
Turing Machine Simulation 
Language

Isaac McGarvey

Joshua Gordon

Keerti Joshi

Snehit Prabhu



Overview

• What is a TM

• Basic language
Read/Write, Moving along tape head, Control constructs, 

Arbitrary tape alphabet.

• Scope of Language
– Single tape datastructure

– Single pass compilation without look-ahead.



Overview

• Evolution of TMSL
– Started with configuration file syndrome 

– Moved on to an ambitious high-level language plan

– Converged on low-level scripting language with a tractable mapping 
from script to TM constructs.

• Limitations 
– No function definitions or code reusability.

– No arithmetic.

– No variables.



Language Overview

• Grammar:
– Our programs are composed of symbols and statements

– A symbol list
• which specifies the characters which may be written to and read 

from the tape (in addition to the special blank character)

– A statement list
• Which specifies control flow and commands

• Statements are generally of two types:
– Atomics (e.g., left, right, write, exit)

– Composites (e.g., if, while, until, unless)

• Composites are simply statements which contain lists of 
statements within their definition, e.g.

– UNLESS LPAREN symbol_list RPARENLBRACE stmt_list RBRACE



Writing a program: Unsigned 
subtraction

• 0,1 /*alphabet specification */
• while (1) {
• if (1) {
• write _
• right
• while (1) {
• right
• }

• Sample Input : 1111011_ _ _
• Output : _ _ 11000 _ _ _ 

• Demo?



Implementation

• Machine Simulator

– 2 scanners & parsers

– Following transitions stored in list

– Dynamically growing input tape



Implementation

• Compiler

– Scanner & parser

– AST types: statements, symbols 

– Code generation

• Single pass: minimal semantic error checking

• Translating statements into states and transitions

• Bookkeeping: assigning state numbers to statements 



Implementation



Summary and Lessons Learned

Language Design concepts

• Even out work through the semester 

• Test cases (Regression suite)

• Good experience with the language

• Its fun to build your own compiler! 


