool env);
print_endline (string_of_int (List.length statements));*)
let rec eval (locals, globals, functions, env) = function
Literal(n) -> (F(n)) , (locals, globals, functions, env)
| Binop (e1 , op , e2) ->
let val1, (locals, globals, functions, env) =
eval (locals, globals, functions, env) e1

in
let val2, (locals, globals, functions, env) =
eval (locals, globals, functions, env) e2
in
let boolean i = if i then 1.0 else 0.0
in
let v =
(match (op , val1 , val2) with

(Add , F f1 , F f2) -> F(f1 +. f2)
| (Sub , F f1 , F f2) -> F(f1 -. f2)
| (Mult , F f1 , F f2) -> F(f1 *. f2)
| (Div , F f1 , F f2) ->

 if int_of_float f2 = 0 then
raise (Failure("Divide by Zero"))

 else
F(f1 /. f2)

| (Greater , F f1 , F f2) -> F (boolean((f1> f2)))
| (Less , F f1 , F f2) -> F (boolean((f1< f2)))
| (Equality, F f1 , F f2) -> F (boolean((f1 = f2)))
| (Or, _, _) -> raise (Failure("Or not supported"))

 | (And, _, _) -> raise (Failure("Or not supported"))
 | (_, _, _) -> raise (Failure("Multiple binary combination

 or identifier not initialized"))

)

in v , (locals, globals, functions, env)

| IndexRange (col, ste, ene , op, e1) ->

let st =

 let evst,(locals, globals, functions, env) =
 eval(locals, globals, functions, env) ste in
 (match evst with F f -> int_of_float f
 | _ -> raise(Failure("Range start index
 expression not a number")))
in
let en =
 let even,(locals, globals, functions, env) =
 eval(locals, globals, functions, env) ene in
 (match even with F f -> int_of_float f
| _ -> raise(Failure("Range end index
expression not a number")))

in
let rhsVal, (locals, globals, functions, env) =
eval (locals, globals, functions, env) e1
in
 let rec performloop currIndex
 looplocals loopglobals =

let assign aindex =
 let declList =
 if (NameMap.mem col looplocals) then
 (NameMap.find col looplocals)
 else if (NameMap.mem col loopglobals)
 then (NameMap.find col loopglobals)
 else raise (Failure ("Id not found"))

 in
 let colList = declList.vVal in

 (match colList with
 FLi fl -> let res =
(match rhsVal with

F f ->
let colArray =
Array.of_list fl
 in
 let val1 =
 F (colArray.(aindex)) in

let valAssign =
(match
(op , val1 , rhsVal) with

(Add , F f1 , F f2) -> (f1 +. f2)
| (Sub , F f1 , F f2) -> (f1 -. f2)
| (Mult , F f1 , F f2) -> (f1 *. f2)
| (Div , F f1 , F f2) ->
if int_of_float f2 = 0 then

raise (Failure("Divide by Zero"))
 else

(f1 /. f2)
| (_, _, _) ->
raise (Failure("Binop combination not supported"))

)
in
let replaceList = ignore(colArray.(aindex) <- valAssign);
FLi(Array.to_list colArray)
in
 if (NameMap.mem col looplocals) then

 let localsadded = NameMap.add
 col ({vname= declList.vname ;vtype=
 declList.vtype; vVal= replaceList}) looplocals
 in (localsadded , loopglobals)

 else if (NameMap.mem col loopglobals) then
 let globalsadded =
 NameMap.add col
 ({vname= declList.vname ;vtype= declList.vtype;
 vVal= replaceList}) loopglobals
 in (looplocals , globalsadded)

 else raise (Failure ("undeclared identifier"))
| _ -> raise (Failure ("Incompatible assignment for index range"))
)
 in res

 | _ -> raise (Failure ("Not the right type"))
)
 in

 if currIndex <= en then
 let (al, ag) = assign currIndex
 in let currIndex = currIndex+1
 in performloop currIndex al ag

 else
 (looplocals, loopglobals)

 in
let (l, g) = performloop st locals globals
in rhsVal, (l, g, functions, env)

 | IndexAsn (id, e1,e2) ->
let ev,(locals, globals, functions, env)=
eval(locals, globals, functions, env) e2
in
let ev1,(locals, globals, functions, env) =
eval(locals, globals, functions, env) e1
in
let v1 =

 (match ev1 with F f -> int_of_float f
 | _ -> raise(Failure("Index expression not a number"))

)
in

 let declList =
 if (NameMap.mem id locals) then (NameMap.find id locals)
 else if (NameMap.mem id globals) then (NameMap.find id globals)
 else raise (Failure ("Id not found"))
 in
let colList = declList.vVal
in
let colListlen =
(match colList with

FLi fl->List.length fl
| SLi sl ->List.length sl
| _ ->
raise (Failure ("Cannot determine length of this retVal"))

)
in
let appendNew =

let newCollist =
 (match colList with

FLi fl ->(match ev with
F f -> FLi(fl @ [f])
| _ -> raise (Failure
("Incomaptible assignment"))

)
| SLi sl ->(match ev with

S s -> SLi(sl @ [s])
| _ -> raise (Failure
("Incomaptible assignment"))

)

| _ -> raise (Failure ("Not the right type"))
)in

 if (NameMap.mem id locals) then
 let localsadded =

 NameMap.add id
 ({vname= declList.vname ;vtype=
 declList.vtype; vVal= newCollist})
 locals
 in (localsadded , globals)
 else if (NameMap.mem id globals) then
 let globalsadded =
 NameMap.add id
 ({vname= declList.vname ;vtype=
 declList.vtype; vVal= newCollist})
 globals
 in (locals , globalsadded)
 else raise (Failure ("Id not found"))

in
let (new_locals, new_globals) =
if v1 = colListlen then

 appendNew

else if v1 < colListlen then
let assign = (match colList with

FLi fl ->
let res =
(match ev with

F f -> let colArray =Array.of_list fl
 in

let replaceList =
ignore(colArray.(v1) <- f);
FLi(Array.to_list colArray)
in

 if (NameMap.mem id locals) then
 let localsadded =
 NameMap.add id
 ({vname= declList.vname ;
 vtype= declList.vtype;
 vVal= replaceList}) locals

 in (localsadded , globals)
 else if (NameMap.mem id globals) then

 let globalsadded = NameMap.add id
 ({vname= declList.vname ;
 vtype= declList.vtype;
 vVal= replaceList}) globals
 in (locals , globalsadded)

else raise (Failure ("Id not found"))
| _ -> raise (Failure ("Incompatible assignment for index range"))

)
in res

| SLi sl -> let res =
(match ev with

S s -> let colArray =Array.of_list sl
 in

let replaceList = ignore(colArray.(v1) <- s);
SLi(Array.to_list colArray)
in

 if (NameMap.mem id locals) then
 let localsadded =
 NameMap.add id
 ({vname= declList.vname ;
 vtype= declList.vtype; vVal= replaceList}) locals
 in (localsadded , globals)

else if (NameMap.mem id globals)
 then
 let globalsadded =
 NameMap.add id
 ({vname= declList.vname ;
 vtype= declList.vtype; vVal= replaceList}) globals
 in (locals , globalsadded)

 else raise (Failure ("Id not found"))
| _ ->
raise (Failure ("Incompatible assignment for index range"))

)
 in res

| _ -> raise (Failure ("Not the right type"))
)

 in assign
else raise (Failure ("index id out of range"))
in ev, (new_locals, new_globals, functions, env)

| Assign(id, e1) ->
let ev,(locals, globals, functions, env)=
eval(locals, globals, functions, env) e1
in
if NameMap.mem id locals then
let declis = (NameMap.find id locals)
in
(match declis.vtype with
Num -> (match ev with
F f ->
 ev, ((NameMap.add id ({vname= declis.vname ;
 vtype= declis.vtype; vVal= ev}) locals),
 globals, functions, env)
| _ -> raise (Failure (" Types not compatible

in assignment,Expected Number type"))
)
| Str ->(match ev with
S s -> ev, ((NameMap.add id ({vname=
declis.vname ;vtype= declis.vtype; vVal= ev}) locals),
globals, functions, env)
| _ -> raise (Failure
(" Types not compatible in assignment, Expected String type"))
)
| Col c ->(match c.colContentType with
 Num -> (match ev with

FLi fl -> ev,
((NameMap.add id
({vname= declis.vname ;
vtype= declis.vtype; vVal= ev})
locals), globals, functions, env)
| _ -> raise
(Failure (" Types not
compatible in assignment,
Expected Number column"))

)
 | Str -> (match ev with

SLi sl -> ev,
((NameMap.add id ({vname= declis.vname ;
vtype= declis.vtype; vVal= ev})
locals), globals, functions, env)
| _ -> raise (Failure (" Types not compatible in assignment,
Expected String column"))

)
 | _ -> raise (Failure (" Types not compatible in assignment"))

)
)

else if NameMap.mem id globals then
let declis = (NameMap.find id globals)
in
(match declis.vtype with

Num -> (match ev with
F f -> ev, (locals , (NameMap.add id
({vname= declis.vname ;vtype= declis.vtype;
vVal= ev}) globals),
functions, env)
| _ -> raise (Failure ("
Types not compatible in assignment,
expected number type"))
)

| Str ->(match ev with
S s -> ev, (locals , (NameMap.add id
({vname= declis.vname ;vtype= declis.vtype;
vVal= ev}) globals),
functions, env)
| _ -> raise (Failure (" Types not compatible
in assignment,expected string type"))
)

| Col c ->(match c.colContentType with
 Num -> (match ev with

FLi fl -> ev, (locals ,
(NameMap.add id
({vname= declis.vname ;vtype= declis.vtype; vVal= ev})
globals), functions, env)
| _ -> raise (Failure
(" Types not compatible in assignment,expected number
column"))

)
 | Str -> (match ev with

SLi sl -> ev, (locals ,
(NameMap.add id
({vname= declis.vname ;vtype= declis.vtype; vVal= ev})
globals), functions, env)
| _ -> raise
(Failure (" Types not compatible in assignment,expected
string column"))

)
 | _ -> raise (Failure (" Types not compatible in assignment"))

)

)
else raise (Failure("Identfier not declared" ^id))

| IntLiteral (e1) -> F(float_of_int e1) ,(locals, globals, functions, env)

| Id (id) ->

let declList =
if (NameMap.mem id locals) then (NameMap.find id locals)
else if (NameMap.mem id globals) then (NameMap.find id globals)
else raise (Failure ("Id not declared"))
in
declList.vVal , (locals, globals, functions, env)

| StrLiteral (e1) -> S(e1) ,(locals, globals, functions, env)
| Index (id, e1) -> let ev,(locals, globals, functions, env)
= eval(locals, globals, functions, env) e1
 in

let mval = (match ev with
 F f -> int_of_float f
 | _ -> raise (Failure ("Index is not a number"))
)

 in
 let declist =

if NameMap.mem id locals then

(NameMap.find id locals)
 else if NameMap.mem id globals then

(NameMap.find id globals)
else raise (Failure ("column index not found"))

in
let v =
(match (declist.vVal) with
FLi f1 -> let arr = Array.of_list f1

 in F(arr.(mval))

|SLi s1 -> let arr = Array.of_list s1
 in S(arr.(mval))

| _ -> raise (Failure ("Not a column type"))

)

in v,(locals, globals, functions, env)
| IndexSize (id) ->
 let declList =

if (NameMap.mem id locals) then (NameMap.find id locals)
else if (NameMap.mem id globals) then (NameMap.find id globals)
else raise (Failure ("Id not declared"))
in
 let colList = declList.vVal
 in
 let colListlen =

(match colList with
FLi fl->List.length fl
| SLi sl ->List.length sl
| _ -> raise (Failure
("Cannot determine length of this retVal"))
)

in
 F(float_of_int colListlen),(locals, globals, functions, env)

| Call(f, elist) ->
let fdecl =

(*ignore(print_string "Inside Call");
ignore(Printer.print_functions functions);
ignore(print_string f);*)
try NameMap.find f functions
with Not_found ->
raise (Failure ("undefined function " ^ f))
in
let slist = fdecl.body
in

 let fargtype formal =
 (match formal with

 Sarg(x, y) -> vdecl_from_str (x)
 | Carg (p,q,r,s)->
 let conttype = vdecl_from_str (r)
 in
 Col ({colName=s; colContentType=conttype})

)
 in
 let fargname formal =
 (match formal with

 Sarg(x, y) -> (y)
 | Carg(p, q, r, s) -> (q)

)
 in
 let evalex ex =

 let evalres ,
 (locals , globals, functions, env) =
 eval (locals, globals, functions, env) ex
 in evalres

 in
 let fargdeclList =

 let fargdecl l e f =
 ({vname=(fargname f);
 vtype=(fargtype f);vVal= evalex e})::l

in List.fold_left2 fargdecl [] elist fdecl.formals
 in
 let initialfunclocals =

 let oneformaladdedmap argsmap fargdecl=
 NameMap.add fargdecl.vname fargdecl argsmap
in
 try List.fold_left
 oneformaladdedmap NameMap.empty fargdeclList
 with Invalid_argument(_) ->
 raise (Failure
 ("wrong number of arguments passed to " ^ fdecl.fname))

in
let (_, globals, functions, _) =
run initialfunclocals globals functions true f slist
in
let fd = NameMap.find f functions
in fd.retValue ,(locals, globals, functions, env)

in
let rec exec_stmnt (locals, globals,
functions, env, currfname) = function

 Block(slist) -> List.fold_left exec_stmnt (
 locals, globals, functions, env, currfname) slist
| SDeclstmnt(s1 ,s2) -> (* populate symbol table *)

if(env) then
let new_locals =
if NameMap.mem s2 locals then raise (Failure "Redefined Identifier")
else NameMap.add s2 ({vname=s2 ; vtype= (vdecl_from_str s1);
vVal=S("0")}) locals
in (new_locals, globals, functions, env, currfname)

else
let new_globals =
if NameMap.mem s2 globals then raise (Failure "Redefined Identifier")
else NameMap.add s2 ({vname=s2 ; vtype=(vdecl_from_str s1);
vVal=S("0")}) globals
in (locals, new_globals, functions, env, currfname)

| CDeclstmnt(s1 ,s2, s3, s4) ->(* populate symbol table *)
(*print_string "CDeclStmnt in "; print_endline(string_of_bool env);
print_locals locals ; print_globals globals;*)
let conttype = vdecl_from_str s2
in
let contLi =
(match conttype with
Str -> SLi([])
| Num -> FLi([])
| _ -> raise (Failure ("Content type not supported"))

)
in
if(env) then

let new_locals =
if NameMap.mem s4 locals then raise
(Failure "Redefined Identifier")
else NameMap.add s4
({vname=s4 ; vtype= (Col
({colName=s3; colContentType= conttype}));
vVal=contLi}) locals
in (new_locals, globals,
functions, env, currfname)

else
let new_globals =
if NameMap.mem s4 globals then raise
(Failure "Redefined Identifier")
else NameMap.add s4 ({vname=s4 ;
vtype=
(Col ({colName=s3; colContentType= conttype})); vVal=contLi})
globals
in (locals, new_globals, functions, env, currfname)

| CStrdeclAsnstmnt(s1,s2,s3,s4,l) ->
if ((vdecl_from_str s2) != Str)
then raise (Failure ("String list assigned
to non str content column"))
else
if(env) then
let new_locals =
if NameMap.mem s4 locals then raise
(Failure "Redefined Identifier")
else NameMap.add s4 ({vname=s4 ;
vtype= (Col ({colName=s3;
colContentType= (vdecl_from_str s2)}));
vVal=SLi(l)}) locals
in (new_locals, globals, functions, env, currfname)
else
let new_globals =
if NameMap.mem s4 globals then raise (Failure "Redefined Identifier")

else
 NameMap.add s4
 ({vname=s4 ; vtype=
 (Col ({colName=s3; colContentType=
 (vdecl_from_str s2)})); vVal=SLi(l)}) globals
in (locals, new_globals, functions, env, currfname)

| CNumdeclAsnstmnt(s1,s2,s3,s4,l) ->
if ((vdecl_from_str s2) != Num)
then raise (Failure ("String list assigned to non str content column"))
else
 if(env) then

let new_locals =
if NameMap.mem s4
locals then raise
(Failure "Redefined Identifier")
else NameMap.add s4
({vname=s4 ; vtype=
(Col ({colName=s3; colContentType=
(vdecl_from_str s2)})); vVal=FLi(l)}) locals
in (new_locals, globals, functions, env, currfname)

 else
let new_globals =
if NameMap.mem s4 globals then raise
(Failure "Redefined Identifier")
else NameMap.add s4
({vname=s4 ; vtype= (Col ({colName=s3;
colContentType= (vdecl_from_str s2)})); vVal=FLi(l)})
globals
in (locals, new_globals, functions, env, currfname)

| Func_decl (name, flist, rettype, slist) ->
let retVal =
(match rettype with
 Sret(s) -> let ret_t = vdecl_from_str s in
 (match ret_t with

Str -> S("")
| Num -> F(0.0)
| _ -> raise (Failure ("Return type not recognized"))

)
 | Cret(c, content_s) -> let content_t = vdecl_from_str content_s in

(match content_t with
Str -> SLi([])
| Num -> FLi([])
| _ -> raise (Failure ("Return type not recognized"))
)

)
in
let ret_t =
(match rettype with
 Sret(s) -> vdecl_from_str s
 | Cret(c, content_s) -> Col ({colName ="" ;
 colContentType=vdecl_from_str content_s })
)
in
let fdecl = {fname = name; formals = flist; retType =
ret_t; body = slist; retValue=retVal}
in
let new_functions =

if NameMap.mem name functions then raise
(Failure "Redefined function name")
else NameMap.add name fdecl functions
in (*ignore(Printer.print_functions new_functions);*)
(locals, globals, new_functions, env, currfname)

| Stmnt(e) ->
let v, (locals, globals, functions, env) =
eval (locals, globals, functions, env) e
in (locals, globals, functions, env, currfname)

| Loop (e, slist) ->

 let rec loop locals globals functions env currfname slist e =
 let v, (locals, globals, functions, env) =

 eval (locals, globals, functions, env) e in

 (match v with
 F f -> if f <> 0.0 then

 let (locals, globals, functions, env, currfname) =
 List.fold_left exec_stmnt
 (locals, globals, functions, env , currfname) slist
 in loop locals globals functions env currfname slist e

else (locals, globals, functions, env, currfname)

 | _ ->
raise (Failure ("Loop Expression not evaluating to number "))

)
 in loop locals globals functions env currfname slist e

| Return (s) ->
if (s != "") then
let retValue =

if NameMap.mem s locals then
(NameMap.find s locals).vVal

else if NameMap.mem s globals then
(NameMap.find s globals).vVal

else raise (Failure ("undeclared identifier " ^ s))
in

let ofdecl = NameMap.find currfname functions
in
let new_functions =

NameMap.add ofdecl.fname
({fname = ofdecl.fname;
formals = ofdecl.formals;
retType = ofdecl.retType;
body = ofdecl.body; retValue=retValue;}) functions
in
(locals, globals, new_functions, env, currfname)

else
let retValue = S("")

in
let ofdecl = NameMap.find currfname functions
in
let new_functions = NameMap.add ofdecl.fname
({fname = ofdecl.fname;
formals = ofdecl.formals;
retType = ofdecl.retType;
body = ofdecl.body; retValue=retValue;}) functions
in

(locals, globals, new_functions, env, currfname)

| If (e, slist1, slist2) ->

 let v, (locals, globals, functions, env) =
 eval (locals, globals, functions, env) e in

 (match (v) with
 (F f) ->

if f <> 0.0 then
(List.fold_left exec_stmnt
(locals, globals, functions, env, currfname) slist1)
else (List.fold_left exec_stmnt
(locals, globals, functions, env, currfname) slist2)

 | _ ->
raise (Failure
("If expression not evaluating to number "))

)

| GenerateStmnt (slist) ->
if (String.compare "main" currfname != 0) then
raise (Failure ("Generate Statement allowed in main only"))
else
let checkColType s =

if ((NameMap.mem s globals)!=true) then
false

else if ((NameMap.find s globals).vtype
!= Num) then
 let b =

if((NameMap.find s globals).vtype != Str) then
true
else raise (Failure
("Cannot generate table with Num/str type identifier " ^ s))

 in b
else raise (Failure ("Cannot
generate table with Num/str type identifier " ^ s))

in
 let checked s = checkColType s
 in

let pickUpColList s =
if checked s then
let list =
 (match (NameMap.find s globals).vVal
 with

 SLi sl -> (*print_string "no converting";
 List.iter print_string sl;*)

let li =
(match (NameMap.find s globals).vtype with

Col c -> (c.colName)::sl
| _ -> raise (Failure
("Cannot generate
table with str type identifier " ^ s))

)
in li

 | FLi fl ->
let li =
(match (NameMap.find s globals).vtype with
Col c -> c.colName::
(Tableutil.convertFloatListToStringList fl)
| _ -> raise (Failure
("Cannot generate table with Num type identifier " ^ s))
)
in li

 | _ -> raise (Failure("Not a list ")))
in list
else raise
(Failure ("undeclared identifier list ending with " ^ s))

in
 let addList outerList s =
 (pickUpColList s)::outerList
 in

 let lists = List.fold_left addList [] slist
 in

let paddedlists =
Tableutil.padLists lists
in

 let x =
 Tableutil.metafoo (List.rev paddedlists) sourcefile
 in (locals, globals, functions, env, currfname)

in
let (locals ,globals, functions, env, currfname) =
List.fold_left exec_stmnt
(locals ,globals, functions, env, currfname) statements

in (locals ,globals, functions, env)

in
let (locals ,globals, functions, env) =
try run NameMap.empty NameMap.empty NameMap.empty false "main" program
with Not_found -> raise (Failure ("Could not run Program"))
in (locals ,globals, functions, env);

4.1.5 Printer.ml
open Ast_TablePro

module NameMap = Map.Make(struct
 type t = string
 let compare x y = Pervasives.compare x y
 end)

let rec string_of_expr = function
 Literal(l) -> string_of_float l
 | IntLiteral(l) -> string_of_int l
 | StrLiteral(s) -> s
 | Id(s) -> s
 | IndexSize(s) -> s
 | Binop(e1, o, e2) -> string_of_expr e1 ^ " " ^(match o with Add -> " + " ^ string_of_expr e2 | Sub -> "-" ^
string_of_expr e2| Mult -> "*" ^ string_of_expr e2 | Div -> "/" ^ string_of_expr e2
 | Equality -> " == " ^ string_of_expr e2 | And -> " Log && " ^ string_of_expr e2 | Less -> "<"^ string_of_expr e2 |
Greater -> ">" ^ string_of_expr e2 | Or -> " Log Or "^ string_of_expr e2)
 | Assign(v, e) -> v ^ " = " ^ string_of_expr e
 | IndexAsn (s, e1 ,e2) -> s ^ "[" ^ string_of_expr e1 ^ "] = " ^ string_of_expr e2
 | Call(f, el) -> f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"
 | Index(s, e) -> s ^ "[" ^ string_of_expr e ^ "]"
 | IndexRange(s, i, j, op, e) -> s ^ "[" ^ string_of_expr i ^ "-" ^ string_of_expr j ^ "]" ^
 (match op with Add -> " + " ^ string_of_expr e | Sub -> "-" ^ string_of_expr e
 | Mult -> "*" ^ string_of_expr e | Div -> "/" ^ string_of_expr e | _ ->"Op not supported")

let rec string_of_formal = function
Sarg (s1 , s2) -> s1 ^" * "^ s2
| Carg (s1 , s2, s3, s4) -> s1 ^" * "^ s2 ^ s3 ^" * "^ s4

let rec string_of_formals list = "" ^ String.concat "" (List.map string_of_formal list)

let rec string_of_stmt = function
 SDeclstmnt (s1 , s2) -> "Declared " ^ s1 ^ s2
 | CDeclstmnt (s1 , s2, s3, s4) -> "Declared " ^ s1 ^ s2 ^ s3 ^ s4
 | CNumdeclAsnstmnt (s1, s2, s3, s4, l) -> "Declared " ^ s1 ^ s2 ^ s3 ^ s4
 | CStrdeclAsnstmnt (s1, s2, s3, s4, l) -> "Declared " ^ s1 ^ s2 ^ s3 ^ s4
 | Block(stmts) -> "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"
 | Stmnt(expr) -> string_of_expr expr ^ ";\n";
 | Return(s) -> "return " ^ s ^ "\n";
 | If(e, slist1 , slist2) -> "if (" ^ String.concat "" (List.map string_of_stmt slist1) ^ String.concat "" (List.map
string_of_stmt slist2)
 | Loop(e1, slist) -> "loop " ^ string_of_expr e1 ^ " Loop begin " ^ String.concat "" (List.map string_of_stmt slist) ^ "
Loop end "
 | GenerateStmnt(slist) -> "Generate table for " ^ (List.fold_left (fun s1 s2 -> s1 ^ s2) "" slist)
 | Func_decl(s1, list1 , s2, list2) -> string_of_fdecl s1 list1 s2 list2

and
string_of_fdecl s1 list1 s2 list2 =

 s1 ^ s2 ^ "(" ^ string_of_formals list1^ ")" ^ "\n{\n" ^
 String.concat "" (List.map string_of_stmt list2) ^ "}\n"

let string_of_program (slist) = print_string "in printer\n";
 String.concat "" (List.map string_of_stmt slist) ^ "\n"

let rec string_of_col_type t =

(match t with Num -> " num "
| Str -> "str"
| _ -> raise (Failure ("unsupported column type ")))

let string_of_Col c = "Col Of"^ c.colName^(string_of_col_type c.colContentType)

let rec string_of_vdecl_type t =
(match t with Num -> " num "
| Str -> "str" | Col c -> string_of_Col c)

let rec string_of_vdecl s1 t =
 " Name: " ^ s1 ^ " Type: " ^ (string_of_vdecl_type t)

let vdecl_from_str s =
(match s with "num:" -> Num

 | "str:"-> Str
 | _ -> raise (Failure ("undefined type " ^ s)))

let string_of_retval retvalue =
(match retvalue with
 F f -> ("float of " ^ string_of_float f)

 | S s -> ("string of" ^ s)
 | _-> "A list of values")

let rec print_locals locals =
 let f k e = print_endline ("Key: " ^ k ^ "Vdecl: "^ (string_of_vdecl e.vname e.vtype) ^ string_of_retval e.vVal)
 in

print_endline "Locals"; NameMap.iter f locals

(* let print_globals (globals) =
 let f k e = print_endline ("Key: " ^ k ^ "Type: "^ e)
 in

print_endline "globals"; NameMap.iter f globals *)

let rec print_globals globals =
 let f k e = print_endline ("Key: " ^ k ^ "Vdecl: "^ (string_of_vdecl e.vname e.vtype))
 in

print_endline "Globals"; NameMap.iter f globals

let rec string_of_fdecl s1 list1 s2 list2 =
 " Name: "^ s1 ^ " RetType: " ^ s2 ^ "(" ^ string_of_formals list1^ ")" ^ "\n{\n" ^
 String.concat "" (List.map string_of_stmt list2) ^ "}\n "

let rec string_of_function k e =
let a = string_of_fdecl e.fname e.formals (string_of_vdecl_type e.retType) e.body
in

 k ^ a

 let print_functions (functions) =
 let f k e = print_endline (string_of_function k e)
 in

NameMap.iter f functions

4.1.6 TableUtil.ml

open Printf

let file = "Tabout.csv"
let oc = open_out file

let rec convertFloatListToStringList l =
List.rev(List.fold_left (fun li e -> (string_of_float e)::li) [] l)

let rec printheads l oc=

match l with
[] -> ()
| [a] -> print_string ((List.hd a) ^ " ");fprintf oc "%s\n" (List.hd a);()
| hd::tl -> print_string ((List.hd hd) ^ " "); fprintf oc "%s\t" (List.hd hd) ;printheads tl oc

let rec removeTop l =
match l with

[] -> []
| [a] -> (match a with

[] -> []
| [b]-> []
| hd1::tl1 -> [List.tl a]
)

| hd::tl -> (match hd with
[] -> []
| [a]-> []
| hd1::tl1 -> List.tl hd::(removeTop tl)

)

let rec metafoo l sourcefile= print_endline "";
let filename = sourcefile ^ ".csv";

in
let file = filename
in
let oc = open_out file

in
let rec metafoo1 l=

match l with
[] -> ()
| hd::tl -> printheads l oc; metafoo1 (print_endline"";removeTop l);()
in
match l with
[] -> ()
| hd::tl -> printheads l oc; metafoo1 (print_endline"";removeTop l);()

let rec maxlength l =
let getMaxlength n li =

if List.length li > n then List.length li
else n;

in List.fold_left getMaxlength 0 l

let rec padLists l =
let maxl = maxlength l
in
let rec padonelist li = (*print_string "Max"; print_int maxl;*)
 if List.length li = maxl then li
 else if List.length li < maxl then padonelist (li@["nodata"])
 else raise (Failure ("maxlength not working"))

in
let foldfunc retLi li=

let ret = (padonelist li)::retLi
in ret

in
List.fold_left foldfunc [] l

4.1.7 Tabpro.ml

open Printer

let _ = if ((Array.length Sys.argv) = 1)
 then let _ = print_string "Source File not provided"
in ();

 else if ((Array.length Sys.argv) > 2)
 then
 let _ = print_string "Only one source file as an argument is supported."
in ();

 else let sourceFile = Sys.argv.(1)
 in
 let inChannel = open_in sourceFile
 in
 let lexbuf = Lexing.from_channel inChannel

 in
 let len = String.length sourceFile
 in
 let tlen = len - 4
 in
 let substr = String.sub sourceFile 0 tlen
 in
 let strfile = substr
 in
 let program = Parser_TablePro.program Scanner_TablePro.token lexbuf in ignore
(Interpreter.runprogram program strfile)

4.2 Code Listing for the Preprocessor

4.2.1 Scanner_TableProPreProcess.mly

{
open Parser_TableProPreProcess

}

let includename = "include"
let semicolon = [';']
let alphanum = ['a'-'z' 'A'-'Z' '0'-'9']
let alpha = ['a'-'z' 'A'-'Z' '.']

rule token =
parse [' ' '\t' '\r' '\n'] { token lexbuf }
 | includename { INCLUDE }
 | semicolon { SEMICOLON }
 | alpha (alphanum)* as name {IDENTIFIER(name)}
 | _ { TEXT }

| eof { EOF}

{

}

4.2.2 Scanner_TableProPreProcess.mly

%{ %}
%token EOF
%token SEMICOLON
%token INCLUDE
%token TEXT
%token <string>IDENTIFIER

%start program
%type <string> program
%%

program : INCLUDE IDENTIFIER SEMICOLON { $2 }

4.2.3 PreProcessor.ml

let rec includemylib includefile sourceFile destFile =

let oc = open_out destFile
in

 let copy src =
let ic = open_in src in
 try
 while true do
 let s = input_line ic in
 output_string oc s;
 output_char oc '\n';
 done
 with End_of_file ->
 close_in ic;

 in
 let _ = copy includefile; copy sourceFile; close_out oc;
 in ();

4.2.4 TabProPreProcess.ml

open Printer

let _ = if ((Array.length Sys.argv) = 1)
 then let _ = print_string "Source File not provided"
in ();

 else if ((Array.length Sys.argv) > 2) then
 let _ = print_string "Only one source file as an argument is supported."
in ();

 else let sourceFile = Sys.argv.(1)
 in
 let inChannel = open_in sourceFile
 in
 let lexbuf = Lexing.from_channel inChannel
 in

let includename = Parser_TableProPreProcess.program Scanner_TableProPreProcess.token lexbuf
in

 let preprocessOut = sourceFile ^ "PP"
 in ignore(print_string preprocessOut);ignore(print_string includename);
 ignore (PreProcessor.includemylib includename sourceFile preprocessOut)

4.3 Other Test Code

Code for testing the Parser:

open Ast_TablePro
open Printer
let _ =
let lexbuf = Lexing.from_channel stdin in
let program = Parser_TablePro.program Scanner_TablePro.token lexbuf in
let listing = Printer.string_of_program program in
print_string listing

ParserTestBuilder.bat

ocamlc ..\..\code\Ast_TablePro.mli
ocamlc -c -I ..\..\code -dllpath ..\..\code ..\..\code\printer.ml
ocamlyacc ..\..\code\Parser_TablePro.mly
ocamlc -c -I ..\..\code -dllpath ..\..\code ..\..\code\Parser_TablePro.mli
ocamlc -c -I ..\..\code -dllpath ..\..\code ..\..\code\Parser_TablePro.ml
ocamllex -o ..\..\code\Scanner_TablePro.ml ..\..\code\Scanner_TablePro.mll
ocamlc -c -I ..\..\code -dllpath ..\..\code ..\..\code\Scanner_TablePro.ml

ocamlc -c -I ..\..\code -dllpath ..\..\code Parser_Test.ml
ocamlc -o Parser_Test -I ..\..\code -dllpath ..\..\code Scanner_TablePro.cmo Parser_TablePro.cmo printer.cmo
Parser_Test.cmo

4.4 Regression test script

TabProRegTest.bat

ocamlrun ..\bin\TabPro basketball.tab
ocamlrun ..\bin\TabPro marks.tab
ocamlrun ..\bin\TabPro looptest.tab
ocamlrun ..\bin\TabPro iftest.tab
ocamlrun ..\bin\TabPro symbolTable.tab
ocamlrun ..\bin\TabPro indextest.tab
ocamlrun ..\bin\TabPro indexAsign.tab
ocamlrun ..\bin\TabPro hello.tab
ocamlrun ..\bin\TabPro distance.tab
ocamlrun ..\bin\TabPro returnstmnt.tab

..\bin\windiff .*.csv .\regresults*.csv -D -S .\regresults.txt

regreults.txt (File generated by windiff showing no changes in the output)

-- C:\Users\anu\Desktop\ColDocs\PLT\Tabl_Pro\svn_root\tests*.csv :
C:\Users\anu\Desktop\ColDocs\PLT\Tabl_Pro\svn_root\tests\regresults*.csv -- includes left-only,differing files
-- 0 files listed

4.5 Test Cases

1. Demo.tab
function average(num:x, num:y) num:
{
num:sum;
sum = x + y;
avg=sum/2;
return ret;
}

function square(num:x) num:
{
num:ret;
ret= x * x;
return ret;
}

function power(num:x, num:y) num:
{
num:ret;
ret = 0.0;
num:i;

if(y == 1.0)
{
ret= x;
}

else
{

loop(i<y)
{
ret = ret + x;
}

}
return ret;
}

function colaverage(col:col1<num:,"c1">, col:col2<num:,"c2">)col:<num:>
{

col:cavg<num:,"average">;
num: length1;
num: x;
num: y;
num: sum;
x = 0;
sum = 0;
y = 0;
length1 = c1.size;
x = 0;
loop(x< length1){
y = col1[x]+col2[x];
sum = sum + y;
cavg[x] = sum;
x = x+1;
sum = 0;
}
y = length1 -1;
cavg[0-y] /= 2;
return cavg;

}
include mylib;
num: i;
num: j;
num: k;
num: k1;
num: first;
num: second;
num: k2;
num: k3;
num: colsize;

col:c0<str:,"TeamNames">={"NewYorkKnicks" , "TeamMiamiHeat", "_ChicagoBulls", "DetroitPistons",
"HoustonRockets"};
col:c1<num:,"Score1">={ 20.0 , 30.0, 25.0, 33.0, 42.0};
col:c2<num:,"Score2">={ 40.0 , 34.0, 22.0, 44.0, 28.0};
col:ctotal<num:,"Sum">;
col:cbonus<num:,"Bonus">;
col:caverage<num:,"Avg">;
col:cwinner<str:,"Ranks">={ "None","None","None","None","None"};

colsize = c0.size;
function FindWinner(num: b) num:
{
first = 0;
second = 0;
k = 0;

loop(k<3){
 b = 0;
 j = b+1;
 loop(j < colsize){
 if(ctotal[b]<ctotal[j]){
 b = b+1;
 j = b+1;
 }
 else{
 j = j+1;
 }
 }
 k = k+1;
 if(first == 0){
 cwinner[b] = "First";
 first = ctotal[b];
 ctotal[b] = 0;
 k1 = b;
 }
 else{
 if(second == 0){
 cwinner[b] = "Second";
 k2 = b;
 second = ctotal[b];
 ctotal[b] = 0;
 }
 else{
 cwinner[b] = "Third";
 k3 = b;
 }

 }

}

 ctotal[k1] = first;
 ctotal[k2] = second;

}

function bonusfun(num: bonus) num:{
cbonus[k1-k1] += 20 ;
cbonus[k2-k2] += 10;
cbonus[k3-k3] += 5;

}

function bonusfun1(col:cpbonus<num:,"PBonus">)col:<num:>{
num: x ;
x = 0;

loop (x < 5)
{
j = ctotal[x];

 cpbonus[x] = j;
 x = x+1;
}
cpbonus[k1-k1] += 20 ;
cpbonus[k2-k2] += 10;
cpbonus[k3-k3] +=5;

return cpbonus;
}

function ScoreCalculation(num: x) num:
{
loop (x < 5)
{
j = c1[x];
k = c2[x];
j = j + k;
 ctotal[x] = j;
 x = x+1;
}
}
i = 0.0;
ScoreCalculation(i);
FindWinner(i);
i = 0;
cbonus = bonusfun1(ctotal);
caverage = colaverage(c1,c2);
generate_table c0, c1,c2,ctotal,cwinner,cbonus,caverage;

num: i;
num: j;
num: k;

col:c0<num:,"Speed">={ 50.0 , 40.0};
col:c1<num:,"Time">={ 18.0, 20.0};
col:cdist<num:,"Distance">;
cdist = c0;

Demo Output

TeamNames "Score1" "Score2" "Sum" "Ranks" "Bonus" "Avg"
NewYorkKnicks 20. 40. 60. "None" 60. 30.
TeamMiamiHeat 30. 34. 64. "Third" 69. 32.
_ChicagoBulls 25. 22. 47. "None" 47. 23.5
DetroitPistons 33. 44. 77. "First" 97. 38.5
HoustonRockets 42. 28. 70. "Second" 80. 35.

2. IndextTest.tab

num: i;
str: t;

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "World" };
col:cnew<num:,"heading">;
cnew = c0;

col:cdecl<num:,"heading">;

function changeData(num:x) num:
{

x = x + 1;
str: temp;
temp ="lakshmifromtemp";

 c1[x] = temp;
}
i = 1.0;
changeData(i);

num:end;

end=2;

num:start;
start=0.0;

c0[start-end] += 10;

num:j;
j=3;
c0[j] = 20.0;
j = j+1;
c0[j] = 21;

num: oi;
str: s1;

generate_table cnew, c0, c1, c2;

3. marks.tab

num: i;
num: j;
num: k;
num: l;
num: p;

col:c0<num:,"Mathematics">={ 100.0 , 90.0, 95.0};
col:c1<num:,"English">={ 88.0, 77.0 , 90.0 };
col:c2<num:,"History">={ 80.0 , 90.0, 75.0};
col:cnew<num:,"Total">;
col:cavg<num:,"Average">;
col:cper<num:,"Percentage">;
cnew = c0;

function ComputeTotal(num:x) num:
{

loop (i < 3)
{
j = c0[i];
k = c1[i];
j = j + k;
k = j/200;
p = k * 100;
 cnew[i] = j;
 cavg[i] = k;
 cper[i] = p;
 i = i+1;
}
}
i = 0.0;
ComputeTotal(i);

generate_table c0, c1,cnew,cavg,cper;

4. distance.tab

function distancetravelled(num:x) num:
{

loop (i < 2)
{
j = c0[i];
k = c1[i];
j = j * k;
 cdist[i] = j;
 i = i+1;
}
}
i = 0.0;
distancetravelled(i);

generate_table c0, c1,cdist;

5. HelloWorld.tab

num: y;
col:c1<str:,"heading">={ "Hello"};
col:c2<str:,"heading">={ "World"};
col:c3<num:,"heading">={ 1.0 , 2.0};

num: i;

generate_table c1, c2, c3 ;

6. ifTest.tab

col:c0<str:,"Myheading">={"Hello"};
num: i;
num:j ;
i=15;
j =0.0;
if (i < j)
{
 c0[j] = "less";
}
else
{
 c0[j] = "greater";
}

generate_table c0;

7. IndexAssign.tzb

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "World" };
c1[1] = "Anu";

generate_table c0, c1, c2;

8. loopTest.tab

num: i;

col:c0<num:,"Id">={1.0};
num:j ;
i=0;
j =1.0;

loop (i < 10)
{
 c0[i] = j;
 j = j+1;
 i = i+1;
}

generate_table c0;

9. returnstatement.tab

num:t;
col:c0<num:,"returnstatement">={ 1.0 , 2.0, 3.0};
function product(num:i, num:j) num:
{
num: k;
k =i* j;
return k;
}

t = product(2,3);
c0[1] = t;
generate_table c0;

10. symbolTable.tab

num: i;
str: t;
col:c2<num:,"Score2">={ 40.0 , 34.0, 22.0, 44.0, 28.0};
function product(num:i, num:j) num:
{

num: fi;
str: ft;

}

11. iffile.tab

col:c0<str:,"Myheading">={"Hello"};
num: i;
num:j ;
i=15;
j =0.0;

if (i < j)
{
 c0[j] = "less";
}
generate_table c0;
product(i,t);
num: oi;
str: s1;

generate_table c2;

4.6 Negative Test Cases:

1. Divide by Zero

num: i;

i=0;
i = i / 0.0;

2. generating a table with a string instead of a column.

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "aa" };

num: i;
str: g;
g = "l";
i = 8-9;
c0[2] =7;

generate_table c0, c1, g;

3. undeclared identifier

generate_table c0, c1, c2;
col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "aa" };
num: i;
i = 8-9;
c0[2] =7;

4. Index assignment to an incompatible type.

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "World" };
c1[1] = 4.0;
generate_table c0, c1, c2;

5. Index not dexlared

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "World" };
num: i;
i = 9;
c0[j] =7;
generate_table c0, c1, c2;

6. Index out of range

col:cfirst<num:,"heading">={ 1.0 , 2.0, 3.0};
col:csecond<str:,"heading">={ "Anu", "Lakshmi" , "Rajat" };
col:cthird<str:,"heading">={ "World" };
num: i;
i = 9;
cfirst[i] =7;

generate_table cfirst, csecond, cthird;

7. Index not a number type.

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "World" };
c0["a"-1] /= 2;

generate_table c0, c1, c2;

8. Index out of range

col:c0<num:,"heading">={ 1.0 , 2.0, 3.0};
col:c1<str:,"heading">={ "Hello", "fname" , "lname" };
col:c2<str:,"heading">={ "aa" };
num: i;
i = 8-9;
c0[i] =7;

generate_table c0, c1, c2;

