
DruL Final Report

COMS W4115: Programming Language and Translators

Team Leader: Rob Stewart (rs2660) Thierry Bertin-Mahieux (tb2332)
Benjamin Warfield (bbw2108) Waseem Ilahi (wki2001)

December 19th, 2008



Contents

1 Language White Paper 8

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Language specification . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Quick tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 More complex examples . . . . . . . . . . . . . . . . . . . . . 11

1.3.6 Instruments and Clips . . . . . . . . . . . . . . . . . . . . . . 12

2 Tutorial 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The Very Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Say hello! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 One more variable type: patterns . . . . . . . . . . . . . . . . 16

2



2.3 Combining Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Manipulating Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Named mappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Assembling clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 The Big Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Language Reference Manual 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Lexical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.5 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 beat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 clip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.5 string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Expression Statements . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Assignment Statements . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Selection Statements . . . . . . . . . . . . . . . . . . . . . . . 28

3



3.4.4 Mapper Definition Statements . . . . . . . . . . . . . . . . . 29

3.4.5 Return statements . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.6 Instrument definition . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Blocks, namespace and scoping . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.3 Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Patterns and pattern operations . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.3 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.2 Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8.1 Standard output . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8.2 Text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8.3 MIDI file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8.4 Lilypond file . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Project Plan 38

4.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Style Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4



4.4 Roles and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Tools and Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.2 Code Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.4 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Project Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Architectural Design 47

5.1 Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Component Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Component Implemented By . . . . . . . . . . . . . . . . . . . . . . 48

6 Test Suite 49

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Sample tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 Tests for DruL Parser . . . . . . . . . . . . . . . . . . . . . . 50

6.3.2 Tests for DruL . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Lessons Learned 53

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Rob (team leader) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Ben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



7.4 Thierry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Waseem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendices 57

A Number of Lines of Code 57

B Project Log (SVN Commit Log) 58

C Code Listings 93

C.1 Language code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.1.1 drul interpreter.ml . . . . . . . . . . . . . . . . . . . . . . . . 93

C.1.2 drul main.ml . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.1.3 drul helpers.ml . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.1.4 drul output.ml . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1.5 drul printer.ml . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1.6 drul types.ml . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.1.7 drul parser.mly . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.1.8 drul scanner.mll . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.1.9 test.ml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.1.10 treedump.ml . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.1.11 drul ast.mli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.1.12 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.2 Test Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.2.1 LaunchTests.py . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6



C.2.2 General test files . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.2.3 LaunchTestsParser.py . . . . . . . . . . . . . . . . . . . . . . 150

C.2.4 Parser test files . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7



Chapter 1

Language White Paper

1.1 Introduction

DruL stands for “Drumming Language”. It is a programming language designed for
composing drum music. It is common these days for drum beat composers to create
drum parts using computer software (e.g. FL Studio). Creating drums parts with
these programs often involes of lot of tedious “pointing and clicking” (especially when
making longer drum parts). DruL was designed to give the composer the ability to
automate much of this tedium. There already exist other more general-purpose mu-
sic programming languages (e.g. ChucK, SuperCollider, Nyquist, Haskore). These
languages are complicated by note pitches, durations, and audio effects. DruL is
unconcerned with these things and focuses soley on allowing the drum composer to
define and manipulate beat patterns.

DruL meets the needs of algorithmic drum-composers with the beat, pattern, and
clip domain-specific data-types. A pattern is essentially an object that holds binary,
discrete, time-series data. At each discrete-time step, which will henceforth refer to
as a beat, there is either a note or a rest. For the non-musically inclined, a note
represents sound produced by the striking of a drum (or similar instrument) and a
rest represents the absence of any such sound. Patterns are immutable. When a
pattern is manipulated, the target pattern remains intact and a new copy is created.
An instrument is one of a pre-defined set of sounds (e.g. drum notes) that can occupy
a single beat. A clip is a mapping of patterns to instruments. Clips are processed in
sequence as the program runs to produce output which may be audio, sheet-music
notation, or a MIDI file.

8



DruL is mainly an imperative programming language, however it borrows ideas
(map) from the functional paradigm. DruL is strictly and dynamically typed. DruL
programs do not contain any loops or user-defined functions. Rather, DruL uses
map and mapper defined below.

A composer typically starts a DruL program by defining some initial patterns. These
patterns can then be individually processed by built-in DruL functions to produce
new patterns. Alternately, the composer may define and use new functions called
mappers. Composers then apply their mappers to patterns, iterating over the beats
of one or more patterns at a time, building up a new pattern along the way. Once
the composer has a set of patterns with which they are happy, they define their
desired set of instruments (e.g. hi-hat, snare, bass drum, cowbell, etc.). With the
instruments defined, the composer uses the clip constuct to assign a pattern to each
instrument. Finally, the clip is output to a MIDI file, playable by many multimedia
players.

1.2 Language specification

There are 3 main data types in DruL: int, pattern, and clip.

Keywords are white space delimited. Indentation is not significant. Function argu-
ments are enclosed in parentheses and comma-separated.

Anything remaining on a line after // is a comment will be ignored by the compiler.

A map takes one or many patterns, and iterates over beats on all of them at the
same time, from the first beat to the last beat of the longest sequence.
A map returns a pattern (that can be empty). Inside the map, per each beat, a
may pattern returned which is then appended to an accumulated pattern. This
accumulated pattern is then returned by the map after the final iteration.

return rand clip mapper
if pattern instrument print
elseif concat map
else true false

Scopes: There is a general scope, and one scope per map. Variables in the general
scope can be seen from within a map, but not written to. Variables defined in a map
are garbage collected at the end of the map.

9



1.3 Quick tutorial

In this section we give examples of what DruL code will look like, in the form of a
tutorial.

1.3.1 Integers

Integers are part of our language.

a = 3;
b = a + 2;
c = b * 12;

1.3.2 Pattern

Patterns are the data type the programmer will likely spend most of their time
dealing with. For convenience, the programmer can supply a string constant made
up of 1s and 0s, which will be translated into a pattern: if the character is a 1, there
is a note on the corresponding beat; if 0, a rest.

p1 = pattern("101010");

Patterns can be concatenated to form new patterns:

pcat = concat(p1, pattern("111000"), pattern("1"));

pcat will be equal to 1010101110001.

There is also a shortcut to concatenate the same pattern many times:

pcat2 = concat(p1, p1, p1);
pcat3 = pattern("101010").repeat(3);
pcat4 = p1.repeat(3);

pcat2, pcat3, and pcat4 are all equivalent.

10



1.3.3 Map

Of course, we will not hardcode every pattern we want to create. We use map to
create meaningful new patterns from existing ones:

p2 = map(p1)
{

if ($1.note()) { return pattern("11"); }
else { return pattern("0"); }

};

This will create the following pattern: 110110110. The goal of a map is to easily
iterate over a pattern. p1.note returns true if there is a note on the current beat,
false otherwise. If you call map on multiple patterns that are not of the same length,
the shorter patterns will be padded with NULL beats.

1.3.4 Mapper

For ease of use, you can define a mapper that contains the behavior used by map.
We create p3, which is the same as p2 :

mapper myMapper(p)
{

if (p.note) { return pattern("11"); }
else { return pattern("0"); }

}

p3 = map(p1) myMapper;

mapper will be very important when building a standard library for the language.

1.3.5 More complex examples

Now that we have a proper syntax, let’s get to more complicated examples. We
introduce 2 new features that can be used inside a map: prev and next. They give

11



you access to earlier and later beats in a pattern, using the syntax p.prev(n) and
p.next(n). Also, for a pattern p, p.rest() is true if and only if we did not reach the
end of this pattern.

reduction: accelerate by cutting one beat out of two

downbeats = pattern("1000100010001000");
alternate_beats = pattern("10").repeat(8);
downbeat_diminution = map(downbeats, alternate_beats)
{

if ($2.rest()) { return pattern(""); } // pattern of length 0
elseif ($1.note()) { return pattern("1"); }
else { return pattern("0"); }

}

output is: 10101010.

improved reduction: putting a rest (0) only if the 2 original beats were rest

// this will map "1001100110011001" to "11111111", rather than "10101010"
one_and_four = pattern("1001100110011001");
alternate_beats = pattern("10").repeat(8);
improved_diminution = map(one_and_four, alternate_beats)
{

if ($2.rest()) { return pattern(""); }
elseif ($1.note()) { return pattern("1"); }
elseif ($1.next(1).note()) { return pattern("1"); }
else { return pattern("0"); }

};

1.3.6 Instruments and Clips

Now that we have a large and varied collection of patterns, we can show how to
combine those patterns into clips.

Before we define any clips, we must tell the compiler what instruments they will use.
This can only be done once per program, and uses the instruments function:

instruments("hihat", "bassdrum", "crash", "snare");

12



Once the instruments are defined, we can create a clip from our existing patterns,
using an associative-array notation:

clip1 = clip
(

"bassdrum" <- downbeats,
"hihat" <- alternate_beats

);

The same result can be achieved by simply listing the patterns for each instrument
in the order they are defined in the instruments declaration:

clip2 = clip
(

alternate_beats,
downbeats
// remaining instruments have an empty beat-pattern

);

13



Chapter 2

Tutorial

2.1 Introduction

In this section we present some quick tutorials that explain the main features of DruL
language. We start with the basics: “Hello World” is in Section 2.2.1, integers and
if/else are shown in 2.2.2 and finally patterns are introduced in 2.2.3. That being
done, we learn how to combine patterns (2.3), manipulate patterns (2.4, create a
named mapper (2.5), create a clip (2.6), and finally how to bring all this together
and create a sheet of music (2.7).

2.2 The Very Basics

The drul command can take DruL code either from the standard input or as a file
specified on the command line (drul mysource.drul). Examples in this section
should work equally well if passed in either way.

2.2.1 Say hello!

Because it is traditional, albeit almost completely irrelevant to this language, here
is our first DruL program:

p r in t ( ” he l l o , world ! ” ) ;

14



This will print the string “hello, world!” to the standard output, on a line by itself.
Note that unlike many languages, DruL does not require you to place a newline
character at the end of a string to have it print on a single line (conversely, it gives
you no method to print without a newline at the end).

2.2.2 Fundamentals

Variables in DruL must have names that begin with a letter or underscore, and
contain only letters, numbers, and underscores thereafter. Variables are dynamically
typed and scoped, so to create one, you need only assign a value to it:

a = 350 ;
b = 300 ;
p r i n t ( a + b ) ;

This should print out the number “650”, again on a line by itself.

Now, with some variables defined, we can proceed quickly through the rest of the
features that you might guess are present from the above:

a = 350 ;
b = 300 ;

c = b − a ;

d = a % b ;

e = 60 / d ;

i f ( e > 1) {
pr in t ( ” t h i s i s what you might expect to have happen” ) ;

} else {
pr in t ( ”but t h i s i s what a c tua l l y p r i n t s ” ) ;

}

Why does the second line print, and not the first? DruL’s types do not include
floating-point numbers, so all arithmetic is done using integers, and non-integral
results are truncated (as is done in C and other related languages) to their integer
parts.

15



2.2.3 One more variable type: patterns

We will now introduce the first data type that distinguishes DruL from most other
languages: the pattern. A pattern is a sequence of true/false values, telling the
drummer (or MIDI sequencer) whether or not to play on a particular beat. They
are created using the pattern function:

p1 = pattern ( ”” ) ; // empty pa t t e rn ( l en g t h 0)
p2 = pattern ( ”0” ) ; // pa t t e rn wi th on ly one ’ r e s t ’ in i t .
p3 = pattern ( ”1” ) ; // pa t t e rn wi th on ly one ’ note ’ in i t .
p4 = pattern ( ”100100100” ) ;

Each time a “1” appears in the string you pass to pattern, the resulting pattern
carries the instruction to play on that beat; when a “0” appears, the pattern con-
tains a rest. You may notice that we also have explanatory comments in this code:
comments in DruL begin with “//” and continue to the end of the current line (there
are no multi-line comments).

To see the contents of a pattern you have created, you can always just print it out:

p = pattern ( ”100100100” ) ;
p r i n t (p ) ;

2.3 Combining Patterns

Once you have a pattern or two, DruL gives you several ways to build new ones.
Using the concat function, you can combine them end-to-end:

catenated = concat (
p1 ,
pattern ( ”11110000” ) ,
pattern ( ”00011” )

) ;

Notice that we have broken up the arguments to concat onto multiple lines for ease
of reading–since DruL is a free-form language, any amount of whitespace can appear
any place that any whitespace is allowed.

Pattern objects also have a repeat method, which produces a new pattern containing
all the beats and rests of the original, repeated however many times the method is

16



given as its argument. (In fact, you can give it an argument of 0 to return an empty
pattern, though there are less obscure ways to do that.)

p custom = concat (
p2 ,
p3 . r epeat ( 2 ) ,
p4 . r epeat ( 3 ) ,
p3 . r epeat ( 2 ) ,
p4 . r epeat (4 )

) ;

2.4 Manipulating Patterns

Patterns also have methods that allow you to produce new patterns that are not
simply combinations of old ones laid end to end.

Using the reverse method, you can turn a pattern back to front; using the slice
method, you can extract just the portion of it you want:

bassackwards = catenated . r e v e r s e ( ) ;

p new = bassackwards . s l i c e ( 4 , 1 0 ) ;

The arguments to slice tell DruL which is the first beat of the pattern that you’re
interested in, and how many beats (including that one) you would like. So to the
call above will produce a pattern 10 beats long, that starts with the 4th beat of
bassackwards. If you ask for more beats than the pattern has, then slice will
return a pattern that starts on the beat you specify and continues until the end of
the original pattern.

Since all of these methods return patterns, and are methods of patterns, you can
also stack your method calls into one statement:

p new = catenated . r e v e r s e ( ) . s l i c e ( 4 , 1 0 ) ;

But the most powerful mechanism for creating new and different patterns is the map
function. This is how to take a pattern and create its complement: a pattern that
has a rest everywhere that the original has a note, and vise-versa:

17



r eve r s ed = map ( p new ) {
i f ( $1 . r e s t ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

The map function moves from beat to beat of the pattern it is passed, setting the
variable $1 to the point to the current beat of the first (and in this case, the only)
pattern in its argument list. After each step, it stores the value that is returned, and
in the end, it concatenates all these patterns together to form the new pattern that
is created by this map.

You might be wondering, at this point, if it is legal to return a pattern that is longer
or shorter than one beat. The answer, happily, is “yes!” To produce, for example, a
pattern that has an extra rest inserted after every note, we could do this:

new pattern = map( o ld pa t t e rn ) {
i f ( $1 . note ( ) ) { return pattern ( ”10” ) ; }
return $1 ;

} ;

You may notice that we didn’t bother to create a pattern for the second case: if we
simply want to return a single-beat pattern with the same value (beat or rest) as
the current beat of one of our input patterns, we can simply return that beat, and
DruL will interpret it correctly.

Finally, we can pass more than one pattern to a mapper, and use variables $2, $3
and so forth. This mapper takes two patterns as its arguments, and produces a new
pattern that contains the portions of the first pattern that occur in parallel with
notes (not rests) in the second pattern:

o l d pa t t e rn = pattern ( ”10101100” ) ;
f i l t e r e d p a t t e r n = map( o ld pat te rn , pattern ( ”1110011110000” ) ) {

i f ( $2 . note ( ) ) { return $1 ; }
} ;
p r i n t ( o l d pa t t e rn ) ;

In this case, the printed value will be “101100” (if no return statement is found,
map assumes that you meant to return an empty pattern). The same result could be
achieved using a series of calls to slice and concat, but this is a much more flexible
method.

18



If one of the patterns passed to map is longer than the others, map will continue until
it reaches the end of the longest pattern–the beats of the patterns that have already
ended are considered to be neither notes nor rests (and will return false if either of
those methods is called).

We’ve mentioned beats as if they were objects once or twice, and in fact they are–you
can’t create them directly, but map does it for you. You’ve seen two of the methods
you can call on beats (note and rest, but there are two more that make map even
more powerful: prev and next. Calling prev with an integer argument returns the
beat in the same pattern from that many beats ago in the pattern (and you can
probably guess how next works). These beats may be from before the beginning
or after the end of the pattern, in which case they behave just as described in the
previous paragraph: both the note and rest methods will return false.

new pattern = map ( o ld pa t t e rn ) {
i f ( $1 . note ( ) && $1 . prev ( 1 ) . note ( ) ) { return $1 ; }
else { return pattern ( ”” ) ; }

} ;

2.5 Named mappers

In all of the examples so far, we have simply supplied the map function with a block
of statements to run for this particular set of patterns. This block is what we refer to
as an “anonymous mapper.” In reality, of course, it is likely you would want perform
the same type of transformation on more than one pattern (or set of patterns). To
do this without annoying repetition of code, you can define a named mapper, then
use the name instead of the code block. The named mapper can also have named
parameters, which may be easier to keep track of than the shell-like variables used in
anonymous mappers. This allows us to re-write the previous example in a somewhat
more readable way:

mapper f i l t e r map ( input pat te rn , f i l t e r p a t t e r n ) {
i f ( f i l t e r p a t t e r n . note ( ) ) { return i nput pa t t e rn ; }

} ;

f i l t e r e d p a t t e r n =
map ( o ld pat te rn , pattern ( ”1110011110000” ) ) f i l t e r map ;

19



2.6 Assembling clips

Now that we have a bunch of patterns, the next thing to do with them is assemble
them into pieces of music, where each instrument has a (presumably) different pat-
tern to play. Before we do that, however, we have to define what instruments we
are using. This is done using the instruments function (which isn’t actually a func-
tion at all, but we’re going to ignore that for now–see section 3.7.1 in the Language
Reference Manual if you want the grizzly details).

instruments ( ” h ihat ” , ”bassdrum” , ” crash ” , ” snare ” ) ;

If you want to use the default instruments, you can simply call instruments with
no arguments, but you have to call it once (and exactly once) before you get to the
next step: using the clip function to bring all of your patterns into one place.

m y f i r s t c l i p = c l i p (
” h ihat ” <− pattern ( ”00100010” ) ,
”bassdrum” <− pattern ( ”10001000” ) ,
” crash ” <− pattern ( ”10000000” ) ,
” snare ” <− pattern ( ”01110111” )

) ;

Of course, this is a little verbose–if you’re specifying the patterns in the order they
appear in the instrument definition list, you can just pass the patterns you want as
arguments, instead of using the fancy syntax above:

m y f i r s t c l i p = c l i p (
pattern ( ”00100010” ) ,
pattern ( ”10001000” ) ,
pattern ( ”10000000” ) ,
pattern ( ”01110111” )

) ;

2.7 The Big Payoff

Now that we know how to assemble patterns into a song, all that’s left is to see what
our song looks like when we bring it back to the outside world. There are three easy
ways to do this (other, of course, than a simple print call). First, you can call the
outputText method to print your song to a text file:

20



instruments ( ) ; // d e f a u l t ins t ruments : h ihat , snare , k ick−drum and cowbe l l

song = c l i p (
pattern ( ”00100010” ) ,
pattern ( ”01110111” ) ,
pattern ( ”10001000” ) ,
pattern ( ”10000000” )

) ;
song . outputText ( ”my song . txt ” ) ;

If you have the midge program1 installed, you can also convert it directly into a
MIDI file you can play using many music players:

tempo = 120 ;
song . outputMidi ( ”my song . mid” , 120 ) ;

And finally, you can output to the format used by the typesetting package Lilypond2

to produce beautifully typeset sheet music:

song . outputLi lypond ( ”my song . l y ” , ” T i t l e o f the Song” ) ;

Assuming you have Lilypond installed, this allows you to produce PDF sheet music
that looks roughly like this:

1http://www.undef.org.uk/code/midge/
2http://www.lilypond.org/

21

http://www.undef.org.uk/code/midge/
http://www.lilypond.org/


 

Title of the Song

�

��

�

� �

��

�

�

�

�hh_c

sd_ac

bd

cowbell

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Music engraving by LilyPond 2.10.33—www.lilypond.org

Congratulations! You’re done with the tutorial–have fun with DruL!

22



Chapter 3

Language Reference Manual

3.1 Introduction

DruL is mainly an imperative programming language, however it borrows ideas
(map and filter) from the functional paradigm. In addition to integers, DruL’s main
datatypes are pattern and clip. Instruments are defined as constants.

DruL programs do not contain any loops or user-defined functions. All pattern and
clip creation and manipulation is done using the map construct described below.

3.2 Lexical Conventions

3.2.1 Comments

Comments in DruL start with the token “//” and continue until the end of the
current line. DruL has no multi-line comment syntax.

3.2.2 Whitespace

Space, tab, end of line, and return are all considered the same and their only use is
to seperate tokens.

23



3.2.3 Characters

DruL uses the ASCII character set.

3.2.4 Identifiers

An identifier consists of any uppercase or lowercase character or an underscore,
followed by any sequence of uppercase or lowercase characters, underscores, and
digits (0 through 9). The maximum length of an identifier is 64 characters.

In addition, within the context of a mapper, special variables $1 through $n (where
n is the number of patterns passed to the mapper) are defined as read-only aliases
(see section 3.6.2 for more details on this feature).

All identifiers in a given scope, be they mapper names, variables, or built-in functions,
belong to a single namespace.

3.2.5 Keywords

return rand clip mapper
if pattern instrument print
elseif concat map
else true false

3.3 Types

There are 3 basic types in DruL: integers, patterns, and clips. In addition, ‘string’
constants may be used in DruL source code, but there is no variable type to which
they can be directly assigned. Likewise, boolean expressions exist, but cannot be
assigned to variables. Values in DruL are strongly typed, but the type of a variable
is determined dynamically.

24



3.3.1 integer

All integers are base 10, and may optionally be preceded by a sign (+ -). Any
sequence of digits (0 through 9) is valid. Leading 0s are ignored, so a sequence such
as 0000123 is interpreted as 123. Integers are mutable.

rand is a function that returns a non-negative number. It either accepts a positive
integer argument, in which case it returns a random number between 0 (inclusive)
the argument (exclusive), or no argument in which case rand returns either 0 or 1.

r = rand();
s = rand(19);

3.3.2 pattern

A pattern is essentially an object that holds binary, discrete, time-series data. At
each discrete-time step, which will henceforth be referred to as a beat, there is either
a note or a rest. For the non-musically inclined, a note represents sound produced
by the striking of a drum (or similar instrument) and a rest represents the absence
of any such sound. Patterns are immutable. When a pattern is manipulated, the
target pattern remains intact and a new copy is created. The length of a patten can
be any non-negative integer.

3.3.3 beat

A beat is a lightweight object that cannot be created directly by the user: it exists
only within a mapper (for more discussion of which, see section 3.6.2 below). It gives
direct access to information about a single beat of a pattern object (including the
beats surrounding it).

3.3.4 clip

An instrument is one of a pre-defined set of sounds (e.g. drum notes) that can occupy
a single beat. A clip is a mapping of patterns to instruments. Clips are processed in
sequence as the program runs to produce output which may be plain-text or a MIDI
file. Clips are immutable.

25



3.3.5 string

A string constant begins with an ASCII double-quote character, continues with an
arbitrary sequence of ASCII characters other than \, ′′, and the ASCII newline
character, and concludes with another ′′ character. If a \ or ′′ character is desired,
it can be escaped using the \ character.

3.4 Statements

In the most common case, a statement consists of a single expression followed by a
semicolon (“;”). Importantly, unlike many languages with similar syntax, DruL does
not consider a block to be equivalent to a statement. Instead, statements in DruL
take one of the six forms below.

3.4.1 Expression Statements

The basic form of statement, as in most C-like languages, is the expression statement:
expression-statement : expression;

The precedence table for operators in DruL is given here:

Operators Notes Associativity
. Method call left to right
− ! Unary minus and logical negation right to left
∗ / % Standard C meanings left to right
+ − Addition/subtraction left to right
< <= > >= Standard C meanings left to right
! = == Standard C meanings left to right
&& Standard C meaning left to right
|| Standard C meaning left to right

The sections that follow use the model of the C Language Reference Manual to in-
dicate the various types of expression. As in that example. the highest-precedence
forms of expression are listed first. Since much of the material below is extremely
straightforward, plain-English descriptions are supplemented by grammatical de-
scriptions only when necessary.

26



Primary Expressions A primary expression consists of a constant (integer or
string), an identifier, or a parenthesized expression.

Function, Method, and Mapper calls Arguments to functions, methods and
mappers are evaluated in applicative order, left to right within a given list. (Ar-
guments are also passed by value, not by reference.) Depending on the function or
method in question, functions and methods may return values of any type, including
boolean values (which cannot be assigned to variables); mappers, by their nature,
always return patterns.

arglist : ( expression ) | ( expression , arglist )

method-call : identifier . identifier arglist

function-call : identifier arglist

mapper-call : map arglist mapper

mapper : identifier | block

block : { statement-list }

statement-list : statement | statement statement-list

Unary operations The unary operations in DruL are arithmetic and logical nega-
tion (unary − and !). Since DruL is strictly typed, arithmetic negation can only be
applied to integer values, and logical negation to boolean values.

Standard arithmetic operations Expressions may use the standard binary arith-
metic operators (+, −, ∗ and /), with their standard precedence. It is required that
both of the operands in such an expression be integer values.

Comparison operations As in most C-family languages (and as shown in the
precedence table above), relational operators have precedence over equality tests.
These operators return boolean values, which can be used in if statements but
cannot be assigned to variables.

Relational tests may be used on integer values only; equality tests can be used on
variables of any type, but in the case of patterns and clips, they will only report

27



whether the two variables being tested are aliases of the same object, not any deeper
notion of equivalence.

Logical combination operations Here again we follow the conventions of C, and
give && precedence over ||. These operators require their operands to be boolean
values, and return boolean values.

3.4.2 Assignment Statements

Assignment in DruL is not a simple operator to be placed in the middle of an
expression. Rather, it is a separate type of statement, which may appear anywhere
another statement may appear.

assignment-statement : identifier = expression-statement

Assignment is polymorphic: the same syntax is used to assign variables to integers,
patterns and clips. Furthermore, due to DruL’s dynamic typing, a variable may be
reassigned to a different type.

3.4.3 Selection Statements

Selection statements in DruL take the following form: the string if, followed by
an expression that returns a boolean result, enclosed in parentheses, followed by
an open-brace (“{”), one or more statements, and a close-brace (“}”). This may
optionally be followed by one or more elseifs, which are also followed by parentheses
and a block of statements, and one (optional) else, which omits the test expression
but is also followed by a block of statements.

selection-statement : if ( boolean-expression )block if-tail

if-tail : ε | if-middle | if-middle else { statement-list }

if-middle : ε | elseif ( boolean-expression ) { statement-list } if-middle

28



3.4.4 Mapper Definition Statements

A mapper definition consists of the word Mapper, followed by an identifier, followed
by a parenthesized list of comma-separated identifiers, followed by a block.

mapper-definition : mapper identifier namelist block

namelist : ( identifier ) | ( identifier , namelist )

3.4.5 Return statements

A return statement can only appear inside the statement block of a named or anony-
mous mapper:

return : return expression

If this statement is reached, the value of expression will be the output of this iteration
of the mapper block. Accordingly, this expression must evaluate to either a pattern
or a beat value.

3.4.6 Instrument definition

This is a special statement that closely resembles a function call:

instrument-definition: instruments ( arglist )

The arguments to this pseudo-function must all evaluate to strings. See section 3.7.1
for a detailed discussion.

3.5 Blocks, namespace and scoping

3.5.1 Blocks

DruL has a limited block structure: only in the context of an if/elseif/else sequence
or a Mapper Definition statement is a new block needed or allowed. In these cases,
curly braces (“{}”) are used to delimit the statement-sequence that falls within the
block, and they must contain one or more statements.

29



Mapper definitions define a new closed scope (one from within which externally
defined variables are not visible); if blocks do not define a new scope, so all variables
used within them are visible to the enclosing block, and vise-versa.

3.5.2 Namespace

DruL has one namespace shared by variables, built-in functions and mapper names.
Additionally, each type has an associated namespace for methods. Technically speak-
ing, mappers are values like any other, and their names can be re-used, but this is
strongly discouraged.

3.5.3 Scoping

Variables in DruL are dynamically scoped. DruL has one top level scope, and one
scope for each mapper that the program enters (named or anonymous). Mappers
may call each other (or themselves) recursively, and may be defined within other
mappers, so a hierarchy of substantial depth can (in principle) be achieved. Within
each scope, a program has read-only access to all variables and mapper names defined
in the scopes above it in this hierarchy: attempts to assign to a variable from an
outer scope will produce a new variable in the inner scope, which masks the original
variable.

3.6 Patterns and pattern operations

3.6.1 Patterns

A pattern is a sequence of beats. Each beat can be a note or a rest. To define a
pattern, DruL uses ‘0’ for rests and ‘1’ for notes. A pattern can be created in the
following way:

p1 = pattern("101010");

which represents the sequence note, rest, note, rest, note, rest. Its length is 6.

There are built-in functions and methods on patterns included in DruL.

30



Patterns can be concatenated to form new patterns. The concat function can take
any positive number of pattern arguments. Patterns are concatenated from left to
right.

pcat = concat(p1 pattern("111000") pattern("1"));

pcat will be equal to 1010101110001.

The repeat method is a shortcut to concatenate the same pattern many times:

pcat2 = concat(p1, p1, p1);
pcat3 = pattern("101010").repeat(3);
pcat4 = p1.repeat(3);

Note that pcat2, pcat3, and pcat4 are all equivalent.

The length method gives the length of a pattern.

len = p1.length();

The value of len is 6.

The slice method gives you a subpattern from a pattern. It takes two arguments:
first is index (starting at 1) and second is length of the desired subpattern. Request-
ing a subpattern out of range will raise an error. Example:

psub = pattern("101010").slice(2, 3);

psub is “010”.

The reverse method returns the reverse of a pattern. It doesn’t take any arguments.

preverse = pattern("111000").reverse();

preverse is “000111”.

Finally, you can have an empty pattern of length 0:

p8 = pattern("");

31



3.6.2 Map

The map construct is used to create new patterns from existing ones. map performs
an operation iteratively on a set of patterns. The beats in the patterns are iterated
over from left to right. The output of a map is a new pattern. For example:

p9 = pattern("101");
p10 = map(p9)
{

if ($1.note()) { return pattern("11"); }
else { return pattern("0"); }

};

p10 is “11011”.

map takes a sequence of pattern arguments and followed by a mapper function. In
the above example the mapper function is defined anonymously within curly braces.

Within a mapper function, the current beat of each pattern argument is aliased to
the special mapper variables $1, $2, $3... and so on. This notation is mandatory in
anonymous mapper functions such as the example above. If you use $N while there
is fewer than N arguments, DruL will raise an error.

DruL uses the beat methods note, rest and null to check whether the current beat
is a note, a rest, or null. $1.note returns true if there is a note on the current beat
in the first pattern argument, and false otherwise.

One can use the beat method asPattern to convert as beat to a pattern. This way,
one can then make use of functions and methods of patterns. For example:

p11 = map( pattern("1111") )
{

return concat($1.asPattern(), pattern("0"));
};

p11 is “10101010”.

DruL uses the beat methods prev and next to access the previous and following
beats of the pattern to which a given beat belongs. These methods can be passed
a single argument which specifies how far forward or back in the pattern to go. For
example:

32



p12 = map( pattern("1101") )
{

if ($1.note() && $1.next(1).note()) { return pattern("1"); }
else { return pattern("0"); }

};

p12 is “1000”.

next may return a NULL beat as it does when called in the last iteration of the
above example. When used with a NULL beat, both the note and rest methods
will return false.

If you call map on multiple patterns that are not of the same length, the shorter
patterns will be padded with NULL beats.

By default, an empty pattern is returned for each iteration.

Each new pattern constructed by map begins as an empty string. As the pattern
arugments are iterated over, the return values of the mapper function (which are
also patterns) are concatenated onto the end of the new pattern.

Variables defined in a mapper function are garbage collected at the end of the map.

3.6.3 Mapper

Mapper functions may also be defined with a name, to be used elsewhere in the
program.

For example, the above example could have been written in the following way:

mapper myMapper(p)
{

if (p.note() && p.next(1).note()) { return pattern("1"); }
else { return pattern("0"); }

};
p12 = map(pattern("1101")) myMapper;

Recall from section 3.4.4 that a Mapper definition includes a name for the mapper
and a namelist of formal arguments. When a named mapper is used in a map call,

33



each pattern that is passed to the map is associated with the corresponding name
in the namelist in the mapper’s definition. Then, within the body of the mapper,
the current beat of each pattern is aliased to that name, as well as to “$n”.

A mapper function must be defined before it is used.

3.7 Clips

3.7.1 Instruments

Before we define any clips, we must tell the compiler what instruments they will
use. This can only be done once per program, and uses the instruments function.
(Technically speaking, this is not a function but a special statement type that uses
a function-like syntax. The distinction is largely academic, however.) This func-
tion can take a variable number of arguments. Each argument is the name of an
instrument to be defined. In the example below, four instruments are defined:

instruments(‘‘hihat’’,‘‘bassdrum’’,‘‘crash’’,‘‘snare’’);

Instruments must be defined before any clips have been defined. This function can
only be called once. Also, it cannot be called from inside a mapper.

3.7.2 Clips

A clip represents a collection of patterns to be played in parallel, where each pattern
is played on a single instrument.

Once the instruments are defined, we can create a clip from our existing patterns,
using an associative-array notation:

clip1 = clip
(

"bassdrum" <- downbeats,
"hihat" <- alternate_beats

);

34



The same result can be achieved by simply listing the patterns for each instrument
in the order they are defined using the instruments function:

clip2 = clip
(

alternate_beats,
downbeats
// remaining instruments have an empty beat-pattern

);

The patterns passed into clips are passed by value, not by reference.

Clips also have a small selection of output methods, discussed in the section below.

3.8 Outputs

DruL has two kinds of outputs: any data structure can be printed to standard output
for debugging purposes, and clips may be output into files as text or using some more
complex representation, such as MIDI or Lilypond (for PDF conversion).

3.8.1 Standard output

The print statement displays any type to the standard output, including strings.
For example:

print ("DruL");
print (pattern("01"));

The representation of a string is the string itself. The representation of a pattern is
the string that would have been used to initialize the pattern. For example, if we
have a pattern

p = pattern("01").repeat(2);
print(p);

35



The output is ”0101”;

The print function always include a platform-appropriate line ending.

3.8.2 Text file

Using the same format as is used by print, DruL can print a text representation of
a clip to a file using the outputText method of the clip:

myClip.outputText("myfile.txt");

The file being written to is truncated if it exists, and created if it does not exist.

3.8.3 MIDI file

The method outputMidi works similarly, but in addition to the filename, it requires
a tempo for the MIDI file to be produced (in beats per minute–this must be a positive
integer).

myClip.outputMidi(‘‘myfile.mid’’,120);

The transformation from clip to MIDI may rely on external libraries like MIDGE1.
There is no guarantee on which of the three existing MIDI formats is used. DruL
tries to match its instrument definition with MIDI instruments definitions using the
names. If no match can be found, DruL will use a default MIDI instrument (first
one is cow bell).

3.8.4 Lilypond file

The clip method outputLilypond operates similarly to the above, but takes a
title (to be printed at the top of the page of typeset music) as an optional second
argument:

1http://www.undef.org.uk/code/midge/

36

http://www.undef.org.uk/code/midge/


myClip.outputLilypond(‘‘myfile.ly’’, ‘‘My New Drum Loop’’);

For best results, the resulting Lilypond file will need to be typeset using an external
program (Lilypond, one presumes).

37



Chapter 4

Project Plan

4.1 Processes

Almost all planning and decision making was done as group. The team leader re-
solved only very few disagreements of less importance, on which spending the time to
come to a consensus was not warranted. As explained in more detail in section 4, we
made liberal use of paired programming and most coding was done in group sessions.
Documentation, including the Reference Manual and this report, was mostly done
individually; each team member soley responsible for specific sections. Our testing
process made use of an automated test-suite. After each change to the code base,
the regression tests were all run, making sure that the number of tests passed always
increased. This was somewhat done in the spirit of test driven development, as we
made many test cases for language features before they were implemented, and used
the test cases as a “ToDo” list. Our development process was also in the spirit of
Agile or Extreme Programming. We started with a minimal, yet functioning lan-
guage, and incrementally added features to it, all the while maintaining a working
system.

Our plan was to complete tasks in the following order, working on tasks in paralell
where possible:

1. Design DruL

• Specify syntax

• Specify semantics

38



2. Write the LRM

3. Implement Basic Building Blocks

• AST

• Scanner

• Parser

• Test Suite Driver

• Initial test cases

• Basic Interpreter (with evaluate, execute, and built-in print for string
literals)

4. Implement Generic Language Features

• Integer arithmetic

• Boolean operations

• Assignment statments and symbol table

• Selection statements

5. Implement Core DruL Language Features

• Pattern creation and printing

• Pattern built-in functions and methods

• Map, mappers, and beats

• Named mappers

• Beat built-in methods

• Instrument definition

• Clip creation and printing

6. Implement Advanced DruL Language Features

• Clip text output

• Clip MIDI output

• Clip Lilypond output

• Clip built-ins concat and repeat (not implemented)

7. Implement Fit and Finish

• Interpreter command-line arguments

39



• Detailed error messages

• Error message line numbers

• Trapped parse errors

• Static semantic checks (not implemented)

We initially used our own SVN server for source and documentation management.
However, we soon moved to Google Code to make used of its issues list for keeping
track of bugs and the ToDo’s correpsonding to the above features.

4.2 Style Guide

Due to the fact that all of our team members started as novice OCaml programmers
and OCaml’s syntax is unlike any languages our team was already familiar with, we
lacked much intuition regarding good OCaml coding style. However, over the course
of our coding, the following coding practice emerged:

• Use hard tabs for indentation

• Specify pattern matched arguments and use “match with” syntax instead of
the “function” shorthand for pattern matching

• Encapsulate each “match with” clause in parentheses

• Put each match case on a new line

• Indent each match case and put a tab after the “—” separator

• Begin results of a match case on the same line as the “-¿”

• Indent subsequent lines of the results of a match case

• Horizontally align similar lines of code using extra whitespace

We never reached a conensus on whether to make our OCaml identifiers CamelCase
or underscore separated.

40



4.3 Timeline

Task Date(s)
Specify syntax Oct 8
Specify semantics Oct 15
Write the LRM Oct 22
AST Nov 2
Scanner Nov 2
Parser Nov 3
Test Suite Driver Nov 8
Initial test cases Nov 8
Basic Interpreter Nov 12
Integer arithmetic Nov 19
Boolean operations Nov 19
Assignment statments and symbol table Nov 19
Selection statements Nov 19
Pattern creation and printing Nov 19
Pattern built-in functions and methods Nov 26
Map, mappers, and beats Nov 26
Named mappers Dec 03
Beat built-in methods Dec 03
DruL GCD Dec 10
Instrument definition Dec 10
Clip creation and printing Dec 10
Clip text output Dec 15
Clip MIDI output Dec 16-17
Interpreter command-line argument Dec 16
Detailed error messages Dec 16
Error message line numbers Dec 16
Clip Lilypond output Dec 17
Trapped parse errors Dec 17
DruL song Dec 17
Presentation slides Dec 17-18
Report Dec 18-19

41



4.4 Roles and Responsibilities

Each team member volunteered for the completion of tasks. Tasks were not divied
up amongst team members in advance. Rather, after team members finished their
tasks they simply discussed what they should (or would like to) work on next with
the rest of the team. Many tasks (especially the more difficult ones) were tackled in
pairs. We found having an extra pair of eyes examining code and documentation as
it was being written (i.e. paired programming) drastically cut down on the number
of initial bugs and the amount of refactoring done later.

Below is a general description of the major tasks completed by each team member.
Paired efforts are noted in parentheses. Note, that most work was with the group
all in one room at one common table. This allowed and individual or pair to ask for
help or advice from the rest of the team. This is done consistently and resulted with
all members of the team being at least somewhat familiar with the impementation
of almost all parts of the system.

• Rob:

1. As team leader, resolved minor conflicts

2. Proposed drumming language idea

3. Setup intial SVN repository

4. Wrote introduction for all documents

5. Assisted with language design

6. Wrote the Pattern, Map, and Mapper sections of the LRM

7. Coded the AST (with Ben)

8. Assisted with coding the parser

9. Coded the initial “helloworld” interpreter (with Waseem)

10. Coded pattern construct (with Ben)

11. Coded DruL’s built-in functions and methods and added corresponding
test cases (with Waseem)

12. Coded instrument and clip constructs (with Theirry)

13. Performed built-ins code refactoring (with Ben)

14. Performed code cleanup

15. Refactored text output

42



16. Coded MIDI output

17. Wrote an example drum song using DruL

18. Edited all the presentation slides

19. Wrote the Project Plan section of the report

• Ben:

1. Decided on map/mapper idea

2. Assisted with writing proposal

3. Assisted with language design

4. Wrote the Types, Statments, Blocks and Scoping sections of the LRM

5. Coded the AST (with Rob)

6. Assisted with coding the parser

7. Coded the parse-tree dumper

8. Coded selecton and assignment statements

9. Coded pattern construct (with Rob)

10. Coded map and mapper (with Theirry)

11. Coded GCD implementation using DruL

12. Refactored built-ins (with Rob)

13. Refactored interpreter into smaller files

14. Refactored scanner, parser, and interpreter to inculde line numbers in
error messages with (with Thierry)

15. Added tests for error messages

16. Coded Lilypond output

17. Refactored output code

18. Fixed corner-case symbol-table bugs

19. Wrote parts 1 and 2 of the presentation (except for the mapper animation)

20. Updated the LRM for the report (with Waseem). Wrote the tutorial
section of the report (with Waseem)

• Thierry:

1. Assisted with writing proposal

2. Assisted with language design

3. Wrote the Instrument, Clip, and Output sections of the LRM

43



4. Setup replacement Google Code repository

5. Coded the test-suite driver

6. Manualy created initial suite of test input and corresponding output files

7. Assisted with coding the parser

8. Coded map and mapper (with Ben)

9. Coded named mapper

10. Coded instruments and clip constructs (with Rob)

11. Refactored scanner, parser, and interpreter to include line numbers in
error messages (with Ben)

12. Added tests for error messages

13. Fixed corner-case symbol-table bugs

14. Wrote part 4 of the presentation

15. Made the mapper animation for the presentation

16. Wrote the testing section of the report

• Waseem:

1. Assisted with writing proposal

2. Assisted with language design

3. Wrote the Example Code section of the LRM

4. Coded the scanner

5. Assisted with coding the parser

6. Coded the initial “helloworld” interpreter (with Rob)

7. Coded DruL’s built-in functions and methods and added corresponding
test cases (with Rob)

8. Coded text file output

9. Wrote part 3 of the presentation

10. Updated the LRM for the report (with Ben)

11. Wrote the tutorial section of the report (with Ben)

12. Added the Divide by zero catch inside DruL.

44



4.5 Tools and Languages

All of our source code was written using OCaml with the exception of the special
syntaxes used by ocamllex and ocamlyacc, and the test-suite driver which was written
in Python.

4.5.1 Tools

• Lexer: We used ocamllex to compile our ocamllex code into an Ocaml lexer/-
tokenizer, which given DruL source code, produces a token stream.

• Parser: We used ocamlyacc to compile our ocamlyacc code into an Ocaml
parser, which given a token stream, produces a DruL abstract-syntax-tree.

• MIDI Output: MIDI (Musical Instrument Digital Interface) is a binary mu-
sic protocal and file format that contains “event messags” for an audio device
(e.g. a sound card or synthesizer). MIDI files are playable on many common
multimedia players (e.g. Quicktime). DruL does not generate MIDI files di-
rectly. Rather it uses midge, which is yet another music composition language
that compiles to MIDI. The language is not entirely different from DruL, how-
ever it allows for other instruments than drums and thus also has different
note pitches and durations. However, midge doesn’t not have contructs for
algorithmic compositions comparable to the power of DruL’s. In short, when
DruL’s outputMIDI method is called on a clip, the DruL interpreter produces
midge code which is then piped to midge to produce the desired MIDI output
file.

• Lilypond: Lilypond is a typesetting lanuage. DruL can produce Lilypond
files. These output files can then be compiled into typeset PDF’s (of sheetmu-
sic) using Lilypond. DruL does not automate this however.

4.5.2 Code Editors

No one on our used the same code editor. None of us used an IDE. Team members
used the following editors for all of their code (OCaml, latex, etc.):

• Rob: jEdit

45



• Ben: BBEdit

• Thierry: emacs

• Waseem: gedit

4.5.3 Documentation

All documentation was produced using LaTeX with the exception of the presentation,
which was made using Microsoft PowerPoint.

4.5.4 Version Control

We used Google Code and Subversion (SVN) for our source version control and issue
tracking.

4.6 Project Log

See the Appendix B.

46



Chapter 5

Architectural Design

5.1 Architecture Diagram

interpreter

scanner             DruL source parser             tokens

midge
compiler             

midge source MIDI file

AST

Lilypond file

text file

text stdout

output

clip

Figure 5.1: Arrows heads on edges show direction of data-flow.

47



5.2 Component Interfaces

The DruL interpreter is (as shown above) architecturally very simple.

1. The parser accepts a list of tokens from the scanner and builds a list of DruL
statements (structured according to DruL’s AST interface) to pass to the main
unit of the interpreter. These components rely heavily on OCaml’s Lexing and
Parsing libraries.

2. The interpreter is monolithic: with the exception of the output module, all of
its major sub-components are built into one set of mutually recursive functions
(in the file drul main.ml–see appendix C.1.2 on page 94). This monolith takes
the statement list produced by the parser, evaluates it step by step (performing
semantic checks on each statement only when program flow arrives at it), and
passes the resulting structures to the output library when appropriate.

3. The output library is implemented as a set of simple utility functions: each
takes a single DruL data structure and a small amount of extra data (the exact
breakdown is unfortunately not well standardized, and varies from output type
to output type), and returns a string formatted for the appropriate output
style.

The monolithic design of the interpreter is necessitated by the single-pass approach
taken to interpretation and by the dynamic typing of DruL variables: a re-implementation
that included compilation and checking passes could also maintain cleaner separation
of concerns.

5.3 Component Implemented By

File Author(s)
drul scanner.mll Waseem
drul parser.mly all
drul ast.mli Ben and Rob
drul interpreter.ml all
drul main.ml all
drul types.ml all
drul helpers.ml all
drul output.ml all

48



Chapter 6

Test Suite

In the section we present the test suite we built and used for the DruL project. We
start in Section 6.1 by showing the basic idea and limits for our testing program. In
Section 6.2 we give details about the implementation. Finally, we give samples tests
in Section 6.3 and explain what they test.

6.1 Overview

We built two different testing functions in order to debug DruL and help is main-
tainability: LaunchTestParser and LaunchTest. There usage is very similar.

LaunchTestParser’s goal is to make sure every meaningful DruL code passes
throught the scanner and parser without errors. We do not make sure that mal-
formed DruL code is intercepted. The program passes a set of DruL code samples
to the interpreter, and report whether a message error was produced. This sort of
testing was very useful at the beginning of the project, but was later replaced by the
more general LaunchTest.

LaunchTest takes a set of DruL code samples, pass them to the interpreter, and
compares the output with some predefined output. Therefore, we can test both cases
that fail (by catching the error message) or that correctly pass (by printing to the
standard output).

49



6.2 Implementation

We implemented the two above testing programs in Python. This scripting language
allows for rapid development and has an excellent packages for handling files. A
test file has to have a certain extension (.drultest) and so does the desired output
(.drultestout). The core of the testing programs, aside from finding the test files and
passing them to the interpreter, is a simple “diff” function. This “diff” tells us if
every line of two files are exactly the same or not. Everything is recorded in a LOG,
whose name encodes the date and time of the test.

6.3 Sample tests

We present some typical tests for both the parser and the interpreter. In the second
case, we also give the desired output.

6.3.1 Tests for DruL Parser

/TestSuite/ParserTests/logicalORAND.drultest

a = 1 ;
b = 2 ;
( fa l se | | true && fa l se ) ;
( true && fa l se | | true ) ;
( a | | b && 3 | | fa l se && true ) ;
( true | | fa l se ) && ( ( fa l se && true | | true ) | | true ) ;

/TestSuite/ParserTests/print.drultest

pr in t ( ”1” ) ;
p r i n t ( ” a l l o ” ) ;
p r i n t ( ”yo !3748473222937 ‘1−232−/. (∗&ˆ%$#@” ) ;
p r i n t ( pattern ( ”” ) ) ;
p r i n t ( pattern ( ”010111001” ) ) ;
a = pattern ( ”11110” ) ;
p r i n t ( a ) ;
b = 3 ;
p r i n t ( b ) ;
c = c l i p ( a ) ;
p r i n t ( c ) ;

50



6.3.2 Tests for DruL

/TestSuite/Tests/pattern12.drultest

p11 = map( pattern ( ”1111” ) )
{
i f ( $1 . note ( ) && $1 . next ( 1 ) . note ( ) && $1 . next ( 2 ) . note ( ) ) { return pattern ( ”1” )

; }
else { return pattern ( ”0” ) ; }

} ;
p r i n t ( p11 ) ; // shou ld re turn 1100

/TestSuite/Tests/pattern12.drultestout

1100

/TestSuite/Tests/clip2.drultest

instruments ( ) ;
p r i n t (

c l i p (
pattern ( ”1010” )

)
) ;

TestSuite/Tests/clip2.drultestout

[
hh c : 1010
sd ac :
bd :
cowbe l l :

]

/TestSuite/Tests/assign5.drultest

p = pattern ( ”10” ) ;
mapper pattern (p) {}
pr in t ( ”bad” ) ;

/TestSuite/Tests/assign5.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ pattern ’ as a mapper name

51



6.4 Conclusion

The tests were designed by every team member, usually following the addition of a
feature to DruL interpreter. We tried to keep the tests small and specific in order
to better spot bugs. However, we also believe that “the more the better”, thus we
cannot say that the test were wisely chosen. Fortunately, there a smart-ass inside of
everyone, and we do believe we tested most of the possible flaws.

Our test suite (programs and test files) adds up to 115 cases and about 1100 lines,
almost as much as DruL itself. However, we felt it was time well spent for two major
reasons:

• We did find bugs early in the coding process thanks to the test suite. One par-
ticular example is the precedance for member functions that we had forgotten.

• A complete test suite seems the only way to allow multiple programmers to
modify a file without breaking code written by someone else

Thus we believe that a complete test suite is an essential part of a compiler’s project
and should be started before the actual language compiler.

52



Chapter 7

Lessons Learned

7.1 Introduction

In this chapter each team member tells about some lessons he learned from the
project, and what he would do differently if we had start all over again.

7.2 Rob (team leader)

Coding standards are important, especially when using a new language that’s unlike
anything the team members have seen before. Unfortunately, this is when stanards
are least likely to be used because no one knows of any relevant standards. Our
team attemped to fit the square peg that is OCaml into the round holes that are the
C and Java coding standards. This didn’t work very well. In hindsight, we should
have spent some time reading about suggested coding conventions for OCaml and
researched how to organize a non-trivial OCaml code-base. We spent a long time
agonizing over the monolithic spaghetti code that was our intereter before we finally
got our heads straight and refactored it. However, we never reached a conensus on
the proper way to format (e.g. indent) OCaml. I still find our code very hard to
read. Also, domain specific conventions (assuming they exist) for writing a translator
would have been useful. For exmaple, it got very confusing trying to keep track which
of “int”, “Int”, and “CInt” were an OCaml type, a DruL type, or a DruL AST type.
I had to look back to our type definitions almost everytime. In retrospect, prefixes
such as “ast int” and “drul int” might have been less confusing.

53



7.3 Ben

I was surprised and impressed with how effective pair programming turned out to
be. Leaving aside the technical issues, having second check on ”the obvious way
to do things” prevented me from getting into several potentially painful situations,
when there was a much simpler solution available (this is especially relevant when
working with a new language, of course).

Despite the amount of work done with pair programming, we still ran into some
forms of communication trouble. In retrospect, a little more discussion up front
about standards for code format and design (and for version control use) would have
been helpful, at least in theory (it’s hard to have a coding standard for a language
that you don’t actually know). Our error messages ended up somewhat inconsistent,
and our log messages were sometimes uninformative (especially at first): better up-
front coordination could have prevented those problems.

It is tempting to say that a more careful up-front design would have been well-
advised, since it would definitely have been helpful–but since we were creating
something we didn’t really know how to create, using a language none of us was
tremendously familiar with, it is unclear that spending more time on up-front design
would actually have been productive in this case. Smaller-scale design issues, on the
other hand, would have benefitted from a bit more forethought: we ended up with
several somewhat inconsistent APIs for related helper functions, which could easily
have been avoided by a little up-front communication or earlier and more aggressive
refactoring. We did refactor often to retrofit better design onto the code we had
written (made simpler by the easy-to-run regression test suite), but more aggressive
refactoring of minor concerns would probably have sped things up toward the end,
and would certainly have left us with a more maintainable final product. The type-
checking and type-inference features of OCaml make this form of refactoring much
safer than it is in many languages, and we should have taken more advantage.

More importantly,from the moment that we had working code, we should have made
more active use of Subversion’s branching capabilities, to avoid worries about break-
ing the main source tree while working on major features. We ended up re-inventing
branching at least once, and leaving the entire tree in a non-working state for a
couple of evenings, which could readily have been avoided.

54



7.4 Thierry

One part of the code I especially worked on is the test suite, but I still was surprised
to see how important it turned out to be. In a new project, I would either build a
more powerful testing program, or spend more time to find an appropriate package
online. For instance, our current testing program does not have the ability to test
an output file instead of the standard output. It would have become a problem if
our language was designed for file operations.

Another lesson learned is the importance of helper functions designed early. At one
point, every one of us had design is own method to lookup into the environment,
and obviously we multiplied the number of bugs. For some functions, it is so obvious
that they were going to be needed that we should have spent the time, as a team,
to define them. Their documentation is also an important aspect when you work in
a team of more than two programmers.

Following that idea, we probably did not use enough the “issue tracking” on Google
code, the platform we used to host our project. Emails does not work as well...

7.5 Waseem

Most important lesson in while coding in OCaml is to modularize the code. Those
match with clauses keep getting messier and also there is a lot of code repeatition
while implementing similar functions or methods on the same language type object,
e.g., pattern, clip, etc. Therefore, it is always good to have the helper functions, that
can be used later on, in the code. This was my first group project of this level and
believe it or not, my first time using version control:); Really makes your life easier.
Of course, having those lexer and parser tools do most of the work for you is vry
helpful. OCaml in itself is a rather powerful language. Syntax tends to get ’messy’,
however, its power is well to be noted. The code tends to be compact, especially
when you factor out code that is repeated.

Working in pairs is definitely more helpful than working on one thing alone. In the
former case you less likely tend to get stuck at a point, as compared to the later
case.

55



Appendices

56



Appendix A

Number of Lines of Code

Main program and test suite.

40 drul ast.mli
219 drul helpers.ml
42 drul interpreter.ml
471 drul main.ml
87 drul output.ml
119 drul parser.mly
66 drul printer.ml
106 drul scanner.mll
59 drul types.ml
61 Makefile
8 test.ml
5 treedump.ml
1283 total

285 26 tests (parser)
422 79 test (drul)
399 2 ’test’ functions
1106 total

57



Appendix B

Project Log (SVN Commit Log)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r412 | waseemi lahi | 2008−12−19 10 : 52 : 34 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Minor f i x in the t ime l i n e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r411 | waseemi lahi | 2008−12−19 10 : 51 : 22 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Time l i n e updated a b i t ; don ’ t know whether to wr i t e r the date they were done
or the time per iod they were worked on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r410 | benwar f i e ld | 2008−12−19 05 : 15 : 45 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Made log a l i t t l e l e s s too wide .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r409 | waseemi lahi | 2008−12−19 05 : 11 : 04 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Removed extra rand from tab l e o f keywords
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r408 | waseemi lahi | 2008−12−19 05 : 01 : 25 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

: )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r407 | robstewart2 | 2008−12−19 04 : 56 : 25 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

bunch o f updates to r epor t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r406 | benwar f i e ld | 2008−12−19 04 : 48 : 44 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Added code l i s t i n g s to appendices . Some are kind o f wide .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

58



r405 | robstewart2 | 2008−12−19 04 : 39 : 57 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

put t u t o i r a l s e c t i o n back in
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r404 | benwar f i e ld | 2008−12−19 04 : 38 : 22 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Tweaked co lored−code s e c t i o n s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r403 | benwar f i e ld | 2008−12−19 04 : 25 : 29 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Str ipped u s e l e s s comments .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r402 | benwar f i e ld | 2008−12−19 04 : 25 : 09 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Made the end o f t h i s f i l e a l i t t l e l e s s . . . wide .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r401 | benwar f i e ld | 2008−12−19 04 : 24 : 29 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Test f o r d i v id e by zero .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r400 | benwar f i e ld | 2008−12−19 04 : 21 : 05 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Added i s n u l l method to beat .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r399 | waseemi lahi | 2008−12−19 04 : 20 : 31 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

d i v i s i o n by zero caught i n s i d e dru l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r398 | waseemi lahi | 2008−12−19 04 : 01 : 41 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

rand and r ev e r s e added in LRM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r397 | waseemi lahi | 2008−12−19 03 : 59 : 10 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Lessons added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r396 | benwar f i e ld | 2008−12−19 03 : 24 : 25 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Promoted a bunch o f de s e rv ing sub s e c t i on s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r395 | benwar f i e ld | 2008−12−19 03 : 13 : 41 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Dumbed quotat ion marks in code s e c t i o n s back down .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r394 | benwar f i e ld | 2008−12−19 03 : 09 : 55 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

That should be \ r e f not \ l a b e l . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r393 | benwar f i e ld | 2008−12−19 03 : 00 : 53 −0500 ( Fri , 19 Dec 2008) | 2 l i n e s

59



Changed a l l the verbatims to l s t l i s t i n g s . Also f i x ed the everything−i s−red
problem . Two th ings may not be a c t ua l l y connected .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r392 | benwar f i e ld | 2008−12−19 02 : 36 : 44 −0500 ( Fri , 19 Dec 2008) | 2 l i n e s

Added Tutor i a l s e c t i on , and tweaked one f oo tno t e in the RefManual out o f
g ene ra l puck i shnes s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r391 | robstewart2 | 2008−12−19 02 : 35 : 51 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

changed i n t r o to proposa l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r390 | robstewart2 | 2008−12−19 01 : 50 : 54 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

added SvnLog . txt
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r389 | thierrybm@hotmail . com | 2008−12−19 01 : 40 : 24 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

two minor typos f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r388 | robstewart2 | 2008−12−19 01 : 38 : 29 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

added an overview o f dru l to i n t r o
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r387 | robstewart2 | 2008−12−19 01 : 22 : 16 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

c l eaned up ProjectPlan . tex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r386 | robstewart2 | 2008−12−19 00 : 38 : 45 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

f i x ed a r c h i t e c t u r e t ab l e . added p r o j e c t plan to r epor t . tex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r385 | benwar f i e ld | 2008−12−19 00 : 37 : 24 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

Fixed up f r on t page a bunch .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r384 | robstewart2 | 2008−12−19 00 : 24 : 35 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

attempting to f i x ed l a t e x e r r o r s because o f in Arch i t e c tu r e . tex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r383 | robstewart2 | 2008−12−19 00 : 20 : 50 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

added arch diagram pdf . c l eaned up p r o j e c t plan in r epor t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r382 | robstewart2 | 2008−12−19 00 : 03 : 37 −0500 ( Fri , 19 Dec 2008) | 1 l i n e

added an a r c h i t e c t u r e diagram
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

60



r381 | robstewart2 | 2008−12−18 23 : 07 : 23 −0500 (Thu , 18 Dec 2008) | 1 l i n e

mostly f i n i s h e d p r o j e c t plan
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r380 | benwar f i e ld | 2008−12−18 22 : 48 : 44 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Whoops .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r379 | benwar f i e ld | 2008−12−18 21 : 35 : 21 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Adjustments to formatt ing ( s t i l l unable to get the f i g u r e onto the cover page , though ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r378 | benwar f i e ld | 2008−12−18 21 : 31 : 35 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Minor tweak to outputMidi paragraph .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r377 | benwar f i e ld | 2008−12−18 21 : 29 : 24 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Fixes to code in ( remaining ) examples .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r376 | benwar f i e ld | 2008−12−18 21 : 17 : 45 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Fixed a couple o f examples , and updated output s e c t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r375 | benwar f i e ld | 2008−12−18 20 : 53 : 05 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Typo in the f i r s t paragraph . Whoops !
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r374 | benwar f i e ld | 2008−12−18 20 : 49 : 04 −0500 (Thu , 18 Dec 2008) | 2 l i n e s

Refmanual e r r a t a : return , instrument d e f i n i t i o n f i x e s ; scop ing expla ined ,
e xp r e s s i on s and s t r i n g d e f i n i t i o n s c l eaned up .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r373 | thierrybm@hotmail . com | 2008−12−18 20 : 44 : 08 −0500 (Thu , 18 Dec 2008) | 1 l i n e

minor
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r372 | thierrybm@hotmail . com | 2008−12−18 20 : 42 : 17 −0500 (Thu , 18 Dec 2008) | 1 l i n e

a r c h i t e c t u r a l des ign s e c t i o n s t a r t ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r371 | thierrybm@hotmail . com | 2008−12−18 20 : 40 : 03 −0500 (Thu , 18 Dec 2008) | 1 l i n e

c l i p and instruments in RefMan seems OK
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r370 | thierrybm@hotmail . com | 2008−12−18 20 : 31 : 59 −0500 (Thu , 18 Dec 2008) | 1 l i n e

t e s t s u t i e chapter updated
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

61



r369 | thierrybm@hotmail . com | 2008−12−18 20 : 26 : 24 −0500 (Thu , 18 Dec 2008) | 1 l i n e

minor
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r368 | thierrybm@hotmail . com | 2008−12−18 20 : 25 : 41 −0500 (Thu , 18 Dec 2008) | 1 l i n e

tbm l e s s o n s l ea rned i s done
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r367 | thierrybm@hotmail . com | 2008−12−18 20 : 13 : 19 −0500 (Thu , 18 Dec 2008) | 1 l i n e

r epor t has t ab l e o f content
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r366 | thierrybm@hotmail . com | 2008−12−18 20 : 08 : 43 −0500 (Thu , 18 Dec 2008) | 1 l i n e

gene ra l layout o f l e s s o n s l ea rned chapter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r365 | thierrybm@hotmail . com | 2008−12−18 20 : 05 : 17 −0500 (Thu , 18 Dec 2008) | 1 l i n e

t e s t s u i t e s e c t i o n kinda done . . . need approval by someone e l s e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r364 | robstewart2 | 2008−12−18 19 : 49 : 17 −0500 (Thu , 18 Dec 2008) | 1 l i n e

added empty Pro j e c t Plan
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r363 | robstewart2 | 2008−12−18 19 : 48 : 28 −0500 (Thu , 18 Dec 2008) | 1 l i n e

changed i n t r o s e c t i o n to chapter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r362 | benwar f i e ld | 2008−12−18 19 : 47 : 56 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Use ” r epor t ” format , which i n c l ud e s chapter s ; use chapter s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r361 | robstewart2 | 2008−12−18 19 : 45 : 27 −0500 (Thu , 18 Dec 2008) | 1 l i n e

added i n t r o to r epor t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r360 | benwar f i e ld | 2008−12−18 19 : 43 : 48 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Fixed cover page .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r359 | thierrybm@hotmail . com | 2008−12−18 19 : 43 : 44 −0500 (Thu , 18 Dec 2008) | 1 l i n e

g e t t i n g l onge r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r358 | thierrybm@hotmail . com | 2008−12−18 19 : 30 : 58 −0500 (Thu , 18 Dec 2008) | 1 l i n e

us ing c o l o r s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r357 | thierrybm@hotmail . com | 2008−12−18 19 : 20 : 36 −0500 (Thu , 18 Dec 2008) | 1 l i n e

62



t e s t s u i t e added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r356 | thierrybm@hotmail . com | 2008−12−18 19 : 19 : 21 −0500 (Thu , 18 Dec 2008) | 1 l i n e

beg inning o f the r epor t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r355 | robstewart2 | 2008−12−18 16 : 31 : 48 −0500 (Thu , 18 Dec 2008) | 1 l i n e

c l eaned up pr e s en ta t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r354 | robstewart2 | 2008−12−18 15 : 55 : 37 −0500 (Thu , 18 Dec 2008) | 1 l i n e

added th i e r ry ’ s s l i d e s to par t s 1−2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r353 | robstewart2 | 2008−12−18 15 : 49 : 33 −0500 (Thu , 18 Dec 2008) | 1 l i n e

added waseems s l i d e s to par t s 1−2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r352 | thierrybm@hotmail . com | 2008−12−18 15 : 48 : 32 −0500 (Thu , 18 Dec 2008) | 1 l i n e

l i n e s o f code added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r351 | thierrybm@hotmail . com | 2008−12−18 15 : 31 : 54 −0500 (Thu , 18 Dec 2008) | 1 l i n e

updated l i s t o f r e s e rved keywords
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r350 | thierrybm@hotmail . com | 2008−12−18 15 : 29 : 51 −0500 (Thu , 18 Dec 2008) | 1 l i n e

we catch bad mapper naming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r349 | thierrybm@hotmail . com | 2008−12−18 15 : 29 : 43 −0500 (Thu , 18 Dec 2008) | 1 l i n e

we catch bad mapper naming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r348 | thierrybm@hotmail . com | 2008−12−18 15 : 23 : 08 −0500 (Thu , 18 Dec 2008) | 1 l i n e

i n s t r de f in mappers so lved
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r347 | thierrybm@hotmail . com | 2008−12−18 15 : 13 : 24 −0500 (Thu , 18 Dec 2008) | 1 l i n e

can ’ t a s s i ng instruments i n s i d e mappers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r346 | thierrybm@hotmail . com | 2008−12−18 14 : 53 : 29 −0500 (Thu , 18 Dec 2008) | 1 l i n e

important t e s t f o r weird ass ignments o f mapper that should f a i l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r345 | benwar f i e ld | 2008−12−18 14 : 25 : 10 −0500 (Thu , 18 Dec 2008) | 1 l i n e

63



Changed keyword check message ( and keyword check ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r344 | benwar f i e ld | 2008−12−18 14 : 23 : 01 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Changed keyword check message ( and keyword check ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r343 | benwar f i e ld | 2008−12−18 13 : 49 : 48 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Trapped an un−trapped i n t e r n a l e r r o r (mapper/ va r i ab l e name c o l l i s i o n ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r342 | waseemi lahi | 2008−12−18 10 : 15 : 55 −0500 (Thu , 18 Dec 2008) | 1 l i n e

part3 . ppt update
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r341 | waseemi lahi | 2008−12−18 09 : 46 : 22 −0500 (Thu , 18 Dec 2008) | 1 l i n e

yeah ! another update : )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r340 | waseemi lahi | 2008−12−18 09 : 38 : 20 −0500 (Thu , 18 Dec 2008) | 1 l i n e

part3 . ppt update
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r339 | waseemi lahi | 2008−12−18 09 : 04 : 39 −0500 (Thu , 18 Dec 2008) | 1 l i n e

p r e s en ta t i on update
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r338 | waseemi lahi | 2008−12−18 08 : 49 : 29 −0500 (Thu , 18 Dec 2008) | 1 l i n e

s l i d e s f o r part three ( in p rog r e s s )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r337 | benwar f i e ld | 2008−12−18 03 : 19 : 27 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Added a very over long d ra f t o f s l i d e s f o r the f i r s t 4 minutes or so .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r336 | benwar f i e ld | 2008−12−18 02 : 05 : 38 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Added type s e t t i n g to example song , and added example o f t yp e s e t t i n g to p r e s en ta t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r335 | benwar f i e ld | 2008−12−18 02 : 05 : 11 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Updated e r r a t a .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r334 | benwar f i e ld | 2008−12−18 01 : 39 : 58 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Moved a l l non−t r i v i a l s t r i ng−product ion in to dru l output . ml
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r333 | benwar f i e ld | 2008−12−18 01 : 31 : 13 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Updated svn : i gno re on Parser .

64



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r332 | benwar f i e ld | 2008−12−18 01 : 30 : 50 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Made LilyPond output happen .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r331 | benwar f i e ld | 2008−12−18 01 : 30 : 04 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Removed s l i g h t l y spur i ous ( misplaced ) comment .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r330 | benwar f i e ld | 2008−12−18 01 : 10 : 45 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Refactored midge output , and improved argument−check ing on both output methods .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r329 | benwar f i e ld | 2008−12−18 00 : 34 : 52 −0500 (Thu , 18 Dec 2008) | 1 l i n e

Refactored c l i p p r i n t i n g / text output .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r328 | benwar f i e ld | 2008−12−17 23 : 36 : 15 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Upgraded an e r r o r message s l i g h t l y .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r327 | thierrybm@hotmail . com | 2008−12−17 23 : 02 : 34 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t ex t improving
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r326 | waseemi lahi | 2008−12−17 22 : 53 : 37 −0500 (Wed, 17 Dec 2008) | 1 l i n e

message changed from i n t e r p r e t to dru l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r325 | thierrybm@hotmail . com | 2008−12−17 22 : 52 : 31 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t ex t improving
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r324 | thierrybm@hotmail . com | 2008−12−17 22 : 46 : 37 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t ex t f o r part 4 that goes along with the s l i d e s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r323 | thierrybm@hotmail . com | 2008−12−17 22 : 44 : 45 −0500 (Wed, 17 Dec 2008) | 1 l i n e

s l i d e s f o r the part 4 , very simple , t ex t from the ou t l i n e put in 2 s l i d e s . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r322 | waseemi lahi | 2008−12−17 22 : 33 : 33 −0500 (Wed, 17 Dec 2008) | 1 l i n e

changed i n t e r p r e t to dru l in t e s t s u i t e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r321 | benwar f i e ld | 2008−12−17 22 : 32 : 53 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Added l i n e−numbers to parse e r r o r s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

65



r320 | waseemi lahi | 2008−12−17 22 : 23 : 40 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Make f i l e updated , now makes dru l i n s t ead o f i n t e r p r e t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r319 | waseemi lahi | 2008−12−17 22 : 19 : 51 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t e s t f o r r e v e r s e method
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r318 | waseemi lahi | 2008−12−17 22 : 13 : 10 −0500 (Wed, 17 Dec 2008) | 1 l i n e

pattern . r e v e r s e ( ) added ( i s i t suppose to be a method or a func t i on : ) i t o t a l l y f o r g o t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r317 | benwar f i e ld | 2008−12−17 19 : 24 : 05 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Out l ine f o r p r e s en ta t i on added , in msft word format ( f o r my s i n s ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r316 | robstewart2 | 2008−12−17 19 : 19 : 28 −0500 (Wed, 17 Dec 2008) | 1 l i n e

added song . dru l to Examples/ and c leaned up gcd . dru l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r315 | thierrybm@hotmail . com | 2008−12−17 19 : 15 : 58 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r p r e s en ta t i on o f $
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r314 | thierrybm@hotmail . com | 2008−12−17 19 : 15 : 43 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r p r e s en ta t i on o f $
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r313 | thierrybm@hotmail . com | 2008−12−17 19 : 07 : 52 −0500 (Wed, 17 Dec 2008) | 1 l i n e

p r e s en ta t i on in ppt
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r312 | thierrybm@hotmail . com | 2008−12−17 19 : 05 : 45 −0500 (Wed, 17 Dec 2008) | 1 l i n e

va lue s o f added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r311 | thierrybm@hotmail . com | 2008−12−17 19 : 00 : 54 −0500 (Wed, 17 Dec 2008) | 1 l i n e

now has curr prev and next wr i t t en
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r310 | thierrybm@hotmail . com | 2008−12−17 18 : 52 : 27 −0500 (Wed, 17 Dec 2008) | 1 l i n e

l i t l l e p r e s en ta t i on o f the mapper i t e r a t o r , in op eno f f i c e p r e s en ta t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r309 | thierrybm@hotmail . com | 2008−12−17 18 : 43 : 03 −0500 (Wed, 17 Dec 2008) | 1 l i n e

f o l d e r f o r the p r e s en ta t i on with Edwards
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r308 | benwar f i e ld | 2008−12−17 18 : 19 : 12 −0500 (Wed, 17 Dec 2008) | 1 l i n e

66



I t would help i f I checked these in , too . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r307 | benwar f i e ld | 2008−12−17 18 : 18 : 43 −0500 (Wed, 17 Dec 2008) | 1 l i n e

One f i n a l bug f ix in i l l e g a l −re turn ( and tweaked the message ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r306 | robstewart2 | 2008−12−17 18 : 14 : 55 −0500 (Wed, 17 Dec 2008) | 1 l i n e

added a t e s t f o r beat . asPattern ( )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r305 | benwar f i e ld | 2008−12−17 18 : 12 : 36 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Fixed except ion handl ing in one mapper step .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r304 | robstewart2 | 2008−12−17 18 : 04 : 38 −0500 (Wed, 17 Dec 2008) | 1 l i n e

added beat . asPattern ( )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r303 | thierrybm@hotmail . com | 2008−12−17 17 : 33 : 50 −0500 (Wed, 17 Dec 2008) | 1 l i n e

checks the re turn o f . prev (1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r302 | thierrybm@hotmail . com | 2008−12−17 17 : 32 : 56 −0500 (Wed, 17 Dec 2008) | 1 l i n e

checks the re turn o f . next (1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r301 | benwar f i e ld | 2008−12−17 17 : 26 : 47 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Added return−th i s−beat c ap ab i l i t y to mappers .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r300 | benwar f i e ld | 2008−12−17 16 : 50 : 12 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Forbade ass ignment o f mappers .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r299 | thierrybm@hotmail . com | 2008−12−17 16 : 43 : 20 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t e s t updated with new de f au l t instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r298 | thierrybm@hotmail . com | 2008−12−17 16 : 31 : 37 −0500 (Wed, 17 Dec 2008) | 1 l i n e

new de f au l t instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r297 | thierrybm@hotmail . com | 2008−12−17 16 : 29 : 49 −0500 (Wed, 17 Dec 2008) | 1 l i n e

new output i s c l i p . outputText
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r296 | robstewart2 | 2008−12−17 15 : 53 : 20 −0500 (Wed, 17 Dec 2008) | 1 l i n e

67



f i x e d the c o n f l i c t with waseems commented out code
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r295 | thierrybm@hotmail . com | 2008−12−17 15 : 28 : 44 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t e s t on a s s i gn i ng to unknown instruments when c r e a t i n g a c l i p
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r294 | thierrybm@hotmail . com | 2008−12−17 15 : 26 : 38 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r e r r o r when c r e a t i n g a c l i p and a s s i gn i ng something to an unknwon instrument
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r293 | thierrybm@hotmail . com | 2008−12−17 15 : 20 : 46 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r comments be f o r e some func t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r292 | thierrybm@hotmail . com | 2008−12−17 15 : 15 : 56 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r comments be f o r e some func t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r291 | thierrybm@hotmail . com | 2008−12−17 15 : 05 : 13 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r e r r o r messages
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r290 | thierrybm@hotmail . com | 2008−12−17 14 : 57 : 36 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r e r r o r messages
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r289 | thierrybm@hotmail . com | 2008−12−17 14 : 46 : 46 −0500 (Wed, 17 Dec 2008) | 1 l i n e

t e s t s on bad ass ignment with l i n e numbers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r288 | thierrybm@hotmail . com | 2008−12−17 14 : 38 : 12 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r e r r o r messages with l i n e numbers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r287 | thierrybm@hotmail . com | 2008−12−17 14 : 32 : 21 −0500 (Wed, 17 Dec 2008) | 1 l i n e

be t t e r l i n e numbering , in get key f rom env and other f unc t i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r286 | robstewart2 | 2008−12−17 14 : 25 : 43 −0500 (Wed, 17 Dec 2008) | 1 l i n e

c l eaned up code formatt ing in a l l f i l e s and c leaned up f i l e output
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r285 | benwar f i e ld | 2008−12−17 02 : 17 : 42 −0500 (Wed, 17 Dec 2008) | 1 l i n e

Made e r r o r messages look l i k e they were wr i t t en by a human being , and updated r e l a t e d t e s t s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r284 | benwar f i e ld | 2008−12−16 22 : 10 : 18 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Made i n t e r p r e t e r take a command−l i n e argument as a f i l ename f o r input i f one i s provided .

68



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r283 | benwar f i e ld | 2008−12−16 18 : 59 : 44 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Added l i n e numbers to output−r e l a t e d except i on s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r282 | benwar f i e ld | 2008−12−16 18 : 48 : 04 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Removed spur ious comments .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r281 | benwar f i e ld | 2008−12−16 18 : 37 : 22 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Got l i n e numbers passed down to ” c l i p ” and to mapper−r e l a t e d he l p e r s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r280 | benwar f i e ld | 2008−12−16 18 : 33 : 23 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Fixes to f i x e s on except ion−r a i s i n g .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r279 | thierrybm@hotmail . com | 2008−12−16 18 : 32 : 40 −0500 (Tue , 16 Dec 2008) | 1 l i n e

make c l ip now takes a l i n e number
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r278 | thierrybm@hotmail . com | 2008−12−16 18 : 19 : 37 −0500 (Tue , 16 Dec 2008) | 1 l i n e

e r r o r s f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r277 | thierrybm@hotmail . com | 2008−12−16 18 : 12 : 59 −0500 (Tue , 16 Dec 2008) | 1 l i n e

f a i l u r e s should not have l i n e number or −1, o the r s e r r o r s do
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r276 | benwar f i e ld | 2008−12−16 18 : 12 : 46 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Added l i n e numbers to a l o t o f except i on s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r275 | thierrybm@hotmail . com | 2008−12−16 18 : 10 : 36 −0500 (Tue , 16 Dec 2008) | 1 l i n e

f a i l u r e s should now have l i n e number or −1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r274 | thierrybm@hotmail . com | 2008−12−16 18 : 02 : 32 −0500 (Tue , 16 Dec 2008) | 1 l i n e

some e r r o r s updated with l i n e number
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r273 | thierrybm@hotmail . com | 2008−12−16 18 : 00 : 17 −0500 (Tue , 16 Dec 2008) | 1 l i n e

some e r r o r s updated with l i n e number
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r272 | thierrybm@hotmail . com | 2008−12−16 17 : 54 : 42 −0500 (Tue , 16 Dec 2008) | 1 l i n e

except i on s takes a l s o an i n t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69



r271 | benwar f i e ld | 2008−12−16 17 : 48 : 59 −0500 (Tue , 16 Dec 2008) | 2 l i n e s

Made a l l uses o f expr in to tagged expr . Things somehow
s t i l l a l l work .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r270 | benwar f i e ld | 2008−12−16 17 : 28 : 46 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Reduced indenta t i on a b i t in output func t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r269 | benwar f i e ld | 2008−12−16 17 : 25 : 17 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Added l i n e−number tagg ing to scanner and par s e r and AST.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r268 | waseemi lahi | 2008−12−16 16 : 33 : 50 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Corrected the f i l e permis s ion problem f o r output to f i l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r267 | thierrybm@hotmail . com | 2008−12−16 16 : 32 : 08 −0500 (Tue , 16 Dec 2008) | 1 l i n e

in parser , tokens take at l e a s t one int , the l i n e number , t h i s upload BREAKS EVERYTHING
but we ’ re f i x i n g i t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r266 | benwar f i e ld | 2008−12−16 15 : 40 : 38 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Corrected header o f d ru l t ype s . ml
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r265 | benwar f i e ld | 2008−12−16 15 : 36 : 07 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Minor cleanup in i n t e r p r e t e r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r264 | benwar f i e ld | 2008−12−16 15 : 23 : 05 −0500 (Tue , 16 Dec 2008) | 1 l i n e

Rearranged code in to mu l t ip l e f i l e s , f o r ease o f maintenance .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r263 | waseemi lahi | 2008−12−15 10 : 36 : 20 −0500 (Mon, 15 Dec 2008) | 2 l i n e s

Comments Added at p l a c e s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r262 | thierrybm@hotmail . com | 2008−12−14 22 : 23 : 44 −0500 (Sun , 14 Dec 2008) | 1 l i n e

be t t e r e r r o r when a s s i gn i ng a c l i p without d e f i n i n g instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r261 | thierrybm@hotmail . com | 2008−12−14 21 : 52 : 55 −0500 (Sun , 14 Dec 2008) | 1 l i n e

c l i p ass ignment so lved
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r260 | thierrybm@hotmail . com | 2008−12−14 21 : 51 : 25 −0500 (Sun , 14 Dec 2008) | 1 l i n e

70



par t l y s o l v e the problem o f ass ignments , but we can s t i l l a s s i gn to c l i p . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r259 | thierrybm@hotmail . com | 2008−12−14 21 : 19 : 56 −0500 (Sun , 14 Dec 2008) | 1 l i n e

a s s i gn to pattern , f a i l s f o r the moment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r258 | thierrybm@hotmail . com | 2008−12−14 20 : 36 : 45 −0500 (Sun , 14 Dec 2008) | 1 l i n e

makes sure we can ’ t a s s i gn anything to t rue or f a l s e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r257 | thierrybm@hotmail . com | 2008−12−14 20 : 34 : 27 −0500 (Sun , 14 Dec 2008) | 1 l i n e

t e s t ass ignment to ’ rand ’ , f a i l s f o r the moment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r256 | thierrybm@hotmail . com | 2008−12−14 20 : 32 : 23 −0500 (Sun , 14 Dec 2008) | 1 l i n e

t e s t updated , no problem with instruments , can ’ t a s s i gn i t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r255 | thierrybm@hotmail . com | 2008−12−14 20 : 28 : 04 −0500 (Sun , 14 Dec 2008) | 1 l i n e

instruments ass ignment te s t , f a i l s f o r the moment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r254 | thierrybm@hotmail . com | 2008−12−14 20 : 25 : 22 −0500 (Sun , 14 Dec 2008) | 1 l i n e

c l i p ass ignment te s t , f a i l s f o r the moment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r253 | waseemi lahi | 2008−12−14 12 : 02 : 42 −0500 (Sun , 14 Dec 2008) | 1 l i n e

Removed . txt check . F i l e name can be anything the user wants i t to be , as f a r as
we are concerned .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r252 | waseemi lahi | 2008−12−14 11 : 33 : 44 −0500 (Sun , 14 Dec 2008) | 1 l i n e

Just added f i l e name check . I th ink as f a r as Linux i s concerned we do not need
f i l e name checks . But i t l ook s be t t e r f o r a text f i l e to have . txt ex tens i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r251 | waseemi lahi | 2008−12−10 21 : 45 : 13 −0500 (Wed, 10 Dec 2008) | 1 l i n e

output . t x t f i l e f un c t i on s now output c l i p s to the f i l e s , j u s t l i k e p r i n t
does on the stdout . ( I w i l l l ook in to the i s s u e o f outputt ing c l i p s in mapper . )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r250 | waseemi lahi | 2008−12−10 21 : 31 : 45 −0500 (Wed, 10 Dec 2008) | 1 l i n e

output . t x t f i l e ∗∗∗ f un c t i on s do what p r i n t does except i t doesn ’ t output c l i p s yet .
The two ex t en s i on s are append and truncate to choose what the user wants to do with
the a l r eady e x i s t i n g f i l e .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r249 | waseemi lahi | 2008−12−10 19 : 08 : 43 −0500 (Wed, 10 Dec 2008) | 1 l i n e

71



output t e s t updated
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r248 | waseemi lahi | 2008−12−10 19 : 06 : 22 −0500 (Wed, 10 Dec 2008) | 1 l i n e

output . t x t t r unca t e and output , t x t f i l e a p e nd do as t h e i r names sugges t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r247 | waseemi lahi | 2008−12−10 18 : 07 : 40 −0500 (Wed, 10 Dec 2008) | 1 l i n e

I th ink output . t x t f i l e ( ) needs to g ive a va l i d f i l ename along with the s t r i n g .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r246 | waseemi lahi | 2008−12−10 17 : 56 : 44 −0500 (Wed, 10 Dec 2008) | 1 l i n e

output . t x t f i l e ( ) outputs a s t r i n g to the f i l e with extens i on . txt , i f the
f i l e a l r eady ex i s t s , i t t runca t e s i t and i f i t doesn ’ t then i t c r e a t e s i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r245 | waseemi lahi | 2008−12−10 17 : 33 : 11 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Need to f l u s h the out channe l and c l o s e i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r244 | waseemi lahi | 2008−12−10 16 : 53 : 15 −0500 (Wed, 10 Dec 2008) | 1 l i n e

The check f o r f i l e ex t ens i on added ( I don ’ t know i f we need i t f o r Linux , but
windoes ca r e s about ex t en s i on s ) . output . t x t f i l e ( . . ) should only care about . txt f i l e s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r243 | benwar f i e ld | 2008−12−10 16 : 47 : 09 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Made c l i p s ex i s t , and pr i n t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r242 | benwar f i e ld | 2008−12−10 16 : 46 : 20 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Commented out u s e l e s s ext ra p r i n t s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r241 | waseemi lahi | 2008−12−10 16 : 18 : 20 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Added a new token OUTPUT. Changed ast , scanner and par s e r to accomodate f o r
output . t x t f i l e format . Haven ’ t yet f i n i s h e d with the output func t i on yet .
For now i t only c r e a t e s /opens a f i l e to wr i t e to i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r240 | benwar f i e ld | 2008−12−10 15 : 42 : 49 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Squashed s h i f t −reduce i s s u e s with l e f t −arrow .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r239 | thierrybm@hotmail . com | 2008−12−10 15 : 37 : 43 −0500 (Wed, 10 Dec 2008) | 1 l i n e

we can c r ea t e empty c l i p s o f g iven s i z e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r238 | benwar f i e ld | 2008−12−10 15 : 32 : 00 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Refactored method c a l l s to use e v a l a r g l i s t ( and f i x ed a typo ) .

72



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r237 | benwar f i e ld | 2008−12−10 15 : 25 : 25 −0500 (Wed, 10 Dec 2008) | 1 l i n e

Refactored func t i on c a l l s to use e v a l a r g l i s t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r236 | robstewart2 | 2008−12−10 15 : 13 : 27 −0500 (Wed, 10 Dec 2008) | 1 l i n e

added In s t rAs s i gn exp r e s s i on s back in
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r235 | thierrybm@hotmail . com | 2008−12−10 14 : 53 : 26 −0500 (Wed, 10 Dec 2008) | 1 l i n e

minor
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r234 | robstewart2 | 2008−12−10 14 : 51 : 49 −0500 (Wed, 10 Dec 2008) | 1 l i n e

added note to RefManual ERRATA about instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r233 | thierrybm@hotmail . com | 2008−12−10 14 : 50 : 42 −0500 (Wed, 10 Dec 2008) | 1 l i n e

now intruments ( ) c a l l the d e f au l t instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r232 | robstewart2 | 2008−12−10 14 : 27 : 06 −0500 (Wed, 10 Dec 2008) | 1 l i n e

changed In s t rAs s i gn to In s t rDe f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r231 | thierrybm@hotmail . com | 2008−12−10 13 : 50 : 17 −0500 (Wed, 10 Dec 2008) | 1 l i n e

added Ben ’ s gcd example to the t e s t s u i t e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r230 | thierrybm@hotmail . com | 2008−12−09 17 : 45 : 34 −0500 (Tue , 09 Dec 2008) | 1 l i n e

minor , comments added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r229 | thierrybm@hotmail . com | 2008−12−09 17 : 41 : 02 −0500 (Tue , 09 Dec 2008) | 1 l i n e

minor modif to instrument pos funct i ons , b e t t e r except ion catch ing
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r228 | thierrybm@hotmail . com | 2008−12−09 17 : 38 : 37 −0500 (Tue , 09 Dec 2008) | 1 l i n e

func t i on ge t in s t rument pos works , damn you ocaml syntax that made us l o s e an hour on t h i s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r227 | thierrybm@hotmail . com | 2008−12−09 12 : 29 : 56 −0500 (Tue , 09 Dec 2008) | 1 l i n e

major change f o r instruments , now an ass ignment to handle env , pas s e s b a s i c s t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r226 | thierrybm@hotmail . com | 2008−12−09 11 : 48 : 06 −0500 (Tue , 09 Dec 2008) | 1 l i n e

3 ba s i c t e s t s f o r instruments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73



r225 | benwar f i e ld | 2008−12−08 18 : 55 : 56 −0500 (Mon, 08 Dec 2008) | 1 l i n e

Created examples d i r e c to ry , with working GCD in i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r224 | robstewart2 | 2008−12−08 18 : 38 : 24 −0500 (Mon, 08 Dec 2008) | 1 l i n e

instrument d e f i n i t i o n i s done . c l i p i s in p rog r e s s and commented out
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r223 | thierrybm@hotmail . com | 2008−12−04 11 : 49 : 35 −0500 (Thu , 04 Dec 2008) | 1 l i n e

more i n f o on the type o f whitespace encountered in debug mode
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r222 | robstewart2 | 2008−12−03 17 : 47 : 39 −0500 (Wed, 03 Dec 2008) | 1 l i n e

f i x ed pattern7 . d r u l t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r221 | thierrybm@hotmail . com | 2008−12−03 17 : 46 : 02 −0500 (Wed, 03 Dec 2008) | 1 l i n e

one t e s t f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r220 | robstewart2 | 2008−12−03 17 : 44 : 28 −0500 (Wed, 03 Dec 2008) | 1 l i n e

f i x ed pattern9 . d ru l t e s t ou t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r219 | thierrybm@hotmail . com | 2008−12−03 17 : 42 : 06 −0500 (Wed, 03 Dec 2008) | 1 l i n e

removed u s e l e s s comment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r218 | thierrybm@hotmail . com | 2008−12−03 17 : 40 : 07 −0500 (Wed, 03 Dec 2008) | 1 l i n e

one t e s t f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r217 | thierrybm@hotmail . com | 2008−12−03 17 : 39 : 14 −0500 (Wed, 03 Dec 2008) | 1 l i n e

smal l a s s e r t added about mapper names
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r216 | benwar f i e ld | 2008−12−03 17 : 31 : 42 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Updated precedence o f method c a l l s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r215 | thierrybm@hotmail . com | 2008−12−03 17 : 24 : 19 −0500 (Wed, 03 Dec 2008) | 1 l i n e

one t e s t f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r214 | thierrybm@hotmail . com | 2008−12−03 17 : 19 : 16 −0500 (Wed, 03 Dec 2008) | 1 l i n e

one t e s t f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r213 | benwar f i e ld | 2008−12−03 17 : 12 : 12 −0500 (Wed, 03 Dec 2008) | 1 l i n e

74



Changed p r i n t i n g output o f beats , and updated t e s t s a c co rd ing ly .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r212 | thierrybm@hotmail . com | 2008−12−03 17 : 07 : 18 −0500 (Wed, 03 Dec 2008) | 1 l i n e

merged with Ben update
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r211 | benwar f i e ld | 2008−12−03 17 : 07 : 05 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Patched svn : i gno re on RefManual .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r210 | robstewart2 | 2008−12−03 17 : 05 : 34 −0500 (Wed, 03 Dec 2008) | 1 l i n e

f o r g o t to add the rand t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r209 | robstewart2 | 2008−12−03 17 : 04 : 44 −0500 (Wed, 03 Dec 2008) | 1 l i n e

added the rand func t i on and t e s t s f o r i t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r208 | benwar f i e ld | 2008−12−03 17 : 03 : 07 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Added svn : i gnor e property to Proposal d i r e c t o r y .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r207 | benwar f i e ld | 2008−12−03 16 : 57 : 29 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Beat methods ( note , r e s t , prev , next ) and s imple t e s t s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r206 | thierrybm@hotmail . com | 2008−12−03 16 : 54 : 08 −0500 (Wed, 03 Dec 2008) | 1 l i n e

named mapper works with d o l l a r s igns , but not with other a l i a s e s l i k e ’p ’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r205 | benwar f i e ld | 2008−12−03 16 : 23 : 45 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Pr in t ing f o r Beats ( with t e s t s ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r204 | robstewart2 | 2008−12−03 16 : 01 : 04 −0500 (Wed, 03 Dec 2008) | 1 l i n e

added t e s t ca s e s f o r the s l i c e func t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r203 | benwar f i e ld | 2008−12−03 15 : 59 : 42 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Allow acc e s s to Beat ob j e c t s i n s i d e map b locks .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r202 | thierrybm@hotmail . com | 2008−12−03 15 : 44 : 55 −0500 (Wed, 03 Dec 2008) | 1 l i n e

checks i f we try to a s s i gn Beat or PatternAl ias , and say something s tup id about i t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r201 | thierrybm@hotmail . com | 2008−12−03 15 : 23 : 49 −0500 (Wed, 03 Dec 2008) | 1 l i n e

75



<<<<<< removed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r200 | benwar f i e ld | 2008−12−03 15 : 19 : 23 −0500 (Wed, 03 Dec 2008) | 1 l i n e

Quashed warning in t e s t . ml .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r199 | thierrybm@hotmail . com | 2008−12−03 15 : 16 : 52 −0500 (Wed, 03 Dec 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r198 | waseemi lahi | 2008−11−30 21 : 58 : 20 −0500 (Sun , 30 Nov 2008) | 1 l i n e

S l i c e method updated .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r197 | waseemi lahi | 2008−11−27 00 : 17 : 40 −0500 (Thu , 27 Nov 2008) | 1 l i n e

Some Tests ed i t t ed f o r e r r o r s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r196 | waseemi lahi | 2008−11−26 23 : 56 : 56 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Not Much
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r195 | waseemi lahi | 2008−11−26 23 : 51 : 50 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Sp e l l i n g Cor r e c t i ons in the Header Comments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r194 | thierrybm@hotmail . com | 2008−11−26 19 : 27 : 27 −0500 (Wed, 26 Nov 2008) | 1 l i n e

more comments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r193 | thierrybm@hotmail . com | 2008−11−26 19 : 16 : 50 −0500 (Wed, 26 Nov 2008) | 1 l i n e

comments
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r192 | thierrybm@hotmail . com | 2008−11−26 18 : 39 : 08 −0500 (Wed, 26 Nov 2008) | 1 l i n e

s p e c i f i c except ion created f o r i l l e g a l ass ignment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r191 | thierrybm@hotmail . com | 2008−11−26 18 : 35 : 55 −0500 (Wed, 26 Nov 2008) | 1 l i n e

check at runtime f o r ass ignment o f s t r i n g and boolean
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r190 | thierrybm@hotmail . com | 2008−11−26 18 : 25 : 27 −0500 (Wed, 26 Nov 2008) | 1 l i n e

concat t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r189 | thierrybm@hotmail . com | 2008−11−26 18 : 24 : 41 −0500 (Wed, 26 Nov 2008) | 1 l i n e

concat t e s t s

76



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r188 | benwar f i e ld | 2008−11−26 15 : 33 : 49 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Dynamic scoping , and minor mod i f i c a t i on s to make beats work .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r187 | thierrybm@hotmail . com | 2008−11−26 15 : 14 : 20 −0500 (Wed, 26 Nov 2008) | 1 l i n e

one comment added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r186 | benwar f i e ld | 2008−11−26 15 : 13 : 02 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Made ” return ” work , and t e s t ed i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r185 | benwar f i e ld | 2008−11−26 15 : 12 : 10 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Noted scope s t u f f .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r184 | thierrybm@hotmail . com | 2008−11−26 14 : 46 : 18 −0500 (Wed, 26 Nov 2008) | 1 l i n e

some commenting added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r183 | thierrybm@hotmail . com | 2008−11−26 14 : 43 : 36 −0500 (Wed, 26 Nov 2008) | 1 l i n e

some commenting added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r182 | benwar f i e ld | 2008−11−26 14 : 37 : 08 −0500 (Wed, 26 Nov 2008) | 1 l i n e

Whitespace and comment changes .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r181 | thierrybm@hotmail . com | 2008−11−26 14 : 00 : 32 −0500 (Wed, 26 Nov 2008) | 1 l i n e

more t e s t s f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r180 | thierrybm@hotmail . com | 2008−11−26 13 : 57 : 58 −0500 (Wed, 26 Nov 2008) | 1 l i n e

syntax o f some t e s t s updated , so lved most o f pa r s e r e r r o r s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r179 | thierrybm@hotmail . com | 2008−11−26 13 : 53 : 28 −0500 (Wed, 26 Nov 2008) | 1 l i n e

one t e s t c o r r e c t ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r178 | benwar f i e ld | 2008−11−26 03 : 15 : 22 −0500 (Wed, 26 Nov 2008) | 1 l i n e

One s imple t e s t f o r map expr e s s i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r177 | benwar f i e ld | 2008−11−26 02 : 59 : 02 −0500 (Wed, 26 Nov 2008) | 3 l i n e s

Fin i shed f i x e s r e l a t i n g to map scope entry , i n c l ud ing f i n a l l y f i g u r i n g out how to
c r e a t e the symbol t ab l e type we wanted in the f i r s t p lace . In t eg ra t ed changes back

77



i n to main i n t e r p r e t e r codebase and de l e t ed branch f i l e .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r176 | robstewart2 | 2008−11−24 18 : 20 : 19 −0500 (Mon, 24 Nov 2008) | 1 l i n e

added concat and s l i c e to the i n t e p r e t e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r175 | thierrybm@hotmail . com | 2008−11−24 18 : 01 : 05 −0500 (Mon, 24 Nov 2008) | 1 l i n e

Ben , t h i s i s f o r you , I cannot f i x the e v a l a r g l i s t , I ’ ve c rea ted two dummy
funct i ons , s t i l l doesnt compi le . . . . but we ’ re almost the re
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r174 | thierrybm@hotmail . com | 2008−11−24 17 : 46 : 49 −0500 (Mon, 24 Nov 2008) | 1 l i n e

map may be solved , s ee func t i on e v a l a r g l i s t , but s t i l l does not compi le
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r173 | benwar f i e ld | 2008−11−24 17 : 23 : 54 −0500 (Mon, 24 Nov 2008) | 1 l i n e

BROKEN but Thierry w i l l f i x i t−−f u r t h e r work toward mapCall exp r e s s i on eva lua t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r172 | waseemi lahi | 2008−11−20 22 : 10 : 55 −0500 (Thu , 20 Nov 2008) | 1 l i n e

Repeat with argument value < 1 now r a i s e s except ion f o r i n v a l i d argument
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r171 | waseemi lahi | 2008−11−20 22 : 00 : 09 −0500 (Thu , 20 Nov 2008) | 1 l i n e

pattern ( ) i s now accepted . I t s a pattern o f nothing
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r170 | waseemi lahi | 2008−11−20 21 : 37 : 49 −0500 (Thu , 20 Nov 2008) | 1 l i n e

Length member method done
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r169 | waseemi lahi | 2008−11−20 20 : 31 : 43 −0500 (Thu , 20 Nov 2008) | 1 l i n e

repeat member method f i n i s h e d
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r168 | benwar f i e ld | 2008−11−20 19 : 17 : 32 −0500 (Thu , 20 Nov 2008) | 2 l i n e s

Helper f unc t i on s f o r i n i t i a l i z i n g new symbol t ab l e when en t e r i ng
new mapper scope .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r167 | robstewart2 | 2008−11−20 18 : 39 : 59 −0500 (Thu , 20 Nov 2008) | 1 l i n e

added repeat method handl ing to i n t e r p r e t e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r166 | thierrybm@hotmail . com | 2008−11−20 18 : 18 : 26 −0500 (Thu , 20 Nov 2008) | 1 l i n e

method c a l l now i s l e f t a s s o c i a t i v e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r165 | benwar f i e ld | 2008−11−20 18 : 00 : 40 −0500 (Thu , 20 Nov 2008) | 1 l i n e

78



Upgraded patterns , and added mapper c r e a t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r164 | thierrybm@hotmail . com | 2008−11−20 17 : 57 : 34 −0500 (Thu , 20 Nov 2008) | 1 l i n e

so lved s h i f t r e du c e c o n f l i c t on mcal l by adding r i g h t a dd i t i v i t y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r163 | thierrybm@hotmail . com | 2008−11−20 17 : 29 : 53 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r162 | thierrybm@hotmail . com | 2008−11−20 17 : 26 : 52 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r161 | thierrybm@hotmail . com | 2008−11−20 17 : 17 : 29 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r160 | thierrybm@hotmail . com | 2008−11−20 17 : 09 : 52 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r159 | thierrybm@hotmail . com | 2008−11−20 17 : 03 : 08 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r158 | benwar f i e ld | 2008−11−20 17 : 03 : 06 −0500 (Thu , 20 Nov 2008) | 1 l i n e

Broke func t i on c a l l s out in to t h e i r own funct ion , and added a trap f o r i n v a l i d ones .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r157 | thierrybm@hotmail . com | 2008−11−20 16 : 56 : 45 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r156 | thierrybm@hotmail . com | 2008−11−20 16 : 50 : 52 −0500 (Thu , 20 Nov 2008) | 1 l i n e

more fu tu r e t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r155 | waseemi lahi | 2008−11−20 16 : 38 : 57 −0500 (Thu , 20 Nov 2008) | 1 l i n e

Added Basic Patterns
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r154 | thierrybm@hotmail . com | 2008−11−20 14 : 16 : 29 −0500 (Thu , 20 Nov 2008) | 1 l i n e

removeing u s e l e s s f i l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r153 | thierrybm@hotmail . com | 2008−11−20 14 : 15 : 53 −0500 (Thu , 20 Nov 2008) | 1 l i n e

79



minor changes
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r152 | benwar f i e ld | 2008−11−20 00 : 00 : 55 −0500 (Thu , 20 Nov 2008) | 1 l i n e

Fixed s t r i ng−escape bug−−t e s t now pas s e s !
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r151 | waseemi lahi | 2008−11−19 22 : 44 : 07 −0500 (Wed, 19 Nov 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r150 | benwar f i e ld | 2008−11−19 18 : 45 : 28 −0500 (Wed, 19 Nov 2008) | 1 l i n e

Var iab le ass ignment ! ! !
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r149 | benwar f i e ld | 2008−11−19 18 : 09 : 48 −0500 (Wed, 19 Nov 2008) | 1 l i n e

Added i f / e l s e i f / e l s e to i n t e r p r e t e r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r148 | thierrybm@hotmail . com | 2008−11−19 18 : 02 : 58 −0500 (Wed, 19 Nov 2008) | 1 l i n e

a l l t e s t s pass , p re t ty good par s e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r147 | thierrybm@hotmail . com | 2008−11−19 17 : 43 : 22 −0500 (Wed, 19 Nov 2008) | 1 l i n e

par s e r k i ck s a∗∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r146 | benwar f i e ld | 2008−11−19 17 : 42 : 36 −0500 (Wed, 19 Nov 2008) | 1 l i n e

I n t e r p r e t e r now supports a l l b inary and unary ope ra t i on s ( t e s t s inc luded ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r145 | thierrybm@hotmail . com | 2008−11−19 17 : 34 : 39 −0500 (Wed, 19 Nov 2008) | 1 l i n e

smal l updates
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r144 | thierrybm@hotmail . com | 2008−11−19 17 : 23 : 31 −0500 (Wed, 19 Nov 2008) | 1 l i n e

update t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r143 | thierrybm@hotmail . com | 2008−11−19 17 : 21 : 08 −0500 (Wed, 19 Nov 2008) | 1 l i n e

update t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r142 | thierrybm@hotmail . com | 2008−11−19 17 : 19 : 09 −0500 (Wed, 19 Nov 2008) | 1 l i n e

one more t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r141 | robstewart2 | 2008−11−19 17 : 08 : 20 −0500 (Wed, 19 Nov 2008) | 1 l i n e

the i n t e r p r e t e r can eva luate i n t a r i thmet i c and pr in t i t

80



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r140 | thierrybm@hotmail . com | 2008−11−19 17 : 07 : 37 −0500 (Wed, 19 Nov 2008) | 1 l i n e

be t t e r random
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r139 | thierrybm@hotmail . com | 2008−11−19 17 : 04 : 00 −0500 (Wed, 19 Nov 2008) | 1 l i n e

one more t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r138 | thierrybm@hotmail . com | 2008−11−19 16 : 54 : 08 −0500 (Wed, 19 Nov 2008) | 1 l i n e

be t t e r parser , everyth ing except i f e l s e . . . seems to work
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r137 | thierrybm@hotmail . com | 2008−11−19 16 : 35 : 29 −0500 (Wed, 19 Nov 2008) | 1 l i n e

added stup id s t u f f : )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r136 | benwar f i e ld | 2008−11−19 16 : 20 : 08 −0500 (Wed, 19 Nov 2008) | 1 l i n e

Added environment to execut ion r ou t i n e s as ( stringmap , parent ) pa i r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r135 | thierrybm@hotmail . com | 2008−11−19 16 : 18 : 55 −0500 (Wed, 19 Nov 2008) | 1 l i n e

a . b ( ) and a . b( a ) ca s e s are parsed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r134 | thierrybm@hotmail . com | 2008−11−19 16 : 14 : 46 −0500 (Wed, 19 Nov 2008) | 1 l i n e

a . b case i s parsed , now need to work or dec ide on a . b ( )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r133 | thierrybm@hotmail . com | 2008−11−19 15 : 46 : 08 −0500 (Wed, 19 Nov 2008) | 1 l i n e

be t t e r working LaunchTests , handle stdout and s tde r r , s t d e r r assumed always at the end
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r132 | thierrybm@hotmail . com | 2008−11−19 15 : 38 : 55 −0500 (Wed, 19 Nov 2008) | 1 l i n e

make f i l e now c r e a t e s i n t e r p r e t e r by de f au l t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r131 | benwar f i e ld | 2008−11−19 15 : 32 : 37 −0500 (Wed, 19 Nov 2008) | 2 l i n e s

Added p r i n t i n g o f numbers and booleans , added those to the p r i n t i n g te s t ,
added a f a i l i n g t e s t f o r \\ and \” , and updated svn : i gno re to i gnore l o g s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r130 | thierrybm@hotmail . com | 2008−11−19 15 : 21 : 14 −0500 (Wed, 19 Nov 2008) | 1 l i n e

more r e a l t e s t s l i k e h e l l o world
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r129 | benwar f i e ld | 2008−11−19 15 : 15 : 31 −0500 (Wed, 19 Nov 2008) | 1 l i n e

Turned o f f scanner debugging .

81



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r128 | thierrybm@hotmail . com | 2008−11−19 15 : 11 : 20 −0500 (Wed, 19 Nov 2008) | 1 l i n e

Launching t e s t updated to reach program i n t e r p r e t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r127 | thierrybm@hotmail . com | 2008−11−19 14 : 06 : 22 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r126 | thierrybm@hotmail . com | 2008−11−19 14 : 02 : 41 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r125 | thierrybm@hotmail . com | 2008−11−19 13 : 58 : 41 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r124 | thierrybm@hotmail . com | 2008−11−19 13 : 23 : 29 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r123 | thierrybm@hotmail . com | 2008−11−19 13 : 18 : 20 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s , c o r r e c t the prev ious wrong ex t en s i on s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r122 | thierrybm@hotmail . com | 2008−11−19 13 : 16 : 13 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r121 | thierrybm@hotmail . com | 2008−11−19 13 : 11 : 36 −0500 (Wed, 19 Nov 2008) | 1 l i n e

new par s e r t e s t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r120 | robstewart2 | 2008−11−12 18 : 44 : 55 −0500 (Wed, 12 Nov 2008) | 1 l i n e

i n t e r p r e t e r works f o r p r i n t i n g
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r119 | robstewart2 | 2008−11−12 18 : 23 : 51 −0500 (Wed, 12 Nov 2008) | 1 l i n e

i n t e r p r e t e r s t i l l doesn ’ t work . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r118 | robstewart2 | 2008−11−12 18 : 22 : 07 −0500 (Wed, 12 Nov 2008) | 1 l i n e

i n t e r p r e t e r s t i l l doesn ’ t work . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r117 | benwar f i e ld | 2008−11−12 17 : 47 : 19 −0500 (Wed, 12 Nov 2008) | 1 l i n e

Added t e s t s from par s e r development s i d e ( three pass , one f a i l s ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

82



r116 | benwar f i e ld | 2008−11−12 17 : 38 : 52 −0500 (Wed, 12 Nov 2008) | 1 l i n e

Escape f o r paths with spaces ( a c t ua l l y by Thierry , but on my computer ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r115 | thierrybm@hotmail . com | 2008−11−12 17 : 38 : 46 −0500 (Wed, 12 Nov 2008) | 1 l i n e

new dru l t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r114 | thierrybm@hotmail . com | 2008−11−12 17 : 30 : 56 −0500 (Wed, 12 Nov 2008) | 1 l i n e

new dru l t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r113 | thierrybm@hotmail . com | 2008−11−12 17 : 26 : 36 −0500 (Wed, 12 Nov 2008) | 1 l i n e

new dru l t e s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r112 | thierrybm@hotmail . com | 2008−11−12 17 : 23 : 47 −0500 (Wed, 12 Nov 2008) | 1 l i n e

t e s t i f t e s t i n g program can be found
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r111 | thierrybm@hotmail . com | 2008−11−12 17 : 20 : 16 −0500 (Wed, 12 Nov 2008) | 1 l i n e

program to t e s t par s e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r110 | benwar f i e ld | 2008−11−12 17 : 19 : 27 −0500 (Wed, 12 Nov 2008) | 1 l i n e

Added support f o r end o f f i l e during a comment .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r109 | thierrybm@hotmail . com | 2008−11−12 17 : 18 : 36 −0500 (Wed, 12 Nov 2008) | 1 l i n e

yeah ! f i nd i n g bugs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r108 | benwar f i e ld | 2008−11−12 17 : 15 : 44 −0500 (Wed, 12 Nov 2008) | 1 l i n e

Updated svn : i gno re property to make s t a tu s output l e s s annoying .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r107 | benwar f i e ld | 2008−11−12 17 : 14 : 22 −0500 (Wed, 12 Nov 2008) | 1 l i n e

Detabbed parser , and added i f / e l s e i f / e l s e support to par s e r and p r i n t e r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r106 | thierrybm@hotmail . com | 2008−11−12 17 : 13 : 07 −0500 (Wed, 12 Nov 2008) | 1 l i n e

debugging par s e r t e s t i n g
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r105 | thierrybm@hotmail . com | 2008−11−12 17 : 05 : 10 −0500 (Wed, 12 Nov 2008) | 1 l i n e

t e s t e r f o r par s e r seems to work
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r104 | thierrybm@hotmail . com | 2008−11−12 16 : 37 : 20 −0500 (Wed, 12 Nov 2008) | 1 l i n e

83



remove u s e l e s s f i l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r103 | thierrybm@hotmail . com | 2008−11−12 16 : 37 : 08 −0500 (Wed, 12 Nov 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r102 | thierrybm@hotmail . com | 2008−11−12 16 : 27 : 08 −0500 (Wed, 12 Nov 2008) | 1 l i n e

to t e s t the parser , use with . / t e s t i n g
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r101 | robstewart2 | 2008−11−11 16 : 04 : 29 −0500 (Tue , 11 Nov 2008) | 1 l i n e

added the i n t e r p r e t e r . not done . haven ’ t even compiled i t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r100 | benwar f i e ld | 2008−11−11 15 : 56 : 46 −0500 (Tue , 11 Nov 2008) | 2 l i n e s

Fixed a bug r e s u l t i n g from change from l e f t −r e cu r s i on to r ight−r e cu r s i on in
e x p r l i s t r u l e .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r99 | benwar f i e ld | 2008−11−11 15 : 41 : 24 −0500 (Tue , 11 Nov 2008) | 1 l i n e

Added ugly−p r i n t e r f o r very s imple syntax t r e e s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r98 | thierrybm@hotmail . com | 2008−11−11 14 : 52 : 27 −0500 (Tue , 11 Nov 2008) | 1 l i n e

t e s t s u i t e ready
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r97 | thierrybm@hotmail . com | 2008−11−11 14 : 29 : 18 −0500 (Tue , 11 Nov 2008) | 1 l i n e

be t t e r t e s t i n g func t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r96 | benwar f i e ld | 2008−11−11 14 : 22 : 34 −0500 (Tue , 11 Nov 2008) | 1 l i n e

Added eol−s t y l e property to a couple f i l e s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r95 | benwar f i e ld | 2008−11−11 14 : 09 : 41 −0500 (Tue , 11 Nov 2008) | 2 l i n e s

Resolved e x p r l i s t problem by making i t comma−separated , and added e r r a t a f i l e
to RefManual f o l d e r to note such changes .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r94 | benwar f i e ld | 2008−11−11 13 : 50 : 52 −0500 (Tue , 11 Nov 2008) | 1 l i n e

Made escap ing a backs la sh in a s t r i n g constant work .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r93 | waseemi lahi | 2008−11−10 22 : 28 : 55 −0500 (Mon, 10 Nov 2008) | 1 l i n e

Example code from refmanual used f o r debuging
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84



r92 | benwar f i e ld | 2008−11−10 16 : 22 : 45 −0500 (Mon, 10 Nov 2008) | 3 l i n e s

Added ”map” exp r e s s i on s to parser , and modi f i ed AST s l i g h t l y to r e f l e c t the
f a c t that we do not have the parameter in fo rmat ion f o r a mapper a v a i l a b l e in
the par s e r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r91 | benwar f i e ld | 2008−11−10 15 : 32 : 49 −0500 (Mon, 10 Nov 2008) | 1 l i n e

Made ” block ” r e v e r s e i t s statement l i s t , so i f / e l s e /mapper need not do i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r90 | benwar f i e ld | 2008−11−10 15 : 24 : 36 −0500 (Mon, 10 Nov 2008) | 2 l i n e s

Added support f o r ” e l s e ” , and d i s cove r ed s e v e r a l s h i f t −reduce c o n f l i c t s in
the grammar as cu r r en t l y s p e c i f i e d .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r89 | benwar f i e ld | 2008−11−10 14 : 09 : 37 −0500 (Mon, 10 Nov 2008) | 3 l i n e s

Added a l e v e l o f i n d i r e c t i o n f o r statement l i s t s (woohoo ! ) , and added
assignment and mapper d e f i n i t i o n statements , as we l l as i f −block , to
statement d e f i n i t i o n . No handl ing o f ” e l s e ” token yet .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r88 | benwar f i e ld | 2008−11−08 23 : 35 : 18 −0500 ( Sat , 08 Nov 2008) | 4 l i n e s

Added t e s t i n g program to a c tua l l y parse input and see i f i t conta in s va l i d
DruL code . Many mod i f i c a t i on s to scanner to make t h i s f l y , p lus adding
s t r i n g and boolean cons tant s to the AST and the parser , and making the base
case f o r the par s e r ( empty program ) work .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r87 | thierrybm@hotmail . com | 2008−11−08 19 : 52 : 14 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

adding f o l d e r s f o r t e s t s u i t e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r86 | benwar f i e ld | 2008−11−08 18 : 33 : 29 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Squished warning in scanner .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r85 | benwar f i e ld | 2008−11−08 18 : 31 : 21 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Reappl ied a c c i d e n t a l l y backed−out bug f i x e s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r84 | robstewart2 | 2008−11−08 18 : 26 : 51 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

kept my changes , not bens
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r83 | benwar f i e ld | 2008−11−08 18 : 18 : 58 −0500 ( Sat , 08 Nov 2008) | 2 l i n e s

Added Make f i l e with appropr ia t e dependenc ies to bu i ld everyth ing as f a r as i t
i s so f a r p o s s i b l e to bu i ld i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85



r82 | benwar f i e ld | 2008−11−08 18 : 18 : 30 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Added import o f Parser module , and f i x ed i d e n t i f i e r −too−long e r r o r message .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r81 | benwar f i e ld | 2008−11−08 18 : 00 : 11 −0500 ( Sat , 08 Nov 2008) | 2 l i n e s

Moved AST and Scanner to Parser d i r e c to ry , and f i x ed a couple o f bugs in the
Parser , which now compi le s a l l the way to an ob j e c t f i l e .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r80 | benwar f i e ld | 2008−11−08 17 : 28 : 29 −0500 ( Sat , 08 Nov 2008) | 2 l i n e s

Fixed syntax e r r o r and added support f o r statements and f o r c a l l i n g f unc t i on s
o f one parameter . Like ” p r i n t ” . Hypothe t i ca l l y speaking .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r79 | benwar f i e ld | 2008−11−08 17 : 12 : 29 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Operator precedence and s imple exp r e s s i on s added to par s e r .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r78 | benwar f i e ld | 2008−11−08 16 : 35 : 23 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Removed blank l i n e s and detabbed .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r77 | benwar f i e ld | 2008−11−08 16 : 31 : 02 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Fixed l i n e−ending i s s u e s on par s e r / scanner .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r76 | benwar f i e ld | 2008−11−08 16 : 28 : 47 −0500 ( Sat , 08 Nov 2008) | 1 l i n e

Fixed problem with c i r c u l a r dependency in d e f i n i t i o n s o f stmt/ expr /mapper .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r75 | benwar f i e ld | 2008−11−05 22 : 09 : 25 −0500 (Wed, 05 Nov 2008) | 1 l i n e

Fixed a couple more minor i s s u e s , but not the big one .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r74 | benwar f i e ld | 2008−11−05 22 : 08 : 04 −0500 (Wed, 05 Nov 2008) | 1 l i n e

Fixed some , but not a l l , o f the c i r c u l a r i t y problems in our AST d e f i n i t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r73 | benwar f i e ld | 2008−11−05 22 : 00 : 42 −0500 (Wed, 05 Nov 2008) | 1 l i n e

Line−endings , tab expansion , and name con s i s t ency ( arithOp/ intOp ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r72 | waseemi lahi | 2008−11−05 21 : 32 : 11 −0500 (Wed, 05 Nov 2008) | 1 l i n e

Minor change towards g e t t i n g p r a c t i c a l scanner f o r DruL
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r71 | benwar f i e ld | 2008−11−05 18 : 11 : 40 −0500 (Wed, 05 Nov 2008) | 1 l i n e

Improvements to AST.

86



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r70 | waseemi lahi | 2008−11−03 18 : 14 : 48 −0500 (Mon, 03 Nov 2008) | 1 l i n e

dummy par s e r introduced . need tokens to work in the scanner .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r69 | waseemi lahi | 2008−11−03 18 : 11 : 58 −0500 (Mon, 03 Nov 2008) | 1 l i n e

dummy par s e r introduced . need tokens to work in the scanner .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r68 | waseemi lahi | 2008−11−03 09 : 37 : 00 −0500 (Mon, 03 Nov 2008) | 1 l i n e

i d e n t i f i e r i s l e s s than equal to 64 in l ength . Also eo f te rminat ion added .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r67 | waseemi lahi | 2008−11−02 22 : 37 : 06 −0500 (Sun , 02 Nov 2008) | 1 l i n e

some changes done to scanner . S t i l l working on the ba s i c s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r66 | waseemi lahi | 2008−10−24 11 : 07 : 19 −0400 ( Fri , 24 Oct 2008) | 1 l i n e

nu l l removed in scanner
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r65 | benwar f i e ld | 2008−10−22 17 : 50 : 47 −0400 (Wed, 22 Oct 2008) | 1 l i n e

T r i v i a l usage change .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r64 | thierrybm@hotmail . com | 2008−10−22 17 : 50 : 33 −0400 (Wed, 22 Oct 2008) | 1 l i n e

date f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r63 | thierrybm@hotmail . com | 2008−10−22 17 : 48 : 03 −0400 (Wed, 22 Oct 2008) | 1 l i n e

more on output . t x t f i l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r62 | thierrybm@hotmail . com | 2008−10−22 17 : 34 : 08 −0400 (Wed, 22 Oct 2008) | 1 l i n e

one t e x t i t removed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r61 | thierrybm@hotmail . com | 2008−10−22 17 : 32 : 44 −0400 (Wed, 22 Oct 2008) | 1 l i n e

empty pattern returned
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r60 | benwar f i e ld | 2008−10−22 17 : 29 : 53 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Reformatted example code .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r59 | thierrybm@hotmail . com | 2008−10−22 17 : 24 : 52 −0400 (Wed, 22 Oct 2008) | 1 l i n e

typo in date f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

87



r58 | thierrybm@hotmail . com | 2008−10−22 17 : 24 : 32 −0400 (Wed, 22 Oct 2008) | 1 l i n e

date f i x ed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r57 | benwar f i e ld | 2008−10−22 17 : 14 : 08 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Tweaked comment d e f i n i t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r56 | thierrybm@hotmail . com | 2008−10−22 17 : 13 : 59 −0400 (Wed, 22 Oct 2008) | 1 l i n e

j u s t to be sure
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r55 | benwar f i e ld | 2008−10−22 17 : 08 : 34 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Parenthes i zed example p r i n t statements , and removed newl ine cha ra c t e r s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r54 | thierrybm@hotmail . com | 2008−10−22 17 : 07 : 04 −0400 (Wed, 22 Oct 2008) | 1 l i n e

one l i n e added to the p r i n t subs e c t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r53 | thierrybm@hotmail . com | 2008−10−22 16 : 58 : 37 −0400 (Wed, 22 Oct 2008) | 1 l i n e

( ) added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r52 | thierrybm@hotmail . com | 2008−10−22 16 : 54 : 27 −0400 (Wed, 22 Oct 2008) | 1 l i n e

be t t e r output
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r51 | benwar f i e ld | 2008−10−22 16 : 49 : 51 −0400 (Wed, 22 Oct 2008) | 2 l i n e s

Added $vars to I d e n t i f i e r s s e c t i on , and changed r e f e r e n c e from Mapper
s e c t i o n to Map s e c t i o n ( s i n c e that s e c t i o n i s more r e l e van t ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r50 | thierrybm@hotmail . com | 2008−10−22 16 : 48 : 42 −0400 (Wed, 22 Oct 2008) | 1 l i n e

nu l l and more on $
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r49 | thierrybm@hotmail . com | 2008−10−22 16 : 44 : 18 −0400 (Wed, 22 Oct 2008) | 1 l i n e

nu l l and more on $
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r48 | thierrybm@hotmail . com | 2008−10−22 16 : 34 : 16 −0400 (Wed, 22 Oct 2008) | 1 l i n e

be t t e r indenta t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r47 | thierrybm@hotmail . com | 2008−10−22 16 : 33 : 35 −0400 (Wed, 22 Oct 2008) | 1 l i n e

s l i c e added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

88



r46 | benwar f i e ld | 2008−10−22 16 : 25 : 53 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Added ”beat ” concept , and removed termina l semico lon from mapper d e f i n i t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r45 | benwar f i e ld | 2008−10−22 15 : 49 : 45 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Resolved a bunch o f d e c l a r e / d e f i n e con fus i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r44 | benwar f i e ld | 2008−10−22 15 : 13 : 25 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Checking in var i ous changes on beha l f o f Rob ( whitespace and ed i t s , l a r g e l y ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r43 | thierrybm@hotmail . com | 2008−10−22 13 : 50 : 08 −0400 (Wed, 22 Oct 2008) | 1 l i n e

$ added in the example
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r42 | thierrybm@hotmail . com | 2008−10−22 13 : 34 : 14 −0400 (Wed, 22 Oct 2008) | 1 l i n e

smal l typos and $ s i gn in anonymous mappers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r41 | waseemi lahi | 2008−10−22 09 : 25 : 03 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Made a f o l d e r f o r AST.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r40 | waseemi lahi | 2008−10−22 09 : 14 : 40 −0400 (Wed, 22 Oct 2008) | 1 l i n e

I did add semico lons at the end o f each mapper d e f i n i t i o n . They are
statements and statements end with a semico lon .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r39 | waseemi lahi | 2008−10−22 08 : 55 : 37 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Semicolons added at the end , o f where anonymous mapper i s used , because those
are d e f i n i t e l y ass ignment statements .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r38 | benwar f i e ld | 2008−10−22 01 : 45 : 50 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Typographic cleanup , and minor t ex tua l r e v i s i on , f o r beg inning o f example code .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r37 | benwar f i e ld | 2008−10−22 01 : 43 : 14 −0400 (Wed, 22 Oct 2008) | 1 l i n e

Spruced up expr e s s i on / statement s e c t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r36 | waseemi lahi | 2008−10−21 21 : 27 : 07 −0400 (Tue , 21 Oct 2008) | 1 l i n e

Example Code Added . Some o f the exp lanat ion in example s e c t i o n moved to the
appropr ia te e a r l i e r s e c t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r35 | thierrybm@hotmail . com | 2008−10−20 17 : 50 : 00 −0400 (Mon, 20 Oct 2008) | 1 l i n e

89



namepsace per type
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r34 | thierrybm@hotmail . com | 2008−10−20 17 : 45 : 54 −0400 (Mon, 20 Oct 2008) | 1 l i n e

g r r r r r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r33 | benwar f i e ld | 2008−10−20 17 : 34 : 29 −0400 (Mon, 20 Oct 2008) | 1 l i n e

Spruced up exp r e s s i on s and statements a b i t ( boolean va lue s ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r32 | thierrybm@hotmail . com | 2008−10−20 17 : 24 : 29 −0400 (Mon, 20 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r31 | thierrybm@hotmail . com | 2008−10−20 16 : 44 : 47 −0400 (Mon, 20 Oct 2008) | 1 l i n e

new block scope s e c t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r30 | thierrybm@hotmail . com | 2008−10−20 16 : 25 : 17 −0400 (Mon, 20 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r29 | benwar f i e ld | 2008−10−20 14 : 09 : 17 −0400 (Mon, 20 Oct 2008) | 1 l i n e

Closed scope f o r mappers , s i n g l e namespace f o r i d e n t i f i e r s .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r28 | thierrybm@hotmail . com | 2008−10−20 13 : 26 : 34 −0400 (Mon, 20 Oct 2008) | 1 l i n e

minor changes s e c t i o n 2 .6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r27 | thierrybm@hotmail . com | 2008−10−20 13 : 23 : 30 −0400 (Mon, 20 Oct 2008) | 1 l i n e

minor changes s e c t i o n 2 .6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r26 | thierrybm@hotmail . com | 2008−10−20 13 : 13 : 49 −0400 (Mon, 20 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r25 | thierrybm@hotmail . com | 2008−10−20 12 : 57 : 01 −0400 (Mon, 20 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r24 | robstewart2 | 2008−10−20 12 : 48 : 17 −0400 (Mon, 20 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r23 | benwar f i e ld | 2008−10−20 02 : 30 : 20 −0400 (Mon, 20 Oct 2008) | 1 l i n e

Rather rough d ra f t o f statement / expr e s s i on / block s e c t i o n .

90



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r22 | thierrybm@hotmail . com | 2008−10−19 18 : 05 : 25 −0400 (Sun , 19 Oct 2008) | 1 l i n e

improved map and mapper
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r21 | thierrybm@hotmail . com | 2008−10−19 17 : 44 : 15 −0400 (Sun , 19 Oct 2008) | 1 l i n e

pattern s e c t i o n improved
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r20 | benwar f i e ld | 2008−10−15 17 : 35 : 03 −0400 (Wed, 15 Oct 2008) | 1 l i n e

Set svn : eo l−s t y l e=nat ive
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r19 | benwar f i e ld | 2008−10−15 17 : 34 : 34 −0400 (Wed, 15 Oct 2008) | 1 l i n e

Changes made during meeting ( with whitespace i s s u e s i roned out ) .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r18 | thierrybm@hotmail . com | 2008−10−15 17 : 21 : 40 −0400 (Wed, 15 Oct 2008) | 1 l i n e

i n t r o and examples added from proposa l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r17 | thierrybm@hotmail . com | 2008−10−15 16 : 44 : 45 −0400 (Wed, 15 Oct 2008) | 1 l i n e

i n t r o and examples added from proposa l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r16 | waseemi lahi | 2008−10−15 10 : 29 : 38 −0400 (Wed, 15 Oct 2008) | 1 l i n e

Minor add i t i on to the manual . ( Few typos co r r e c t ed )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r15 | waseemi lahi | 2008−10−15 09 : 40 : 40 −0400 (Wed, 15 Oct 2008) | 4 l i n e s

Some Basic f u n c t i o n a l i t y added .
I am us ing t e s t code i n s i d e l ex to check f o r c e r t a i n
cond i t i on s . After we have the par s e r i t w i l l l ook
qu i t e d i f f e r e n t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r14 | waseemi lahi | 2008−10−15 09 : 20 : 22 −0400 (Wed, 15 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r13 | benwar f i e ld | 2008−10−13 17 : 05 : 47 −0400 (Mon, 13 Oct 2008) | 1 l i n e

Scratch ve r s i on o f AST, by Ben and Rob .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r12 | thierrybm@hotmail . com | 2008−10−13 15 : 31 : 32 −0400 (Mon, 13 Oct 2008) | 1 l i n e

minor
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r11 | thierrybm@hotmail . com | 2008−10−12 15 : 42 : 47 −0400 (Sun , 12 Oct 2008) | 1 l i n e

91



some ba s i c s s t u f f added
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r10 | thierrybm@hotmail . com | 2008−10−11 14 : 35 : 50 −0400 ( Sat , 11 Oct 2008) | 1 l i n e

outputs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r9 | thierrybm@hotmail . com | 2008−10−11 14 : 20 : 10 −0400 ( Sat , 11 Oct 2008) | 1 l i n e

most o f the s e c t i o n s are the re
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r8 | thierrybm@hotmail . com | 2008−10−11 13 : 54 : 22 −0400 ( Sat , 11 Oct 2008) | 1 l i n e

beg inning o f the d r a f t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r7 | thierrybm@hotmail . com | 2008−10−11 13 : 36 : 20 −0400 ( Sat , 11 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r6 | waseemi lahi | 2008−10−09 20 : 39 : 20 −0400 (Thu , 09 Oct 2008) | 2 l i n e s

Di rec to ry f o r scanner added to the p r o j e c t .
Scanner doesn ’ t conta in anything u s e f u l yet .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r5 | waseemi lahi | 2008−10−09 19 : 56 : 57 −0400 (Thu , 09 Oct 2008) | 1 l i n e

The t r a n s f e r o f a l l the f i l e s from old r epo s i t o r y to the cur rent one .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r4 | waseemi lahi | 2008−10−09 19 : 53 : 34 −0400 (Thu , 09 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r3 | waseemi lahi | 2008−10−09 19 : 51 : 39 −0400 (Thu , 09 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r2 | waseemi lahi | 2008−10−09 19 : 47 : 55 −0400 (Thu , 09 Oct 2008) | 1 l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r1 | ( no author ) | 2008−10−08 15 : 23 : 21 −0400 (Wed, 08 Oct 2008) | 1 l i n e

I n i t i a l d i r e c t o r y s t r u c tu r e .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

92



Appendix C

Code Listings

C.1 Language code

C.1.1 drul interpreter.ml

(∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ DruL − Drumming Language
∗
∗ Creation o f R. Stewart , T. Bertin−Mahieux , W. I l a h i and B. Warf ie ld
∗ rs2660 tb2332 wki2001 bbw2108
∗
∗ f o r the c l a s s COMS W4115 : Programming Language and Trans la tors
∗
∗ f i l e : d r u l i n t e r p r e t e r . ml
∗
∗ INTERPRETER
∗
∗ This f i l e conta ins the i n t e r p r e t e r f o r DruL . I t r e c e i v e s an AST
∗ and i n t e r p r e t s the code .
∗ This code i s wr i t t en in OCaml .
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗)

open Dru l a s t
open Drul main
open Drul types

let run p env = match p with
Content ( statements ) −> Random . s e l f i n i t ( ) ; i gno r e ( e x e c l i s t statements env )

let =

93



let unscoped env = { symbols = NameMap. empty ; parent = None} in
let a rg l en = Array . l ength Sys . argv in
let input st ream = i f 1 < a rg l en then open in Sys . argv . ( 1 ) else s td in in
let l e xbu f = Lexing . f rom channel input st ream in
let programAst = Dru l par s e r . program Drul scanner . token l exbu f in
try run programAst unscoped env
with Type error (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ”Type e r r o r on l i n e %d : %s \n” l i n e msg
| I n v a l i d f u n c t i o n (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” Inva l i d func t i on c a l l on l i n e %d : %s \n” l i n e msg
| Pat t e rnPar s e e r r o r (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” Inva l i d pattern s t r i n g on l i n e %d : %s \n” l i n e msg
| Inva l id argument (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” I n c o r r e c t func t i on arguments on l i n e %d : %s \n” l i n e msg
| Unde f i n e d i d e n t i f i e r (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ”Reading undef ined i d e n t i f i e r ’%s ’ attempted on l i n e %d .\n” msg l i n e
| I l l e g a l a s s i g nmen t (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” I l l e g a l ass ignment attempted on l i n e %d : %s \n” l i n e msg
| In s t rument s r ede f i n ed (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” Instrument r e d e f i n i t i o n attempted on l i n e %d : %s \n” l i n e msg
| I l l e g a l d i v i s i o n (msg , l i n e ) −>

Pr in t f . f p r i n t f s t d e r r ” D iv i s i on by zero attempted on l i n e %d : %s \n” l i n e msg
| Fa i l u r e (msg) −>

Pr in t f . f p r i n t f s t d e r r ”Untrapped i n t e r n a l e r r o r ! ( e r r o r message : %s )\n” msg

C.1.2 drul main.ml

(∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ DruL − Drumming Language
∗
∗ Creation o f R. Stewart , T. Bertin−Mahieux , W. I l a h i and B. Warf ie ld
∗ rs2660 tb2332 wki2001 bbw2108
∗
∗ f o r the c l a s s COMS W4115 : Programming Language and Trans la tors
∗
∗ f i l e : drul main . ml
∗
∗ MAIN
∗
∗ This f i l e conta ins the main d r i v e r f unc t i ons f o r the DruL i n t e r p r e t e r .
∗ This code i s wr i t t en in OCaml .
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗)

open Dru l a s t
open Drul types
open Dru l he lp e r s
open Drul output

(∗ d e f a u l t ins truments ∗)
let d e f a u l t i n s t r = [ ”hh c” ; ” sd ac ” ; ”bd” ; ” cowbe l l ” ]

94



let keyword map =
L i s t . f o l d l e f t
( fun m k −> NameMap. add k true m)
NameMap. empty
[ ” c l i p ” ; ” rand” ; ”mapper” ; ” concat ” ; ” pattern ” ; ” re turn ” ; ” instruments ” ;
” s l i c e ” ; ” p r i n t ” ; ” output ” ; ”map” ; ” i f ” ; ” e l s e ” ; ” e l s e i f ” ; ” t rue ” ; ” f a l s e ” ]

(∗ excep t ion used to handle re turn statement , s im i l a r to MicroC from Edwards ∗)
exception Return value of dru l env

(∗
i n s i d e a map, do one s t ep !
re turn i s saved as ” return ” in the env
current index i s saved as ” $current ” in the env

∗)
let rec one mapper step maxiters cur r ent s t l i s t env cu r r en t pa t t e rn =

i f ( maxiters == current ) then Pattern ( cu r r en t pa t t e rn )
else

let r e t v a l = Pattern ( [ ] ) in
let env = add key to env env ” re turn ” r e t v a l in
let env = add key to env env ” $current ” ( Int ( cur r ent ) ) in
let b l o c k l i n e = (match ( L i s t . hd s t l i s t ) with

Expr ( e ) −> e . l i n eno
| Return ( e ) −> e . l i n eno
| Assign ( , , l i n eno ) −> l i n eno
| MapDef( , , , l i n eno ) −> l i n eno
| I fB lo ck ( e , , ) −> e . l i n eno
| In s t rDe f ( , l i n eno ) −> l i n eno
| EmptyStat ( l i n eno ) −> l i n eno

) in
let newenv = e x e c l i s t r e t u r n i n g s t l i s t env in
let new st = newenv . symbols in
let r e turn = NameMap. f i nd ” re turn ” new st in
let cu r r en t pa t t e rn =
(

match r e turn with
Pattern ( boo l s ) −> cu r r en t pa t t e rn @ boo l s

| Beat ( a l i a s b o o l s , idx ) −>
i f ( ( idx >= 0) && ( idx < ( Array . l ength a l i a s b o o l s ) ) )
then cu r r en t pa t t e rn @ [ a l i a s b o o l s . ( idx ) ]
else cu r r en t pa t t e rn

| −> ( r a i s e ( I l l e g a l a s s i g nmen t
( ”attempt to re turn an i l l e g a l va lue from th i s mapper” , b l o c k l i n e )
) )

)
in
let cur rent = cur rent + 1 in
one mapper step maxiters cur r ent s t l i s t newenv cu r r en t pa t t e rn

(∗
run a named mapper ,
f i nd the mapper in the env ,
and cas t i t to a anonymous mapper

∗)
and run named mapper mapname a rgL i s t env l i n eno =

let savedmapper = get key f rom env env mapname l i n eno in

95



match savedmapper with
Mapper (mapname2 , a l i s t , s t a t l i s t ) −>

(∗ check i f we r e c e i v e the good number o f pa t t e rn s ∗)
i f L i s t . l ength a l i s t != L i s t . l ength a rgL i s t then r a i s e

( Inva l id argument ( ”wrong number o f inputs f o r named mapper” , l i n eno ) )
else i f St r ing . compare mapname mapname2 != 0 then r a i s e

( Fa i l u r e ” in run named mapper , should not happen ( i n t e rn mapper name problem ) ” )
else run mapper s t a t l i s t a r gL i s t env a l i s t
(∗ i f g iven name i s not bound to a mapper , Type error ∗)
| −> r a i s e

( Type error ( ”we were expect ing a mapper , name a s s o c i a t ed with something e l s e ” , l i n eno ) )

(∗
main func t ion o f a map, take s a l i s t o f s tatement ( body o f the mapper )
eva l ua t e the a r g l i s t , which shou ld be a l i s t o f pa t t e rn s
launches the i t e r a t i o n ( one mapper step )

∗)
and run mapper s t a t emen t l i s t a r g l i s t env a l i s t =

let a r g l i s t e v a l e d = e v a l a r g l i s t a r g l i s t env in
let map env = get map env env a r g l i s t e v a l e d a l i s t in
let max i te r s = f i n d l o n g e s t l i s t a r g l i s t e v a l e d in
one mapper step max i t e r s 0 s t a t emen t l i s t map env [ ]

(∗ eva l ua t e an e x p r l i s t when we know tha t they ’ re a l l pa t t e rn s ∗)
and e v a l a r g l i s t a r g l i s t env = match a r g l i s t with

[ ] −> [ ]
| headExp : : t a i l −>

(
let headVal = eva luate headExp env
in headVal : : ( e v a l a r g l i s t t a i l env )

)

(∗ eva l ua t e express ions , no mod i f i ca t i ons to the environment ! ∗)
and eva luate e env = match e . r e a l e xp r with

FunCall ( fname , f a r g s ) −> f u n c t i o n c a l l fname f a r g s env e . l i n eno
| MethodCall ( objectExpr , mname, margs ) −> method ca l l objectExpr mname margs env
| CStr (x ) −> Str ( x )
| CBool ( x ) −> Bool ( x )
| CInt (x ) −> Int ( x )
| Var (name) −> let f e t ched = get key f rom env env name e . l i n eno in (

match f e t ched with
Patte rnAl ia s ( a l i a s ) −> b e a t o f a l i a s env a l i a s e . l i n eno

| other −> other
)

| UnaryMinus (xE) −> let xV = eva luate xE env in
(

match xV with
Int ( x ) −> Int (−x )

| −> r a i s e ( Type error ( ”you can ’ t negate that , dork face ” , e . l i n eno ) )
)

| UnaryNot (xE) −> let xV = eva luate xE env in
(

match xV with
Bool ( x ) −> Bool ( not x )

96



| −> r a i s e ( Type error ( ”you can ’ t c on t r ad i c t that ” , e . l i n eno ) )
)

| ArithBinop (aExp , operator , bExp) −>
let aVal = eva luate aExp env in
let bVal = eva luate bExp env in
(

match ( aVal , operator , bVal ) with
( Int ( a ) , Add , Int (b ) ) −> Int ( a + b)

| ( Int ( a ) , Sub , Int (b ) ) −> Int ( a − b)
| ( Int ( a ) , Mult , Int (b ) ) −> Int ( a ∗ b)
| ( Int ( a ) , Div , Int (b ) ) −> i f (b != 0) then Int ( a / b) else r a i s e

( I l l e g a l d i v i s i o n ( ” D iv i s o r eva lua t e s to 0” , e . l i n eno ) )
| ( Int ( a ) , Mod, Int (b ) ) −> Int ( a mod b)
| −> r a i s e ( Type error ( ” cannot do a r i thmet i c on non−i n t e g e r s ” , e . l i n eno ) )

)
| LogicBinop (aExp , operator , bExp) −>

let aVal = eva luate aExp env in
let bVal = eva luate bExp env in
(

match ( aVal , operator , bVal ) with
( Bool ( x ) , And , Bool ( y ) ) −> Bool ( x && y)

| ( Bool ( x ) , Or , Bool ( y ) ) −> Bool ( x | | y )
| −> r a i s e ( Type error ( ” cannot do l o g i c a l ope ra t i on s except on boo leans ” , e . l i n eno ) )

)
| Comparison (aExp , operator , bExp) −>

let aVal = eva luate aExp env in
let bVal = eva luate bExp env in
(

match ( aVal , operator , bVal ) with
( Int ( a ) , LessThan , Int (b ) ) −> Bool ( a < b)

| ( Int ( a ) , GreaterThan , Int (b ) ) −> Bool ( a > b)
| ( Int ( a ) , LessEq , Int (b ) ) −> Bool ( a <= b)
| ( Int ( a ) , GreaterEq , Int (b ) ) −> Bool ( a >= b)
| ( Int ( a ) , EqualTo , Int (b ) ) −> Bool ( a == b)
| ( Int ( a ) , NotEqual , Int (b ) ) −> Bool ( a != b)
| −> r a i s e ( Type error ( ” cannot do that comparison opera t i on ” , e . l i n eno ) )

)
| MapCall ( someMapper , a r gL i s t ) −>

(
match someMapper with

AnonyMap( s t L i s t ) −> run mapper s t L i s t a r gL i s t env [ ]
| NamedMap(mapname) −> run named mapper mapname a rgL i s t env e . l i n eno

)
| In s t rAs s i gn ( instName , patExpr ) −> let patVal = eva luate patExpr env in

(
match patVal with

Pattern (p) −> InstrumentAssignment ( instName , p)
| −> r a i s e ( Inva l id argument ( ”Only pat t e rn s can be as s i gned to instruments ” , e . l i n eno ) )

)

(∗
f unc t i on c a l l s , anything l ook ing l i k e a () or a ( something )
the major ’match ’ i s done on a

∗)

97



and f u n c t i o n c a l l fname f a r g s env l i n eno =
let f a r g v a l s = e v a l a r g l i s t f a r g s env in
match ( fname , f a r g v a l s ) with

( ” pattern ” , [ ] ) −> Pattern ( [ ] )
| ( ” pattern ” , [ v ] ) −>

(
match v with

Str ( x ) −>
(

let c h a r l i s t = Str . s p l i t ( Str . regexp ”” ) x
in let r e v l i s t =

L i s t . f o l d l e f t
(

fun bl s t r −>
(

match s t r with
”0” −> fa l se

| ”1” −> true
| −> r a i s e ( Pat t e rnPar s e e r r o r

( ” Patterns d e f i n i t i o n s must be a s t r i n g o f 0 ’ s and 1 ’ s ” , l i n eno ) )
) : : b l

)
[ ] c h a r l i s t
in Pattern ( L i s t . rev r e v l i s t )

)
| −> r a i s e ( Type error ( ”Pattern d e f i n i t i o n s take a s t r i n g argument” , l i n eno ) )

)
| ( ” p r i n t ” , [ ] ) −> p r i n t e nd l i n e ”” ; Void
| ( ” p r i n t ” , [ v ] ) −>

(
match v with

Str ( x ) −> p r i n t e nd l i n e x ; Void
| Int ( y ) −> p r i n t e nd l i n e ( s t r i n g o f i n t y ) ; Void
| Bool ( z ) −> p r i n t e nd l i n e ( i f z then ”TRUE” else ”FALSE” ) ; Void
| Pattern (p) −> let ps t r = s t r i n g o f p a t t e r n p in p r i n t e nd l i n e p s t r ; Void
| Beat ( , ) −> p r i n t e nd l i n e ( s t r i n g o f b e a t v ) ; Void
| Clip ( ar ) −> p r i n t e nd l i n e ( s t r i n g o f c l i p ar env ) ; Void

| −> p r i n t e nd l i n e ( ”Dunno how to p r i n t t h i s yet . ” ) ; Void
)

| ( ” concat ” , conca t a rg s ) −> let catenated = c o n c a t p a t t e r n l i s t conca t a rg s l i n eno in Pattern ( catenated )
| ( ” rand” , [ ] ) −> Int (Random . i n t 2)
| ( ” rand” , [ argVal ] ) −>

(
match argVal with

Int ( bound ) −> i f bound > 0 then Int (Random . i n t bound )
else r a i s e

( Inva l id argument ( ” ’ rand ’ expect s a p o s i t i v e i n t e g e r argument” , l i n eno ) )
| −> r a i s e ( Inva l id argument ( ” ’ rand ’ expect s an i n t e g e r argument” , l i n eno ) )

)
| ( ” rand” , ) −> r a i s e

( Inva l id argument ( ” ’ rand ’ expect s a s i n g l e , opt iona l , p o s i t i v e , i n t e g e r argument” , l i n eno ) )
| ( ” c l i p ” , a r gL i s t ) −> make c l ip a r gL i s t env l i n eno
| ( other , ) −> (∗ TODO: cu r r en t l y a l s o ca tches i n v a l i d argument−counts ,

which shou ld probab ly be i n t e r c ep t e d f u r t h e r up the l i n e ∗)
let msg = ”Function name ’ ” ˆ other ˆ ” ’ i s not a va l i d func t i on . ” in

r a i s e ( I n v a l i d f u n c t i o n (msg , l i n eno ) )

98



(∗
Method Cal l s , anything l ook ing l i k e a . b () or a . b ( something )
the major ’match ’ i s u sua l l y done on both a and b
∗)
and method ca l l objectExpr mname margs env =

let objectVa l = eva luate objectExpr env in
let argVals = e v a l a r g l i s t margs env in
let l i n eno = objectExpr . l i n eno in
match ( objectVal , mname, argVals ) with

( Pattern (x ) , ” repeat ” , margs ) −>
(

match margs with
[ argVal ] −>
(

match argVal with
Int ( y ) −> i f ( y < 0) then r a i s e

( Inva l id argument ( ”Repeat can only accept non−negat ive i n t e g e r s ” , l i n eno ) )
else i f ( y == 0) then Pattern ( [ ] )
else let rec repeatPatte rn p n = i f n == 1 then p else p @ repeatPattern p (n−1)
in Pattern ( repeatPatte rn x y )

| −> r a i s e
( I n v a l i d f u n c t i o n ( ”Method repeat expect s an i n t e g e r argument” , l i n eno ) )

)
| −> r a i s e ( I n v a l i d f u n c t i o n ( ”Method repeat expect s a s i n g l e argument” , l i n eno ) )

)
| ( Pattern (x ) , ” l ength ” , margs ) −>

(
match margs with

[ ] −> Int ( L i s t . l ength x )
| −> r a i s e ( I n v a l i d f u n c t i o n ( ”Method length expect s no arguments” , l i n eno ) )

)
| ( Pattern (x ) , ” r e v e r s e ” , argVal ) −>

(
match argVal with

[ ] −> Pattern ( L i s t . rev x )
| −> r a i s e ( I n v a l i d f u n c t i o n ( ”Method r ev e r s e expect s no arguments” , l i n eno ) )

)
| ( Pattern (x ) , ” s l i c e ” , [ s t a r tVa l ; lenVal ] ) −>

(
match ( s tartVal , l enVal ) with

( Int ( s ) , Int ( l ) ) −> i f s < 1 | | ( s > L i s t . l ength x && L i s t . l ength x > 0)
then r a i s e ( Inva l id argument ( ” the s t a r t p o s i t i o n i s out o f bounds” , l i n eno ) )
else i f l < 0 then r a i s e

( Inva l id argument ( ” the l ength must be non−negat ive ” , l i n eno ) )
else let rec subLi s t i nL i s t i minPos maxPos =
(

match i nL i s t with
[ ] −> [ ]

| head : : t a i l −> i f i < minPos then subLi s t t a i l ( i +1) minPos maxPos
else i f i = maxPos then [ head ]
else i f i > maxPos then [ ]
else head : : ( subLi s t t a i l ( i +1) minPos maxPos)

)

99



in Pattern ( subLi s t x 1 s ( s+l −1))
| ( , ) −> r a i s e

( Inva l id argument ( ” s l i c e must be g iven i n t e g e r va lue s f o r s t a r t p o s i t i o n and length ” , l i n eno ) )
)

| ( Beat ( a , i ) , ” i s n u l l ” , [ ] ) −> let beatva l = s t a t e o f b e a t ob jec tVa l in
(

match beatva l with
Some( ) −> Bool ( fa l se )

| None −> Bool ( true )
)

| ( Beat ( a , i ) , ” note ” , [ ] ) −> let beatva l = s t a t e o f b e a t ob jec tVa l in
(

match beatva l with
Some( yesno ) −> Bool ( yesno )

| None −> Bool ( fa l se )
)

| ( Beat ( a , i ) , ” r e s t ” , [ ] ) −> let beatva l = s t a t e o f b e a t ob jec tVa l in
(

match beatva l with
Some( yesno ) −> Bool ( not yesno )

| None −> Bool ( fa l se )
)

| ( Beat ( a , i ) , ” prev” , [ o f f s e tVa l ] ) −>
(

match o f f s e tVa l with
Int ( o f f s e t I n t ) −> let newidx = i − o f f s e t I n t in Beat ( a , newidx )

| −> r a i s e
( I n v a l i d f u n c t i o n ( ”Beat method ’ prev ’ r e qu i r e s an i n t e g e r argument” , l i n eno ) )

)
| ( Beat ( a , i ) , ” next ” , [ o f f s e tVa l ] ) −>

(
match o f f s e tVa l with

Int ( o f f s e t I n t ) −> let newidx = i + o f f s e t I n t in Beat ( a , newidx )
| −> r a i s e

( I n v a l i d f u n c t i o n ( ”Beat method ’ next ’ r e qu i r e s an i n t e g e r argument” , l i n eno ) )
)

| ( Beat ( a , i ) , ” asPattern ” , [ ] ) −> let beatva l = s t a t e o f b e a t ob jec tVa l in
(

match beatva l with
Some( yesno ) −> Pattern ( [ yesno ] )

| None −> Pattern ( [ ] )
)

| ( Cl ip ( ar ) , ” outputText” , args ) −>
(

match args with
[ Str ( f i leName ) ] −>

i f ( S t r ing . l ength f i leName ) < 1
then r a i s e (

Inva l id argument ( ”Output f i l ename i s empty” , l i n eno )
)
else

let f o rma t t ed c l i p = s t r i n g o f c l i p ar env in
let out = open out f i leName in

ou tpu t s t r i n g out f o rma t t ed c l i p ;
c l o s e o u t out ;
Void

100



| −> r a i s e ( I n v a l i d f u n c t i o n ( ” c l i p method ’ outputText ’ r e qu i r e s a f i l ename ” , l i n eno ) )
)

| ( Cl ip ( ar ) , ” outputMidi ” , a rgs ) −>
(

match args with
[ Str ( f i leName ) ; Int ( tempo ) ] −>

i f ( S t r ing . l ength f i leName ) < 1
then r a i s e ( Inva l id argument ( ”Output f i l ename empty” , l i n eno ) )

else i f tempo < 1
then r a i s e ( Inva l id argument ( ”Tempo must be p o s i t i v e ” , l i n eno ) )

else
let out = Unix . open proce s s out ( ”midge −q −o ” ˆ f i leName ) in
ou tpu t s t r i n g out ( m id g e o f c l i p ar env tempo ) ;
let output s ta tu s = (Unix . c l o s e p r o c e s s o u t out ) in (match output s ta tu s with

Unix .WEXITED( ) −> i gno r e ( ) ;
| −> r a i s e ( Fa i l u r e ”midge proce s s terminated abnormally ” )
) ;

Void
| −> r a i s e

( I n v a l i d f u n c t i o n ( ” c l i p method ’ outputMidi ’ r e qu i r e s a f i l ename and tempo” , l i n eno ) )
)

| ( Cl ip ( ar ) , ” outputLi lypond” , args ) −>
(

let f i leName = (match args with Str ( f ) : : −> f
| −> r a i s e

( I n v a l i d f u n c t i o n ( ” c l i p method ’ outputLilypond ’ r e qu i r e s a f i l ename and t i t l e ” , l i n eno ) ) )
in

let cl ipname = (match args with : : [ ] −> ”DruL Output” | : : [ Str (n ) ] −> n
| −>r a i s e

( I n v a l i d f u n c t i o n ( ” c l i p method ’ outputLilypond ’ r e qu i r e s a f i l ename and t i t l e ” , l i n eno ) ) )
in
i f ( S t r ing . l ength f i leName ) < 1
then r a i s e ( Inva l id argument ( ”Output f i l ename empty” , l i n eno ) )
else

let out = open out f i leName in
ou tpu t s t r i n g out ( l i l y p o n d p a g e o f c l i p ar env cl ipname ) ;
c l o s e o u t out ;
Void

)
| −> r a i s e ( I n v a l i d f u n c t i o n ( ”Undefined method func t i on ” , l i n eno ) )

(∗ s im i l a r to eva lua te , but hand les cases l i k e assignment , where the environment i s modi f ied ∗)
and execute s env = match s with

Expr ( e ) −> i gno r e ( eva luate e env ) ; env
| I fB lo ck ( tExpr , i f t r u e , i f f a l s e ) −> let tVal = eva luate tExpr env in

(
match tVal with

Bool ( true ) −> e x e c l i s t i f t r u e env
| Bool ( fa l se ) −>

(
match i f f a l s e with

Some( s t l i s t ) −> e x e c l i s t s t l i s t env
| None −> env

)

101



| −> r a i s e ( Type error ( ” t e s t o f i f b lock must be a boolean ” , tExpr . l i n eno ) )
)

| Assign (varName , valExpr , l i n eno ) −>
(

i f (NameMap.mem varName keyword map ) then
r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t use keyword ’ ” ˆ varName ˆ ” ’ as a va r i ab l e ” , l i n eno ) )

else
let valVal = eva luate valExpr env in

(
match valVal with

Bool ( x ) −> r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t a s s i gn a boolean ” , l i n eno ) )
| Str ( x ) −> r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t a s s i gn a s t r i n g ” , l i n eno ) )
| Beat (x , y ) −> r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t a s s i gna beat ” , l i n eno ) )
| Patte rnAl ia s ( x ) −> r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t a s s i gn a Patte rnAl ia s ” , l i n eno ) )
| Mapper ( , , ) −> r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t a s s i gn a mapper” , l i n eno ) )
| −> add key to env env varName valVal

(∗ Does in f a c t mask v a r i a b l e s in outer scope ! Not an error ! ∗)
)

)
| MapDef(mapname , formal params , contents , l i n eno ) −>

i f (NameMap.mem mapname keyword map )
then r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t use keyword ’ ” ˆ mapname ˆ ” ’ as a mapper name” , l i n eno ) )
else
i f (NameMap.mem mapname env . symbols )
then r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t g ive an in−use name to a mapper” , l i n eno ) )
else

let newMapper = Mapper (mapname , formal params , contents ) in
let newST = NameMap. add mapname newMapper env . symbols in
{ symbols = newST ; parent = env . parent }

| Return ( retExpr ) −>
(

match env . parent with
None −> r a i s e ( Fa i l u r e ” in execute , case Return , should not happen (None parent ?) ” )

| −> i f ( not (NameMap.mem ” return ” env . symbols ) ) then r a i s e ( Fa i l u r e ” s t i l l don ’ t ” )
else
let re tVal = eva luate retExpr env in
let newenv = add key to env env ” re turn ” retVal in
r a i s e ( Return value newenv )

)
| In s t rDe f ( argL i s t , l i n eno ) −>

(
try

i gno r e ( get key f rom env env ” instruments ” l i n eno ) ;
r a i s e ( In s t rument s r ede f i n ed ( ”don ’ t do that ” , l i n eno ) ) (∗XXX could be improved . . . ∗)

with
Unde f i n e d i d e n t i f i e r ( , ) −>

(∗ make sure were not in a map, so env . parent == None ∗)
(match env . parent with Some( ) −>
r a i s e ( I l l e g a l a s s i g nmen t ( ”can ’ t d e f i n e instruments i n s i d e mappers” , l i n eno ) )
| −>

let s t r L i s t = e v a l a r g l i s t a r gL i s t env in
let s t r t o s t r i n g a =
(

match a with
Str ( s ) −> s

| −> r a i s e ( Inva l id argument ( ” instruments takes a l i s t o f s t r i n g s ” , l i n eno ) )

102



) in
let s t r i n g L i s t = L i s t .map s t r t o s t r i n g s t r L i s t in
(

match s t r i n g L i s t with
[ ] −> add key to env env ” instruments ” ( Instruments ( d e f a u l t i n s t r ) ) (∗ d e f a u l t ∗)

| −> let i n s tVa l = Instruments ( s t r i n g L i s t ) in
add key to env env ” instruments ” in s tVa l

)
)

| In s t rument s r ede f i n ed ( e , i ) −> r a i s e ( In s t rument s r ede f i n ed ( e , i ) )
(∗ | I l l e g a l a s s i g nmen t ( e , i ) −> r a i s e ( I l l e g a l a s s i g nmen t ( e , i ) ) ∗)
| −> r a i s e ( Fa i l u r e ” in execute , case Inst rDef , unexpected except ion ” )

)
| EmptyStat ( ) −> env

and e x e c l i s t s l i s t env = L i s t . f o l d l e f t ( fun env s −> execute s env ) env s l i s t

(∗ s p e c i a l case used f o r mapper , when we expec t a re turn va lue ∗)
and e x e c l i s t r e t u r n i n g s l i s t env =

try L i s t . f o l d l e f t ( fun env s −> execute s env ) env s l i s t
with

Return value ( newenv ) −> newenv
| other −> r a i s e other

C.1.3 drul helpers.ml

(∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ DruL − Drumming Language
∗
∗ Creation o f R. Stewart , T. Bertin−Mahieux , W. I l a h i and B. Warf ie ld
∗ rs2660 tb2332 wki2001 bbw2108
∗
∗ f o r the c l a s s COMS W4115 : Programming Language and Trans la tors
∗
∗ f i l e : d r u l h e l p e r s . ml
∗
∗ HELPERS
∗
∗ This f i l e conta ins the he l pe r func t i ons ( anything t ha t i s not requ i red
∗ to be mutual ly r e cu r s i v e with ” eva lua t e ”) f o r the DruL i n t e r p r e t e r .
∗ This code i s wr i t t en in OCaml .
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗)

open Dru l a s t
open Drul types

(∗

103



crea t e an empty c l i p o f g iven s i z e (an array o f empty pa t t e rn s )
assumes non empty l i s t ( c l ipLen > 0)

∗)
let emptyClip c l i p S i z e =

let rec emptyPatternList l en =
i f l en == 1 then [ [ ] ]
else ( L i s t . append [ [ ] ] ( emptyPatternList ( l en − 1 ) ) )

in Array . o f l i s t ( emptyPatternList c l i p S i z e )

(∗
turn a pa t t e rn o b j e c t ( l i s t o f boo leans ) in to an array , and return
pa i r s o f ( array , a l i a s ) to be added to the symbol t a b l e

∗)
let rec g e t a l i a s l i s t p l i s t a l i s t counter =

let newcounter = counter + 1 in
match ( p l i s t , a l i s t ) with
( [ ] , [ ] ) −> [ ]

| ( [ ] , oops ) −> r a i s e ( Fa i l u r e ”not enough pat t e rn s provided to mapper” )
| ( t h i s pa t : : r e s t , [ ] ) −> ( th i spat , ”$” ˆ s t r i n g o f i n t counter ) : : g e t a l i a s l i s t r e s t [ ] newcounter
| ( t h i s pa t : : r e s t , t h i s a l i a s : : o t h e r a l i a s e s ) −>

let d o l l a r a l i a s = ”$” ˆ ( s t r i n g o f i n t counter ) in
[ ( th i spat , d o l l a r a l i a s ) ; ( th i spat , t h i s a l i a s ) ]
@ g e t a l i a s l i s t r e s t o t h e r a l i a s e s newcounter

(∗
g iven a NameMap and a ( pat tern , a l i a s ) pair ,
add the appropr ia te in format ion to the NameMap
( at t h i s point , an array o f the bea t s i s the pa t t e rn )

∗)
let add pa t t e r n a l i a s symbol tab le pa i r =

let p obj = f s t ( pa i r ) in
let a l i a s = snd ( pa i r ) in
let p l i s t =
(

match p obj with
Pattern ( pat ) −> pat

| −> r a i s e ( Fa i l u r e ” in add pa t t e rn a l i a s , should not happen” )
) in
let p array = Array . o f l i s t p l i s t in
let bea t ho lde r = Patte rnAl ia s ( p array )
in NameMap. add a l i a s bea t ho lde r symbol tab le

(∗
use the above func t i ons to add the cor r e c t e n t r i e s to a new symbol t a b l e
b e f o r e en te r ing a ”map” b l o c k

∗)
let i n i t mappe r s t p l i s t a l i s t =

let a l i a s l i s t = g e t a l i a s l i s t p l i s t a l i s t 1
in L i s t . f o l d l e f t a dd pa t t e r n a l i a s NameMap. empty a l i a s l i s t

(∗ crea t e a new symbol t a b l e with the appropr ia te a l i a s e s , and l i n k i t to the parent ∗)
let get map env parent env p l i s t a l i s t =

104



let new symbol table = in i t mappe r s t p l i s t a l i s t
in { symbols = new symbol table ; parent = Some( parent env )}

(∗ i s c a l l e d by f i n d l o n g e s t l i s t ∗)
let maxlen he lper currmax new l i s t =

match new l i s t with
Pattern ( p a t l i s t ) −>
(

let cu r r l e n = L i s t . l ength p a t l i s t in
i f ( cu r r l e n > currmax ) then cu r r l e n else currmax

)
| −> r a i s e ( Fa i l u r e ” in maxlen helper , should not happen ( not a pattern ?) ” )

(∗ f i nd the l eng t h o f the l on g e s t l i s t ∗)
let f i n d l o n g e s t l i s t p a t t e r n l i s t = L i s t . f o l d l e f t maxlen he lper 0 p a t t e r n l i s t

(∗
Adds a g iven key & va lue to env in ( env , parentEnv ) .
Returns the modi f ied env .

∗)
let add key to env env key value =

match env with { symbols = o l d s t ; parent = whatever} −>
let new st = NameMap. add key value o l d s t
in { symbols = new st ; parent = whatever}

(∗ r e t r i e v e the va lue f o r a g iven key from the environment
or i t s parent .

I f the va lue i s a PatternAl ias , then use some magic to transform
i t in to a Beat

∗)
let rec get key f rom env env key l i n eno =

i f NameMap.mem key env . symbols then NameMap. f i nd key env . symbols
else match env . parent with

Some( parent env ) −> get key f rom env parent env key l i n eno
| None −> r a i s e ( Und e f i n e d i d e n t i f i e r ( key , l i n eno ) )

(∗ t a ke s an a l i a s , turns i t in to a beat o b j e c t ( used in mapper ) ∗)
and b e a t o f a l i a s env a l i a s l i n eno =

let currentVar = get key f rom env env ” $current ” l i n eno
in match currentVar with

Int ( currentVal ) −> Beat ( a l i a s , currentVal )
| −> r a i s e ( Fa i l u r e ” in b e a t o f a l i a s , can ’ t have a non−i n t e g e r in $current ” )

let s t a t e o f b e a t beat =
match beat with

Beat ( pattern data , idx ) −>
let pa t t e rn l eng th = Array . l ength pat te rn data in
i f ( idx < 0 or idx >= pat t e rn l eng th ) then None else Some( pat te rn data . ( idx ) )

| −> r a i s e ( Fa i l u r e ” in s t a t e o f b e a t , should not happen ( not a beat ?) ” )

(∗ ge t an array with the names o f the current ins truments in i t ∗)
let ge t i n s t r name a r r ay env =

(∗ TODO: make t h i s a l e s s hack i sh way to avoid pass ing t ha t l i ne−number around? ∗)
let d r u l I n s t r L i s t = get key f rom env env ” instruments ” 0 in
match d r u l I n s t r L i s t with

Instruments ( l ) −> Array . o f l i s t l

105



| −> r a i s e ( Fa i l u r e ” s l o t f o r instruments does not conta in instruments ” )

(∗
f i nd the po s i t i on o f an instrument in the instruments in the env , re turns −1 i f doesn ’ t f i nd i t
∗)
let ge t in s t rument pos env instrName l i n eno =

try
let i n s t rL i s tD ru l = get key f rom env env ” instruments ” l i n eno in
match i n s t rL i s tD ru l with

Instruments ( i n s t r L i s t ) −>
let rec f i nd po s s t r L i s t counter =
(

match s t r L i s t with
[ ] −> −1

| head : : t a i l −> i f ( S t r ing . compare head instrName ) == 0 then counter
else f i nd po s t a i l ( counter + 1)

)
in f i nd po s i n s t r L i s t 0

| −> r a i s e ( Fa i l u r e ” in get ins t rument pos , weird s t u f f in env f o r instruments . . . ” )
with

Unde f i n e d i d e n t i f i e r ( e , i ) −> r a i s e ( Fa i l u r e ” in get instument pos , instrument not saved in env yet ” )
| Fa i l u r e ( e ) −> r a i s e ( Fa i l u r e e )
| −> r a i s e ( Fa i l u r e ” in get ins t rument pos , wrong or new except ion ” )

(∗ concat pa t t e rn s in to one ∗)
let rec c o n c a t p a t t e r n l i s t p l i s t l i n eno =

match p l i s t with
[ ] −> [ ]

| Pattern (x ) : : t a i l −> x @ ( c o n c a t p a t t e r n l i s t t a i l ) l i n eno
| −> r a i s e ( Inva l id argument ( ” concat only concatenate s pat t e rn s ” , l i n eno ) )

(∗
ge t an empty c l i p ( c l i p with the r i g h t number o f empty pa t t e rn s )
and f i l l s i t from a pat t e rn l i s t
∗)
let rec f i l l i n c l i p p a t t e r n s empty c l ip p a t t e r n l i s t idx l i n eno = match p a t t e r n l i s t with

[ ] −> Clip ( empty c l ip ) (∗ not t e c h n i c a l l y empty any more ∗)
(∗ TODO: catch array out o f bounds here ∗)

| Pattern (p ) : : t a i l −>
i gno r e ( empty c l ip . ( idx ) <− p ) ;
f i l l i n c l i p p a t t e r n s empty c l ip t a i l ( idx + 1) l i n eno

| InstrumentAssignment ( , ) : : t a i l −>
r a i s e ( Inva l id argument ( ” c l i p arguments may not mix s t y l e s ” , l i n eno ) )

| −>
r a i s e ( Inva l id argument ( ” c l i p arguments must a l l eva luate to pat t e rns ” , l i n eno ) )

(∗
s im i l a r as f i l l i n c l i p p a t t e r n s , but dea l s with the InstrumentAssignments ’ h ihat ’ <− pa t t e rn (”1”)
∗)
let rec f i l l i n c l i p i n s t r a s s i g n s empty c l ip a s s i g nmen t l i s t env l i n eno = match a s s i g nmen t l i s t with

[ ] −> Clip ( empty c l ip ) (∗ not t e c h n i c a l l y empty any more ∗)
| InstrumentAssignment ( instrName , p ) : : t a i l −>

let idx = get in s t rument pos env instrName l i n eno in
i f idx < 0

106



then r a i s e ( Inva l id argument ( ”unknown instrument name ’ ” ˆ instrName ˆ” ’ ” , l i n eno ) )
else

i gno r e ( empty c l ip . ( idx ) <− p ) ; f i l l i n c l i p i n s t r a s s i g n s empty c l ip t a i l env l i n eno
| Pattern ( ) : : t a i l −>r a i s e ( Inva l id argument ( ” c l i p arguments may not mix s t y l e s ” , l i n eno ) )
| −> r a i s e ( Inva l id argument ( ” c l i p arguments must a l l eva luate to instrument ass ignments ” , l i n eno ) )

(∗ f i r s t func t i on in order to make a c l i p ∗)
let make c l ip argVals env l i n eno =

try
(

let i n s t r umen t l i s t = get key f rom env env ” instruments ” l i n eno in
let num instrs =
(

match i n s t r umen t l i s t with
Instruments ( i ) −> L i s t . l ength i

| −> r a i s e ( Fa i l u r e ” in make cl ip , should not happen” )
) in
let new c l ip = emptyClip num instrs in
let f i r s t a r g = L i s t . hd argVals in
(

match f i r s t a r g with
Pattern ( ) −> f i l l i n c l i p p a t t e r n s new c l ip argVals 0 l i n eno

| InstrumentAssignment ( , ) −> f i l l i n c l i p i n s t r a s s i g n s new c l ip argVals env l i n eno
| −> r a i s e

( Inva l id argument ( ” c l i p arguments must be pat t e rn s or instrument ass ignments ” , l i n eno ) )
)

)
with Unde f i n e d i d e n t i f i e r ( ” instruments ” , i ) −> r a i s e

( I l l e g a l a s s i g nmen t ( ” t ry ing to c r e a t e a c l i p be f o r e d e f i n i n g instruments ” , i ) )

C.1.4 drul output.ml

(∗ he l pe r func t i on s f o r a l l non− t r i v i a l forms o f output
∗ crea ted by Ben Warf ie ld
∗ ( content s a l s o authored p a r t i a l l y by Rob Stewart−−t h i s f i l e i s a r e f a c t o r )
∗ 12/17/2008

∗)

open Drul types
open Dru l he lp e r s

(∗ Oh, Pr in t f . s p r i n t f . . . we ’ ve only j u s t met , and ye t a l ready I hate you with
∗ a grim , j o y l e s s s p i t e t ha t would do a COBOL programmer proud .
∗)

let l i l y p o nd s t a f f f o rma t = (
” \\new DrumStaff\n\ t \\with{

instrumentName = \”%s \”
drumStyleTable = #percuss ion−s t y l e
\\ ove r r i d e Staf fSymbol #’ l i n e−count = #1
\\ remove Time s ignature engraver \n\ t }\n\ t \\drummode { %s }\n”

: ( ’ a −> ’ b −> ’ c , unit , s t r i n g ) format

107



)

let l i l ypond page f o rmat = (
”\\ header {\n\ t t i t l e = \”%s \”\n}\n<<\n%s \n>>\n\\ ve r s i on \”2 .10 .33\”\n”
: ( ’ a −> ’ b −> ’ c , unit , s t r i n g ) format

)

let s t r i n g o f b e a t b =
let s t a t e = s t a t e o f b e a t b in
match s t a t e with

None −> ”NULL”
| Some(b) −> i f b then ”NOTE” else ”REST”

(∗ turn a pa t t e rn in to a s t r ing , us ing prede f ined s t r i n g s f o r ” yes ” and ”no” ∗)
let f o l d ed pa t t e r n p i f y e s i f n o =

L i s t . f o l d l e f t ( fun a x −> a ˆ ( i f x then i f y e s else i f n o ) ) ”” p

(∗ ge t a s t r i n g out o f a pat tern , pa t t e rn (”0101”) becomes ”0101” ∗)
let s t r i n g o f p a t t e r n p = fo l d ed pa t t e r n p ”1” ”0”

(∗ ge t a midge−formatted s t r i n g f o r the supp l i e d instrument out o f a pa t t e rn ∗)
let s t r i n g o f i n s t r p a t t e r n p i = f o l d ed pa t t e r n p ( i ˆ ” ” ) ” r ”

(∗ problem : g e t t i n g the name in makes t h i s l e s s gener i c ∗)
let l i l y p o n d s t a f f o f p a t t e r n iname p =

let no t e s t r i n g = f o l d ed pa t t e r n p ” t r i 4 ” ” r4 ” in
let tmp = l i l y p o nd s t a f f f o rma t in
Pr in t f . s p r i n t f tmp iname no t e s t r i n g

let l i l y p o n d p a g e o f c l i p c l i p c o n t e n t s env t i t l e =
let inames = ge t i n s t r name a r r ay env in
assert ( ( Array . l ength inames ) >= ( Array . l ength c l i p c o n t e n t s ) ) ;
let s t a f f s t r i n g s = Array . mapi

( fun idx pat −> l i l y p o n d s t a f f o f p a t t e r n inames . ( idx ) pat )
c l i p c o n t e n t s in

let a l l s t a f f s = Array . f o l d l e f t ( fun a b −> a ˆ b) ”” s t a f f s t r i n g s in
Pr in t f . s p r i n t f l i l ypond page f o rmat t i t l e a l l s t a f f s

let s t r i n g o f c l i p c l i p c o n t e n t s env =
let instrument names = ge t i n s t r name a r r ay env in
assert ( ( Array . l ength instrument names ) >= ( Array . l ength c l i p c o n t e n t s ) ) ;
let f o rma t t ed s t r i n g s = Array . mapi

( fun idx p −> instrument names . ( idx ) ˆ” :\ t ” ˆ s t r i n g o f p a t t e r n p)
c l i p c o n t e n t s in

let a l l p a t t e r n s = Array . f o l d l e f t
( fun a s t r −> a ˆ ”\ t ” ˆ s t r ˆ ”\n” )
”” f o rma t t ed s t r i n g s in

” [\n” ˆ a l l p a t t e r n s ˆ ” ] ”

108



let midg e o f c l i p c l i p c o n t e n t s env tempo =
let inames = ge t i n s t r name a r r ay env in
assert ( ( Array . l ength inames ) >= ( Array . l ength c l i p c o n t e n t s ) ) ;
let pa t t e r n s t r i n g s = Array . mapi

( fun idx p −> i f (0 < L i s t . l ength p)
then (

”\ t@channel 10 ” ˆ inames . ( idx ) ˆ ” { /L4/”
ˆ ( s t r i n g o f i n s t r p a t t e r n p inames . ( idx ) ) ˆ ” }\n”

)
else ””

)
c l i p c o n t e n t s in

”@head {\n”
ˆ ”$tempo ” ˆ ( s t r i n g o f i n t tempo ) ˆ ”\n”
ˆ ” $ t ime s i g 4/4” ˆ ”\n”
ˆ ”}\n”
ˆ”@body {\n”
ˆ ( Array . f o l d l e f t ( fun a s−>aˆ s ) ”” p a t t e r n s t r i n g s )
ˆ ”\n}\n”

C.1.5 drul printer.ml

(∗ Dru l p r in t e r package
Pretty−pr in t a Drul AST
11/11/2008

∗)

open Dru l a s t

let s t r i n g o f i n t o p = function
Add −> ”Addit ion ”

| Sub −> ” Subtract ion ”
| Mult −>” Mu l t i p l i c a t i o n ”
| Div −> ” D iv i s i on ”
| Mod −> ”Modulus”

let s t r ing o f compop = function
EqualTo −> ” Equal i ty t e s t ”

| NotEqual −> ” In equa l i t y t e s t ”
| LessThan −> ”Less than”
| GreaterThan −>”Greater than”
| LessEq −> ”Less than/ equal to ”
| GreaterEq −> ”Greater than/ equal to ”

let s t r i n g o f b o o l o p = function
And −> ”Conjunction ”

| Or −> ” Di s junc t i on ”

let rec s t r i n g o f e x p r = function
CInt (x ) −> ”Constant i n t e g e r ” ˆ s t r i n g o f i n t ( x )

| CStr ( s ) −> ”Constant s t r i n g [ ” ˆ s ˆ” ] ”
| CBool (b)−> ”Constant ” ˆ i f b then ”TRUE” else ”FALSE”
| Var ( id ) −> ” Var iab le name ” ˆ id

109



| UnaryMinus ( neg ) −> ”Arithmet ic negat ion o f ” ˆ s t r i n g o f e x p r ( neg )
| UnaryNot ( bool ) −> ” Log i ca l negat ion o f ” ˆ s t r i n g o f e x p r ( bool )
| ArithBinop (a , op , b) −>”Arithmet ic opera t i on : ” ˆ s t r i n g o f i n t o p ( op )

ˆ ” : l e f t operand= ”ˆ s t r i n g o f e x p r ( a )
ˆ ” ; r i g h t operand= ” ˆ s t r i n g o f e x p r (b)

| LogicBinop (a , op , b) −> s t r i n g o f b o o l o p ( op ) ˆ ” o f ” ˆ s t r i n g o f e x p r ( a )
ˆ ” with ”ˆ s t r i n g o f e x p r (b)

| Comparison (a , op , b) −> ”Comparison o f type ” ˆ s t r ing o f compop ( op )
ˆ ” : l e f t operand= ” ˆ s t r i n g o f e x p r ( a )
ˆ ” ; r i g h t operand= ” ˆ s t r i n g o f e x p r (b)

| FunCall (name , a r g l i s t ) −> ” Ca l l to func t i on ’ ”ˆname
ˆ ” ’ with these arguments : ”
ˆ L i s t . f o l d l e f t ( fun a ex −> a ˆ s t r i n g o f e x p r ( ex ) ˆ ” ; ” ) ”” a r g l i s t

| MapCall (m, a r g l i s t ) −> ” Cal led ’map ’ on arguments : ”
ˆ ( L i s t . f o l d l e f t ( fun a ex −> a ˆ s t r i n g o f e x p r ( ex ) ˆ ” ; ” ) ”” a r g l i s t )
ˆ ” Using Mapper=” ˆ s t r i ng o f mappe r (m)

and s t r i ng o f mappe r = function
NamedMap(name) −> name

| AnonyMap( l i s t ) −> ”a statement l i s t we can ’ t eva luate yet ”
and s t r i n g o f s t a t emen t = function

Expr ( e ) −> ”Simple statement : ” ˆ s t r i n g o f e x p r ( e )
| I fB lo ck ( exp , s t l i s t , None ) −> ” I f b lock . Condit ion : ” ˆ s t r i n g o f e x p r ( exp )

ˆ s t r i n g o f b l o c k ”TRUE” s t l i s t ˆ ”\ t (No e l s e )\n”
| I fB lo ck ( exp , s t l i s t , Some( e l s e s ) ) −>” I f b lock . Condit ion : ” ˆ s t r i n g o f e x p r ( exp )

ˆ s t r i n g o f b l o c k ”TRUE” s t l i s t
ˆ s t r i n g o f b l o c k ”FALSE” e l s e s

| −> ”Something not yet covered . ”
and s t r i n g o f b l o c k name s t l i s t =

”\ tStatements in block ”ˆ nameˆ ” :\n”
ˆ L i s t . f o l d l e f t ( fun s x −> s ˆ ”\ t ” ˆ s t r i n g o f s t a t emen t (x ) ˆ ”\n” ) ”” s t l i s t

let s t r i ng o f p rog ram = function
Content ( l ) −> ”Statements in t h i s program :\n”

ˆ L i s t . f o l d l e f t ( fun s x −> s ˆ s t r i n g o f s t a t emen t ( x ) ˆ ”\n” ) ”” l

C.1.6 drul types.ml

(∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ DruL − Drumming Language
∗
∗ Creation o f R. Stewart , T. Bertin−Mahieux , W. I l a h i and B. Warf ie ld
∗ rs2660 tb2332 wki2001 bbw2108
∗
∗ f o r the c l a s s COMS W4115 : Programming Language and Trans la tors
∗
∗ f i l e : d r u l t y p e s . ml
∗
∗ TYPES
∗
∗ This f i l e conta ins the i n t e rna l type and excep t ion de c l a r a t i on s
∗ requ i red by the i n t e r p r e t e r and p r i n t i n g / check ing func t i on s .
∗

110



∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗)

open Dru l a s t

module NameMap = Map.Make( S t r ing )

(∗ most o f the excep t i ons ∗)
exception Type error of s t r i n g ∗ i n t
exception I n v a l i d f u n c t i o n of s t r i n g ∗ i n t
exception Pat t e rnPar s e e r r o r of s t r i n g ∗ i n t
exception Inva l id argument of s t r i n g ∗ i n t
exception Unde f i n e d i d e n t i f i e r of s t r i n g ∗ i n t
exception I l l e g a l a s s i g nmen t of s t r i n g ∗ i n t
exception In s t rument s r ede f i n ed of s t r i n g ∗ i n t
exception I l l e g a l d i v i s i o n of s t r i n g ∗ i n t

type pattern = bool l i s t
type p a t t e r n a l i a s = bool array

(∗ type o f every o b j e c t in DruL ∗)
type d ru l t =

Void
| Int of i n t
| Str of s t r i n g
| Bool of bool
| Pattern of pattern
| Clip of pattern array
| Mapper of ( s t r i n g ∗ s t r i n g l i s t ∗ statement l i s t )
| Patte rnAl ia s of p a t t e r n a l i a s
| Beat of p a t t e r n a l i a s ∗ i n t
| Instruments of s t r i n g l i s t
| InstrumentAssignment of s t r i n g ∗ pattern

(∗ symbol t a b l e f o r DruL :
the current environment i s ’ symbols ’ : a map from s t r i n g to d ru l t ,
the parent i s another dru l env

∗)
type dru l env =
{

symbols : d r u l t NameMap. t ;
parent : dru l env opt ion

}

C.1.7 drul parser.mly

%{
open Dru l a s t
open Lexing

let debug s t r = i f ( true ) then i gno r e ( p r i n t e nd l i n e s t r ) else i gno r e ( )

let s t r i n g o f tw o p o s i t i o n s s t a r t p o s end pos =
let s t a r t l i n e = s t a r t p o s . pos lnum in

111



let end l i n e = end pos . pos lnum in
let s t a r t c h a r = s t a r t p o s . pos cnum − s t a r t p o s . po s bo l in
let end char = end pos . pos cnum − end pos . po s bo l in
i f ( e nd l i n e = s t a r t l i n e ) then

i f ( end char == s t a r t c h a r )
then Pr in t f . s p r i n t f ”on l i n e %d a f t e r cha rac t e r %d”

s t a r t l i n e s t a r t c h a r
else Pr in t f . s p r i n t f ”on l i n e %d between cha ra c t e r s %d and %d”

s t a r t l i n e s t a r t c h a r end char
else

Pr in t f . s p r i n t f ”between char %d o f l i n e %d and char %d o f l i n e %d”
s t a r t c h a r s t a r t l i n e end char end l i n e

let pa r s e e r r o r s t r =
let s t a r t p o s = Pars ing . symbo l s ta r t po s ( ) in
let end pos = Pars ing . symbol end pos ( ) in
p r e r r e nd l i n e ( ”Syntax e r r o r ” ˆ s t r i n g o f tw o p o s i t i o n s s t a r t p o s end pos ) ;
e x i t (2 )

%}

%token <int> IF ELSE ELSEIF RETURN
%token <int> TRUE FALSE
%token <int> MAP MAPDEF LARROW CLIP
%token <int> SEMI LPAREN RPAREN LBRACE RBRACE COMMA PLUS MINUS TIMES DIVIDE
%token <int> ASSIGN EQ NEQ LT LEQ GT GEQ EOF MCALL AND OR NOT MOD
%token <int> INSTRUMENTS
%token < i n t ∗ int> INTLITERAL
%token <s t r i n g ∗ int> STRLITERAL ID

%l e f t LIST
%nonassoc ELSE
%l e f t ASSIGN LARROW
%l e f t INSTRUMENTS
%l e f t OR
%l e f t AND
%l e f t NEQ EQ
%l e f t LT GT LEQ GEQ
%l e f t PLUS MINUS
%l e f t TIMES DIVIDE MOD
%nonassoc UMINUS NOT
%l e f t MCALL

%s t a r t program
%type<Dru l a s t . program> program
%%

expr :
INTLITERAL { { r e a l e xp r = CInt ( f s t ( $1 ) ) ; l i n eno = snd ( $1 ) } }

| STRLITERAL { { r e a l e xp r = CStr ( f s t $1 ) ; l i n eno = snd ( $1 ) } }
| TRUE { { r e a l e xp r = CBool ( true ) ; l i n eno = $1 } }
| FALSE { { r e a l e xp r = CBool ( fa l se ) ; l i n eno = $1 } }
| ID { { r e a l e xp r = Var ( f s t $1 ) ; l i n eno = snd ( $1 ) } }
| expr PLUS expr { { r e a l e xp r = ArithBinop ( $1 , Add , $3 ) ; l i n eno = $2 } }
| expr MINUS expr { { r e a l e xp r = ArithBinop ( $1 , Sub , $3 ) ; l i n eno = $2 } }
| expr TIMES expr { { r e a l e xp r = ArithBinop ( $1 , Mult , $3 ) ; l i n eno = $2 } }

112



| expr DIVIDE expr { { r e a l e xp r = ArithBinop ( $1 , Div , $3 ) ; l i n eno = $2 } }
| expr MOD expr { { r e a l e xp r = ArithBinop ( $1 , Mod, $3 ) ; l i n eno = $2 } }
| expr EQ expr { { r e a l e xp r = Comparison ( $1 , EqualTo , $3 ) ; l i n eno = $2 } }
| expr NEQ expr { { r e a l e xp r = Comparison ( $1 , NotEqual , $3 ) ; l i n eno = $2 } }
| expr LT expr { { r e a l e xp r = Comparison ( $1 , LessThan , $3 ) ; l i n eno = $2 } }
| expr GT expr { { r e a l e xp r = Comparison ( $1 , GreaterThan , $3 ) ; l i n eno = $2 } }
| expr LEQ expr { { r e a l e xp r = Comparison ( $1 , LessEq , $3 ) ; l i n eno = $2 } }
| expr GEQ expr { { r e a l e xp r = Comparison ( $1 , GreaterEq , $3 ) ; l i n eno = $2 } }
| expr AND expr { { r e a l e xp r = LogicBinop ( $1 , And , $3 ) ; l i n eno = $2 } }
| expr OR expr { { r e a l e xp r = LogicBinop ( $1 , Or , $3 ) ; l i n eno = $2 } }
| MINUS expr %prec UMINUS { { r e a l e xp r = UnaryMinus ( $2 ) ; l i n eno = $1 } }
| NOT expr { { r e a l e xp r = UnaryNot ( $2 ) ; l i n eno = $1 } }
| ID LPAREN e x p r l i s t RPAREN { { r e a l e xp r = FunCall ( f s t ( $1 ) , $3 ) ; l i n eno = snd ( $1 ) } }
| ID LPAREN RPAREN { { r e a l e xp r = FunCall ( f s t ( $1 ) , [ ] ) ; l i n eno = snd ( $1 ) } }
| expr MCALL ID LPAREN RPAREN { { r e a l e xp r = MethodCall ( $1 , f s t ( $3 ) , [ ] ) ; l i n eno = $2 } }
| expr MCALL ID LPAREN e x p r l i s t RPAREN { { r e a l e xp r = MethodCall ( $1 , f s t ( $3 ) , $5 ) ; l i n eno = $2 } }
| LPAREN expr RPAREN { { r e a l e xp r = $2 . r e a l e xp r ; l i n eno = $1} }
| MAP LPAREN e x p r l i s t RPAREN block { { r e a l e xp r = MapCall (AnonyMap( $5 ) , $3 ) ; l i n eno = $1 } }
| MAP LPAREN e x p r l i s t RPAREN ID { { r e a l e xp r = MapCall (NamedMap( f s t ( $5 ) ) , $3 ) ; l i n eno = $1 } }
| STRLITERAL LARROW expr { { r e a l e xp r = In s t rAs s i gn ( f s t ( $1 ) , $3 ) ; l i n eno = $2 } }

statement :
expr SEMI { Expr ( $1 ) }

| RETURN expr SEMI { Return ( $2 ) }
| MAPDEF ID LPAREN i d l i s t RPAREN block { MapDef ( ( f s t $2 ) , L i s t . rev $4 , $6 , snd ( $2 ) ) }
| ID ASSIGN expr SEMI { Assign ( f s t ( $1 ) , $3 , snd ( $1 ) ) }
| IF LPAREN expr RPAREN block i f t a i l { I fB lo ck ( $3 , $5 , $6 ) }
| INSTRUMENTS LPAREN e x p r l i s t RPAREN SEMI { In s t rDe f ( $3 , $1 ) }
| INSTRUMENTS LPAREN RPAREN SEMI { In s t rDe f ( [ ] , $1 ) }
| SEMI { EmptyStat ( $1 ) }

block :
LBRACE s t l i s t RBRACE { L i s t . rev $2 }

i d l i s t :
ID { [ f s t ( $1 ) ] }

| i d l i s t COMMA ID { f s t ( $3 ) : : $1 }

e x p r l i s t :
expr { [ $1 ] }

| expr COMMA e x p r l i s t { $1 : : $3 }

s t l i s t :
/∗ s t a r i n g in to the abyss ∗/ { [ ] }
| s t l i s t statement { $2 : : $1 } /∗ bu i ld statement l i s t backward ∗/

program :
s t l i s t { Content ( L i s t . rev $1 ) }

i f t a i l :
ELSEIF LPAREN expr RPAREN block i f t a i l { Some ( [ I fB lo ck ( $3 , $5 , $6 ) ] ) }

| ELSE block { Some( $2 ) }
| /∗ nothing ∗/ { None }

;

113



C.1.8 drul scanner.mll

{
open Dru l par s e r
open Lexing
let debugging = ref fa l se
let s tanda lone = ref fa l se
let l ine number = ref 1
let set debug ( ) = debugging := true
let debug s t r = i f ( ! debugging ) then i gno r e ( p r i n t e nd l i n e s t r ) else i gno r e ( )
let e s c ape r e = Str . regexp ” \\\\\\ (\\\\\\ |\”\\ ) ”
(∗ ”\\\\\\( [\\\”]\\)” a l s o works , almost as ug l y ∗)
let e s c ap e r e p l = ”\\1”

(∗ In 3.11 t h i s i s b u i l t in to Lexing , but a las , I have 3 . 1 0 . . . ∗)
(∗ This code l a r g e l y borrowed from a newgroup pos t by T i l l Varoquaux
∗ complaining about i t not be ing b u i l t in :
∗ h t t p :// caml . i n r i a . f r /pub/ml−arch i v e s /caml− l i s t /2008/03/4575 c51493931878a25de6b1712a4b24 . en . html
∗)

let new l ine l exbu f =
in c r l ine number ;
let pos = lexbu f . l e x c u r r p in
l e xbu f . l e x c u r r p <− {

pos with
pos lnum = pos . pos lnum + 1 ;
pos bo l = pos . pos cnum

}

}

let d i g i t = [ ’ 0 ’ − ’9 ’ ]+
let i d e n t i f i e r = [ ’ a ’− ’ z ’ ’A’− ’Z ’ ’ ’ ] [ ’ a ’− ’ z ’ ’A’− ’Z ’ ’ ’ ’0 ’ − ’9 ’ ]∗

r u l e token = parse
’ ’ { debug ( ”whitespace ’b ’ ” ) ; token l exbu f }

| ’\ t ’ { debug ( ”whitespace ’ t ’ ” ) ; token l exbu f }
| ’\ r ’ { debug ( ”whitespace ’ r ’ ” ) ; token l exbu f }
| ’\n ’ { debug ( ”whitespace ’n ’ ” ) ;

new l ine l exbu f ;
token l exbu f }

| ”//” { debug ”COMMENT” ; comment l exbu f }
| ’ ( ’ { debug ”LPAREN” ; LPAREN( ! l ine number ) }
| ’ ) ’ { debug ”RPAREN” ; RPAREN( ! l ine number ) }
| ’{ ’ { debug ”LBRACE” ; LBRACE( ! l ine number ) }
| ’} ’ { debug ”RBRACE” ; RBRACE( ! l ine number ) }
| ’ ; ’ { debug ”SEMI” ; SEMI ( ! l ine number ) }
| ’ , ’ { debug ”COMMA” ; COMMA( ! l ine number ) }
| ’+ ’ { debug ”PLUS” ; PLUS( ! l ine number ) }
| ’− ’ { debug ”MINUS” ; MINUS( ! l ine number ) }
| ’∗ ’ { debug ”TIMES” ; TIMES( ! l ine number ) }
| ’ / ’ { debug ”DIVIDE” ; DIVIDE ( ! l ine number ) }
| ’= ’ { debug ”ASSIGN” ; ASSIGN( ! l ine number ) }
| ”==” { debug ”EQ” ; EQ( ! l ine number ) }
| ”!=” { debug ”NEQ” ; NEQ( ! l ine number ) }
| ’ ! ’ { debug ”NOT” ; NOT( ! l ine number ) }

114



| ’% ’ { debug ”MOD” ; MOD( ! l ine number ) }
| ’< ’ { debug ”LT” ; LT( ! l ine number ) }
| ”<=” { debug ”LEQ” ; LEQ( ! l ine number ) }
| ’> ’ { debug ”GT” ; GT( ! l ine number ) }
| ”>=” { debug ”GEQ” ; GEQ( ! l ine number ) }
| ”&&” { debug ”AND” ; AND( ! l ine number ) }
| ” | | ” { debug ”OR” ; OR( ! l ine number ) }
| ’ . ’ { debug ”MCALL” ; MCALL( ! l ine number ) }
| ” t rue ” { debug ”TRUE” ; TRUE( ! l ine number ) }
| ” f a l s e ” { debug ”FALSE” ; FALSE( ! l ine number ) }
| ” i f ” { debug ”IF” ; IF ( ! l ine number ) }
| ” e l s e ” { debug ”ELSE” ; ELSE( ! l ine number ) }
| ” e l s e i f ” { debug ”ELSEIF” ; ELSEIF ( ! l ine number ) }
| ”mapper” { debug ”MAPDEF” ; MAPDEF( ! l ine number ) }
| ”map” { debug ”MAP” ; MAP( ! l ine number ) }
| ” re turn ” { debug ”RETURN” ; RETURN( ! l ine number ) }
| ” instruments ” { debug ”INSTRUMENTS” ; INSTRUMENTS( ! l ine number ) }
| ”<−” { debug ”LARROW” ; LARROW( ! l ine number ) }
| ’ $ ’ d i g i t as numbers { debug ( ” index va r i ab l e ” ˆ numbers ) ; ID( numbers , ! l ine number ) }
| i d e n t i f i e r as i d e {

i f ( ( S t r ing . l ength ide ) <= 64)
then
(

debug ( ” i d e n t i f i e r ” ˆ ide ) ;
ID( ide , ! l ine number )

)
else r a i s e ( Fa i l u r e ( ”ID TOO LONG: ” ˆ ide ) )

}
| d i g i t as dig { debug ( ” d i g i t s ” ˆ dig ) ; INTLITERAL( i n t o f s t r i n g dig , ! l ine number ) }
| ’ ” ’ ( ( ( ’\\ ’ [ ’ ” ’ ’\\ ’ ] ) | [ ˆ ’\ r ’ ’\n ’ ’\\ ’ ’ ” ’ ] )∗ as rawstr ) ’ ” ’

{
(∗ TODO: accept newlines , then ra i s e ” i l l e g a l charac ter in s t r i n g ?” ∗)
let f i x e d s t r = Str . g l o b a l r e p l a c e e s c ape r e e s c ap e r e p l rawstr in
debug ( ( ” s t r i n g constant [ ” ˆ f i x e d s t r ˆ ” ] ” ) ) ;
STRLITERAL( f i x e d s t r , ! l ine number )

}
| eo f { debug ”EOF” ; EOF( ! l ine number ) }
| as char { r a i s e ( Fa i l u r e ( ” i l l e g a l cha rac t e r ” ˆ Char . escaped char ) ) }

and comment = parse
’\n ’ { new l ine l exbu f ; token l exbu f }

| eo f { debug ”EOF” ; EOF( ! l ine number ) }
| { comment l exbu f }

{
i f ( ! s tanda lone ) then
let l e xbu f = Lexing . f rom channel s td in in
let rec nexttoken buf = ignore ( token buf ) ; nexttoken buf
in nexttoken l exbu f

else i gno r e ( )
}

115



C.1.9 test.ml

open Dru l a s t

let =
let l e xbu f = Lexing . f rom channel s td in in
let = Dru l par s e r . program Drul scanner . token l exbu f in
p r i n t e nd l i n e ”Parsed program ( somewhat ) s u c c e s s f u l l y ! ”
(∗ l e t l i s t i n g = Printer . s t r ing o f p rogram program in
p r i n t s t r i n g l i s t i n g ∗)

C.1.10 treedump.ml

open Dru l p r i n t e r

let =
let l e xbu f = Lexing . f rom channel s td in in
let program = Dru l par s e r . program Drul scanner . token l exbu f in
p r i n t e nd l i n e ( s t r i ng o f p rog ram program )

C.1.11 drul ast.mli

(∗ AST scra t ch ∗)

type intOp = Add | Sub | Mult | Div | Mod

type compOp = EqualTo | NotEqual | LessThan | GreaterThan | LessEq | GreaterEq

type boolOp = And | Or

type mapper =
AnonyMap of statement l i s t

| NamedMap of s t r i n g

and expr =
CInt of i n t

| CStr of s t r i n g
| CBool of bool
| Var of s t r i n g
| UnaryMinus of tagged expr
| UnaryNot of tagged expr
| ArithBinop of tagged expr ∗ intOp ∗ tagged expr
| LogicBinop of tagged expr ∗ boolOp ∗ tagged expr
| Comparison of tagged expr ∗ compOp ∗ tagged expr
| FunCall of s t r i n g ∗ tagged expr l i s t
| MethodCall of tagged expr ∗ s t r i n g ∗ tagged expr l i s t
| MapCall of mapper ∗ tagged expr l i s t
| In s t rAs s i gn of s t r i n g ∗ tagged expr

and statement =

116



Expr of tagged expr
| Return of tagged expr
| Assign of s t r i n g ∗ tagged expr ∗ i n t
| MapDef of s t r i n g ∗ s t r i n g l i s t ∗ statement l i s t ∗ i n t
| I fB lo ck of tagged expr ∗ statement l i s t ∗ statement l i s t opt ion
| In s t rDe f of tagged expr l i s t ∗ i n t
| EmptyStat of i n t

and tagged expr = { r e a l e xp r : expr ; l i n eno : i n t }

type program = Content of statement l i s t

C.1.12 Makefile

OC = ocamlc
CFLAGS = # none fo r now

OBJS = dru l s canne r . cmo d ru l p a r s e r . cmo dru l t ype s . cmo \
d ru l h e l p e r s . cmo dru l output . cmo drul main . cmo

LIBS = s t r . cma unix . cma

a l l : $ (OBJS) dru l

t e s t i n g : t e s t . cmo $ (OBJS)
$ (OC) $ (CFLAGS) −o t e s t i n g $ (LIBS) $ (OBJS) t e s t . cmo

treedump : treedump . cmo $ (OBJS)
$ (OC) $ (CFLAGS) −o treedump $ (LIBS) $ (OBJS) d r u l p r i n t e r . cmo treedump . cmo

s can t e s t : d ru l s c anne r . cmo s can t e s t . cmo
$ (OC) $ (CFLAGS) −o s c an t e s t $ (LIBS) $<

dru l : d r u l i n t e r p r e t e r . cmo $ (OBJS) d r u l a s t . cmi
$ (OC) $ (CFLAGS) −o dru l $ (LIBS) $ (OBJS) d r u l i n t e r p r e t e r . cmo

dru l s canne r . ml : d ru l s canne r . mll
ocamllex $<

d ru l p a r s e r . ml d ru l p a r s e r . mli : d r u l p a r s e r . mly
ocamlyacc $<

%.cmo : %.ml
$ (OC) $ (CFLAGS) −c $<

%.cmi : %.mli
$ (OC) $ (CFLAGS) −c $<

.PHONY : c l ean
c l ean :

rm −f d r u l p a r s e r . ml d ru l p a r s e r . mli d ru l s canne r . ml ∗ . cmo ∗ . cmi t e s t i n g treedump dru l

# Generated by ocamldep ∗ .ml ∗ . mli
d ru l h e l p e r s . cmo : d ru l t ype s . cmo d ru l a s t . cmi
d r u l h e l p e r s . cmx : d ru l t ype s . cmx d ru l a s t . cmi

117



d r u l i n t e r p r e t e r . cmo : d ru l t ype s . cmo dru l s canne r . cmo d ru l p a r s e r . cmi \
drul main . cmo d ru l a s t . cmi

d r u l i n t e r p r e t e r . cmx : d ru l t ype s . cmx dru l s canne r . cmx d ru l p a r s e r . cmx \
drul main . cmx d ru l a s t . cmi

drul main . cmo : d ru l t ype s . cmo d r u l h e l p e r s . cmo d ru l a s t . cmi
drul main . cmx : d ru l t ype s . cmx d ru l h e l p e r s . cmx d ru l a s t . cmi
dru l output . cmo : d ru l t ype s . cmo d r u l h e l p e r s . cmo
dru l output . cmx : d ru l t ype s . cmx d ru l h e l p e r s . cmx
d ru l p a r s e r . cmo : d r u l a s t . cmi d ru l p a r s e r . cmi
d ru l p a r s e r . cmx : d r u l a s t . cmi d ru l p a r s e r . cmi
d r u l p r i n t e r . cmo : d r u l a s t . cmi
d r u l p r i n t e r . cmx : d r u l a s t . cmi
d ru l s canne r . cmo : d r u l p a r s e r . cmi
d ru l s canne r . cmx : d r u l p a r s e r . cmx
dru l t ype s . cmo : d r u l a s t . cmi
d ru l t ype s . cmx : d r u l a s t . cmi
t e s t . cmo : d ru l s canne r . cmo d ru l p a r s e r . cmi d r u l a s t . cmi
t e s t . cmx : d ru l s canne r . cmx d ru l p a r s e r . cmx d ru l a s t . cmi
treedump . cmo : d ru l s canne r . cmo d r u l p r i n t e r . cmo d ru l p a r s e r . cmi
treedump . cmx : d ru l s canne r . cmx d r u l p r i n t e r . cmx d ru l p a r s e r . cmx
d ru l p a r s e r . cmi : d r u l a s t . cmi

C.2 Test Code

C.2.1 LaunchTests.py

#! /usr / bin /env python
”””
DruL team , Columbia (2008) PLT c l a s s
copyr ight DruL team

contact : tb2332@columbia . edu

name : LaunchTests . py
language : python
programer : Thierry Bertin−Mahieux

main program of the t e s t su i t e , launch a l l t e s t s that i t can f i nd .
”””

import os
import sys
import glob
import time
import t emp f i l e

drulpath = ” . . / ”
t e s t spa th = ” . / Tests /”

118



l ogspath = ” . /LOGS/”
mainprog = ” . . / Parser / dru l ”

# returns a l i s t o f f i l e in current d i r
# to use with os . walk
def g r ab t e s t s ( arg=l i s t ( ) , path=”” , names=”” ) :

t e s t s = glob . g lob ( os . path . j o i n ( os . path . abspath ( path ) , ’ ∗ . d r u l t e s t ’ ) )
for t in t e s t s :

arg . append ( t )
return arg

# make sure t ha t a l l t e s t s found have a corresponding output
# i f not , program e x i t s
def make su re t e s t s have output s ( t e s t s ) :

noout = l i s t ( )
for t in t e s t s :

i f not os . path . e x i s t s ( t + ’ out ’ ) :
print ( t+’ out ’ )
noout . append ( t )

i f l en ( noout ) > 0 :
print ’ problem , ’ , l en ( noout ) , ’ t e s t s have no corre spond ing output ’
print ’we stop t e s t i n g . . . . . . . . . go s o l v e i t ! and grab a beer ’
print ’ f i l e s that cause problems : ’
for t in noout :

print t
sys . e x i t (0 )

# launch any command , re turn outputs
def command with output (cmd ) :

i f not type (cmd) == unicode :
cmd = unicode (cmd , ’ ut f−8 ’ )

#shou ld t h i s be a part o f s l a s h i f y or command with output?
#i f sys . p la t form==’darwin ’ :
# cmd = unicodedata . normal ize ( ’NFC ’ ,cmd)

( c h i l d s t d i n , ch i l d s tdou t , c h i l d s t d e r r ) = os . popen3 (cmd . encode ( ’ ut f−8 ’ ) )
data1 = ch i l d s t d ou t . read ( )
data2 = c h i l d s t d e r r . read ( )
c h i l d s t d ou t . c l o s e ( )
c h i l d s t d e r r . c l o s e ( )
return ( data1 , data2 )

# launch one t e s t , g iven a t e s t path , re turns output l i n e s
# ( output i s f i r s t wr i t t en to a f i l e , than read )
def l a unch one t e s t ( tpath ) :

#cmd = ’ head −20 ’ + tpa th
cmd = mainprog + ” < ’ ” + tpath + ” ’ ”
( outdata , out e r r ) = command with output (cmd)
# wri t e to a tempf i l e , then read i t
# dumb , but ea s i e r to compare with a saved output f i l e
tempfname = ”tempfileTODELETE . txt ”
tempf = open ( tempfname , ’w ’ )
tempf . wr i t e ( outdata )

119



tempf . wr i t e ( out e r r )
tempf . c l o s e ( )
o u t l i n e s = r e a d f i l e ( tempfname )
os . un l ink ( tempfname )
return ou t l i n e s

# read f i l e g iven a path , re turn l i n e s
def r e a d f i l e (p ) :

f I n = open (p , ’ r ’ )
r e s = f I n . r e a d l i n e s ( )
f I n . c l o s e ( )
return r e s

# compare two l i s t o f l i n e s , re turns t rue or f a l s e
def c ompa r e 2 s e t o f l i n e s ( l i n e s 1 , l i n e s 2 ) :

i f l en ( l i n e s 1 ) != l en ( l i n e s 2 ) :
return False

for k in range ( l en ( l i n e s 1 ) ) :
i f l i n e s 1 [ k ] != l i n e s 2 [ k ] :

return False
return True

# c r e a t e l o g f i l e , r e turns a path
# i f path a l ready e x i s t s , add something at the end
def c r e a t e l o g f i l e ( ) :

r e s = ”LOG tests ”
r e s += s t r ( time . ct ime ( ) ) . r ep l a c e ( ’ ’ , ’ ’ )
r e s += ’ . l og ’
r e s = os . path . abspath ( os . path . j o i n ( logspath , r e s ) )
i f os . path . e x i s t s ( r e s ) :

counter = 1
while os . path . e x i s t s ( r e s ) :

counter = counter + 1
r e s = r e s [ : −4 ] + ’ ( ’ + s t r ( counter ) + ’ ) . l og ’

return r e s

# add l i n e s to a l o g path , can pass in one s t r i n g or l i s t o f s t r i n g
def add to l og ( l og f , l i n e s ) :

# open l o g f i l e , c r ea t e s i t i f needed
#i f os . path . e x i s t s ( l o g f ) :
# f l o g = open ( l o g f , ’w ’)
#e l s e :
# f l o g = open ( l o g f , ’ a ’ )
f l o g = open ( l og f , ’ a ’ )
# i f s t r i n g
i f type ( l i n e s ) == type ( ” ” ) :

f l o g . wr i t e ( l i n e s + ’ \n ’ )
else :

for l in l i n e s :
f l o g . wr i t e ( l + ’ \n ’ )

# c l o s e

120



f l o g . c l o s e ( )

# he lp menu
def d i e w i th u sage ( ) :

print ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
print ’Welcome to DruL t e s t s u i t e ’
print ’ to launch te s t , type : ’
print ’ LaunchTests . py −go ’
print ’ ’
print ’ t e s t f i l e s should end in : . d r u l t e s t ’
print ’ and corre spond ing outputs : . d r u l t e s t ou t ’
print ’Of course , t e s t names must match , l i k e : ’
print ” ’ t e s t pa t t e rn1 . d r u l t e s t ’ and ’ t e s t pa t t e rn1 . d ru l t e s t ou t ’ ”
print ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
sys . e x i t (0 )

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# MAIN

i f name == ’ ma in ’ :

# launch he lp menu i f needed
i f l en ( sys . argv ) < 2 or sys . argv [ 1 ] != ”−go” :

d i e w i th u sage ( )

# check i f t e s t i n g program e x i s t s and can be found
i f not os . path . e x i s t s ( mainprog ) :

print ”you didn ’ t i n s t a l l the main program , make dru l ”
sys . e x i t (0 )

# grab a l l t e s t s
t e s t s = l i s t ( )
os . path . walk ( te s t spath , g r ab t e s t s , t e s t s )

# make sure a l l t e s t s have an output
make su re t e s t s have output s ( t e s t s )

# make sure we found t e s t s
i f l en ( t e s t s ) == 0 :

print ”dummass , the re ’ s no t e s t s ”
sys . e x i t (0 )

else :
print ’ l aunching ’ , l en ( t e s t s ) , ’ t e s t s ’

# get l o g f i l e
l o g f i l e = c r e a t e l o g f i l e ( )

# launch every t e s t
counter = 0
countpassed = 0

121



c oun t f a i l e d = 0
for t in t e s t s :

counter = counter + 1
newout = launch one t e s t ( t )
goodout = r e a d f i l e ( t + ’ out ’ )
isOK = compa r e 2 s e t o f l i n e s ( newout , goodout )
i f isOK :

countpassed = countpassed + 1
add to l og ( l o g f i l e , s t r ( counter ) + ’ ) t e s t PASSED: ’+t )

else :
c o un t f a i l e d += 1
add to l og ( l o g f i l e , s t r ( counter ) + ’ ) t e s t FAILED: ’+t )
add to l og ( l o g f i l e , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
add to l og ( l o g f i l e , ’ ∗ should be :∗ ’ )
add to l og ( l o g f i l e , goodout )
add to l og ( l o g f i l e , ’ ∗and i t i s :∗ ’ )
add to l og ( l o g f i l e , newout )
add to l og ( l o g f i l e , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )

# r e s u l t s
print ’ passed ’ , countpassed , ’ t e s t s out o f ’ , counter
add to l og ( l o g f i l e , ’########## SUMMARY: ’ )
add to l og ( l o g f i l e , ’ passed ’+s t r ( countpassed)+ ’ t e s t s out o f ’+s t r ( counter ) )

C.2.2 General test files

../TestSuite/Tests/assign1.drultest

a = 3 ;
p = pattern ( ”01” ) ;
map (p) a ;
p r i n t ( ”bad” ) ;

../TestSuite/Tests/assign1.drultestout

Type e r r o r on l i n e 4 : we were expect ing a mapper , name a s s o c i a t ed with something e l s e

../TestSuite/Tests/assign2.drultest

p = pattern ( ”10” ) ;
mapper concat (p) {}
pr in t ( ”bad” ) ;

122



../TestSuite/Tests/assign2.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ concat ’ as a mapper name

../TestSuite/Tests/assign3.drultest

p = pattern ( ”10” ) ;
mapper rand (p) {}
pr in t ( ”bad” ) ;

../TestSuite/Tests/assign3.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ rand ’ as a mapper name

../TestSuite/Tests/assign4.drultest

p = pattern ( ”10” ) ;
mapper s l i c e (p) {}
pr in t ( ”bad” ) ;

../TestSuite/Tests/assign4.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ s l i c e ’ as a mapper name

../TestSuite/Tests/assign5.drultest

p = pattern ( ”10” ) ;
mapper pattern (p) {}
pr in t ( ”bad” ) ;

../TestSuite/Tests/assign5.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ pattern ’ as a mapper name

123



../TestSuite/Tests/beat asPattern1.drultest

p1 = map ( pattern ( ”1111” ) ) { return concat ( $1 . asPattern ( ) , pattern ( ”0” ) ) ; } ;
p r i n t ( p1 ) ;

p2 = map ( pattern ( ”1010” ) , p1 ) { return $1 . asPattern ( ) . r epeat ( 3 ) ; } ;
p r i n t ( p2 ) ;

../TestSuite/Tests/beat asPattern1.drultestout

10101010
111000111000

../TestSuite/Tests/beat note rest.drultest

f oo = pattern ( ”1” ) ;
bar = pattern ( ”10” ) ;
map ( foo , bar ) {

i f ( $1 . note ( ) ) { pr in t ( ”$1 note ” ) ; }
else { pr in t ( ”$1 not note ” ) ; }
i f ( $1 . r e s t ( ) ) { pr in t ( ”$1 r e s t ” ) ; }
else { pr in t ( ”$1 not r e s t ” ) ; }
i f ( $2 . note ( ) ) { pr in t ( ”$2 note ” ) ; }
else { pr in t ( ”$2 not note ” ) ; }
i f ( $2 . r e s t ( ) ) { pr in t ( ”$2 r e s t ” ) ; }
else { pr in t ( ”$2 not r e s t ” ) ; }

} ;

../TestSuite/Tests/beat note rest.drultestout

$1 note
$1 not r e s t
$2 note
$2 not r e s t
$1 not note
$1 not r e s t
$2 not note
$2 r e s t

../TestSuite/Tests/beat simple prevnext.drultest

124



a = pattern ( ”1010” ) ;
map( a ){

pr in t ( $1 . prev ( 1 ) ) ;
p r i n t ( $1 . next ( 1 ) ) ;

} ;

../TestSuite/Tests/beat simple prevnext.drultestout

NULL
REST
NOTE
NOTE
REST
REST
NOTE
NULL

../TestSuite/Tests/beat simple yesno.drultest

a = pattern ( ”101” ) ;
map ( a ) { pr in t ( $1 ) ; } ;

../TestSuite/Tests/beat simple yesno.drultestout

NOTE
REST
NOTE

../TestSuite/Tests/beat simple yesnomaybe.drultest

a = pattern ( ”1010” ) ;
b = pattern ( ”001” ) ;
map (a , b){ pr in t ( $2 ) ; } ;

../TestSuite/Tests/beat simple yesnomaybe.drultestout

REST
REST
NOTE
NULL

125



../TestSuite/Tests/clip1.drultest

a = pattern ( ”1111” ) ;
b = pattern ( ”1” ) ;

instruments ( ” f r ed ” , ”mabel” ) ;
c = c l i p ( a , b ) ;
p r i n t ( c ) ;

d = c l i p (
”mabel” <− a ,
” f r ed ” <− b

) ;
p r i n t (d ) ;

../TestSuite/Tests/clip1.drultestout

[
f r ed : 1111
mabel : 1

]
[

f r ed : 1
mabel : 1111

]

../TestSuite/Tests/clip2.drultest

inst ruments ( ) ;
p r i n t (

c l i p (
pattern ( ”1010” )

)
) ;

../TestSuite/Tests/clip2.drultestout

[
hh c : 1010
sd ac :
bd :
cowbe l l :

]

126



../TestSuite/Tests/clip3.drultest

c l i p = 1 ;
p r i n t ( ”hey , I could a s s i gn something to c l i p , hummmm” ) ;

../TestSuite/Tests/clip3.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t use keyword ’ c l i p ’ as a va r i ab l e

../TestSuite/Tests/clip4.drultest

inst ruments ( ) ;

c l i p ( ”a” <− pattern ( ”01010” ) ) ;

p r i n t ( ”bad . . . ” ) ;

../TestSuite/Tests/clip4.drultestout

I n c o r r e c t func t i on arguments on l i n e 4 : unknown instrument name ’ a ’

../TestSuite/Tests/concat1.drultest

p1 = pattern ( ”1” ) ;
p2 = concat ( p1 ) ;
p r i n t ( p2 ) ; // shou ld p r in t 1

../TestSuite/Tests/concat1.drultestout

1

../TestSuite/Tests/concat2.drultest

p1 = pattern ( ”1” ) ;
p2 = pattern ( ”0” ) ;
p3 = concat ( p1 , p2 ) ;
p r i n t ( p3 ) ; // shou ld p r in t 10

127



../TestSuite/Tests/concat2.drultestout

10

../TestSuite/Tests/concat3.drultest

p1 = pattern ( ”1” ) ;
p2 = pattern ( ”0” ) ;
p3 = concat ( p1 , pattern ( ”” ) , p2 ) ;
p r i n t ( p3 ) ; // shou ld p r in t 10

../TestSuite/Tests/concat3.drultestout

10

../TestSuite/Tests/concat4.drultest

p1 = concat ( pattern ( ) ) ;
p r i n t ( p1 ) ; // shou ld ge t ””

../TestSuite/Tests/concat4.drultestout

../TestSuite/Tests/concat5.drultest

p = concat ( pattern ( ) , pattern ( ”10” ) , concat ( pattern ( ”0” ) , pattern ( ”1” ) ) ) ;
p r i n t (p ) ; // shou ld ge t 1001

../TestSuite/Tests/concat5.drultestout

1001

128



../TestSuite/Tests/concat6.drultest

pr in t ( concat ( ) ) ; // shou ld p r in t ””

../TestSuite/Tests/concat6.drultestout

../TestSuite/Tests/dividebyzero.drultest

1/0 ;

../TestSuite/Tests/dividebyzero.drultestout

Div i s i on by zero attempted on l i n e 1 : D iv i s o r eva lua t e s to 0

../TestSuite/Tests/easycomparisons.drultest

pr in t (1 < 2 ) ;
p r i n t (1 > 2 ) ;
p r i n t (1 == 2 ) ;
p r i n t (1 != 2 ) ;
p r i n t (1 == 2 | | 1 <= 2 ) ;
p r i n t (42 >= 0 ) ;

../TestSuite/Tests/easycomparisons.drultestout

TRUE
FALSE
FALSE
TRUE
TRUE
TRUE

../TestSuite/Tests/falseassign.drultest

f a l s e = 4 ;

129



../TestSuite/Tests/falseassign.drultestout

Syntax e r r o r on l i n e 1 between cha ra c t e r s 0 and 5

../TestSuite/Tests/gcd.drultest

p1 = pattern ( ”1” ) . r epeat ( 3 5 2 ) ;
p2 = pattern ( ”1” ) . r epeat ( 4 0 ) ;

mapper subt rac t ( a , b ) {
i f ( ( a . note ( ) | | a . r e s t ( ) ) && (b . note ( ) | | b . r e s t ( ) ) ) {

return pattern ( ”” ) ;
} e l s e i f ( a . note ( ) | | a . r e s t ( ) ) {

return pattern ( ”1” ) ;
} else {

return pattern ( ”0” ) ;
}

}

mapper s q u i s h r e s t s ( a ) {
i f ( a . note ( ) ) {

return pattern ( ”1” ) ;
}
else {

return pattern ( ”” ) ;
}

}

mapper gcd (a , b) {
i f ( ! a . prev ( 1 ) . note ( ) && ! a . prev ( 1 ) . r e s t ( )

&& ! b . prev ( 1 ) . note ( ) && ! b . prev ( 1 ) . r e s t ( ) ) {
tmp = map (p1 , p2 ) subt rac t ;
p r i n t (tmp . l ength ( ) ) ;
i f ( tmp . l ength ( ) == 0 ) {

// pr in t (” l eng t h i s 0 ! ” ) ;
pr in t ( ” in re turn spot ” ) ;
return p1 ;

} e l s e i f ( ( map(tmp) s q u i s h r e s t s ) . l ength ( ) > 0) {
pr in t ( ”a gt b” ) ;
p1 = tmp ;

} else {
pr in t ( ”b gt a” ) ;
p2 = tmp ;

}
return map(p1 , p2 ) gcd ;

}
return pattern ( ”” ) ;

}
p3 = map(p1 , p2 ) gcd ;

p r i n t ( p3 . l ength ( ) ) ;

130



../TestSuite/Tests/gcd.drultestout

312
a gt b
272
a gt b
232
a gt b
192
a gt b
152
a gt b
112
a gt b
72
a gt b
32
a gt b
8
b gt a
24
a gt b
16
a gt b
8
a gt b
0
in re turn spot
8

../TestSuite/Tests/helloworld.drultest

pr in t ( ” h e l l o world” ) ;

../TestSuite/Tests/helloworld.drultestout

h e l l o world

../TestSuite/Tests/if-elseif-else.drultest

i f ( t rue ) { pr in t ( ” yes ” ) ; } else { pr in t ( ”no” ) ; }
// yes
i f ( f a l s e ) { pr in t ( ”nope” ) ; } pr in t ( ” got here ” ) ;
// got here

i f ( f a l s e ) {

131



pr in t ( ”death everywhere ” ) ;
} e l s e i f ( t rue ) {

pr in t ( ” got i t ! ” ) ;
} else {

pr in t ( ”noooo ! ” ) ;
}

../TestSuite/Tests/if-elseif-else.drultestout

yes
got here
got i t !

../TestSuite/Tests/instrum1.drultest

inst ruments ( ” a l l o ” , ” everyone ” ) ;
p r i n t ( ”done” ) ; // shou ld re turn done

../TestSuite/Tests/instrum1.drultestout

done

../TestSuite/Tests/instrum2.drultest

inst ruments ( ) ; // shou ld p r in t error

pr in t ( ”done” ) ;

../TestSuite/Tests/instrum2.drultestout

done

132



../TestSuite/Tests/instrum3.drultest

inst ruments ( ” t h i e r r y ” , ” rocks ” ) ;

a = 3 ∗ 2 ;

instruments ( ” always ! ” ) ;

p r i n t ( ” should f a i l ! ! ! ! ” ) ;

../TestSuite/Tests/instrum3.drultestout

Instrument r e d e f i n i t i o n attempted on l i n e 6 : don ’ t do that

../TestSuite/Tests/instrum4.drultest

inst ruments = 4 ;
p r i n t ( ” shouldn ’ t be ab le to a s s i gn something to ’ instruments ’ ” ) ;

../TestSuite/Tests/instrum4.drultestout

Syntax e r r o r on l i n e 1 a f t e r cha rac t e r 0

../TestSuite/Tests/instrum5.drultest

p = map ( pattern ( ”1” ) ) { inst ruments ( ”a” ) ; } ;
p r i n t ( ”bad” ) ;

../TestSuite/Tests/instrum5.drultestout

I l l e g a l ass ignment attempted on l i n e 1 : can ’ t d e f i n e instruments i n s i d e mappers

../TestSuite/Tests/map alias.drultest

mapper foo ( a ) { return pattern ( ”0” ) ; }
bar = foo ;
baz = pattern ( ”111” ) ;
p r i n t (map ( baz ) foo ) ;
p r i n t (map ( baz ) bar ) ;

133



../TestSuite/Tests/map alias.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : can ’ t a s s i gn a mapper

../TestSuite/Tests/mapper bad return1.drultest

mapper f r ed (a , b , c ) {
i f ( a . note ( ) ) {

return t rue ;
} else {

return b ;
}

}

map ( pattern ( ”101” ) , pattern ( ”” ) , pattern ( ”10101” ) ) f r ed ;

../TestSuite/Tests/mapper bad return1.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : attempt to re turn an i l l e g a l va lue from th i s mapper

../TestSuite/Tests/mapper bad return2.drultest

mapper f r ed (a , b , c ) {
; // patho logy f o r e v e r !
i f ( a . note ( ) ) {

return t rue ;
} else {

return b ;
}

}

map ( pattern ( ”101” ) , pattern ( ”” ) , pattern ( ”10101” ) ) f r ed ;

../TestSuite/Tests/mapper bad return2.drultestout

I l l e g a l ass ignment attempted on l i n e 2 : attempt to re turn an i l l e g a l va lue from th i s mapper

../TestSuite/Tests/mapper empty.drultest

map( pattern ( ”1010” ) ) { pr in t ( ” beat ” ) ; } ;
map( pattern ( ”” ) , pattern ( ”10101” ) ) { pr in t ( ” count ing to f i v e ” ) ; } ;

134



../TestSuite/Tests/mapper empty.drultestout

beat
beat
beat
beat
count ing to f i v e
count ing to f i v e
count ing to f i v e
count ing to f i v e
count ing to f i v e

../TestSuite/Tests/mapper nobeats.drultest

pr in t ( map ( pattern ( ”0000” ) ) { return pattern ( ”10” ) ; } ) ;

../TestSuite/Tests/mapper nobeats.drultestout

10101010

../TestSuite/Tests/mapper read outer scope.drultest

a = pattern ( ”1001” ) ;
b = pattern ( ”10” ) ;
map (b) { pr in t ( a ) ; } ;

../TestSuite/Tests/mapper read outer scope.drultestout

1001
1001

../TestSuite/Tests/mapper return beat.drultest

pr in t ( map ( pattern ( ”1010” ) , pattern ( ”1101” ) ) {
i f ( $1 . note ( ) ) { return $2 ; }

} ) ;

135



../TestSuite/Tests/mapper return beat.drultestout

10

../TestSuite/Tests/output1.drultest

inst ruments ( ) ;

c = c l i p ( pattern ( ”1010001” ) , pattern ( ) , pattern ( ”000” ) ) ;

c . outputText ( ” f i l e . txt ” ) ;

p r i n t ( ”done” ) ;

../TestSuite/Tests/output1.drultestout

done

../TestSuite/Tests/parse error 1.drultest

pr in t ( a ) ;
p r i n t (b)
p r i n t ( c )

../TestSuite/Tests/parse error 1.drultestout

Syntax e r r o r on l i n e 2 between cha ra c t e r s 0 and 8

../TestSuite/Tests/parse error 2.drultest

f oo bar baz // not so hot , t h i s syntax

../TestSuite/Tests/parse error 2.drultestout

Syntax e r r o r on l i n e 1 a f t e r cha rac t e r 0

136



../TestSuite/Tests/parse error 3.drultest

// t h i s i s to show tha t we can have i n i t i a l e r ror s ∗ a f t e r ∗
// some comments
+
= a
;

../TestSuite/Tests/parse error 3.drultestout

Syntax e r r o r on l i n e 1 a f t e r cha rac t e r 0

../TestSuite/Tests/parse error 4.drultest

// t h i s i s to show tha t we can have i n i t i a l e r ror s ∗ a f t e r ∗
// some comments
f oo ( ) ;
bar ( ) ;
+
= a
;

../TestSuite/Tests/parse error 4.drultestout

Syntax e r r o r between char 0 o f l i n e 1 and char 6 o f l i n e 4

../TestSuite/Tests/pattern1.drultest

a = pattern ( ”101” ) ;
p r i n t ( a ) ;

../TestSuite/Tests/pattern1.drultestout

101

137



../TestSuite/Tests/pattern10.drultest

p0 = map( pattern ( ”1101” ) )
{

i f ( $1 . note ( ) && $1 . next ( 1 ) . note ( ) ) { return pattern ( ”” ) ; }
e l s e i f ( $1 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld be 101

p1 = map( map( pattern ( ”1101” ) )
{

i f ( $1 . note ( ) && $1 . next ( 1 ) . note ( ) ) { return pattern ( ”” ) ; }
e l s e i f ( $1 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

})
{

i f ( $1 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ) ; }

} ;

p r i n t ( p1 ) ; // shou ld re turn 11

../TestSuite/Tests/pattern10.drultestout

101
11

../TestSuite/Tests/pattern11.drultest

mapper mymapper (p)
{

i f (p . note ( ) ) { return pattern ( ”11” ) ; }
else { return pattern ( ”0” ) ; }

} ;
p1 = pattern ( ”010” ) ;
p2 = map (p1 ) mymapper ;
p r i n t ( p2 ) ; // shou ld be 0110

../TestSuite/Tests/pattern11.drultestout

0110

138



../TestSuite/Tests/pattern12.drultest

p11 = map( pattern ( ”1111” ) )
{
i f ( $1 . note ( ) && $1 . next ( 1 ) . note ( ) && $1 . next ( 2 ) . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;
p r i n t ( p11 ) ; // shou ld re turn 1100

../TestSuite/Tests/pattern12.drultestout

1100

../TestSuite/Tests/pattern13.drultest

p11 = map( pattern ( ”10101” ) )
{
i f ( $1 . prev ( 1 ) . note ( ) && $1 . next ( 1 ) . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p11 ) ; // shou ld re turn 01010

../TestSuite/Tests/pattern13.drultestout

01010

../TestSuite/Tests/pattern14.drultest

p0 = map( pattern ( ”110110110” ) )
{
i f ( $1 . prev ( 1 ) . note ( ) | | $1 . next ( 1 ) . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 111111111

139



../TestSuite/Tests/pattern14.drultestout

111111111

../TestSuite/Tests/pattern15.drultest

p0 = map( pattern ( ”001” ) , pattern ( ”111” ) )
{
i f ( $1 . note ( ) && $2 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 001

../TestSuite/Tests/pattern15.drultestout

001

../TestSuite/Tests/pattern16.drultest

p0 = map( pattern ( ”111” ) , pattern ( ”1111” ) )

{
i f ( $1 . note ( ) && $2 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 1110

../TestSuite/Tests/pattern16.drultestout

1110

../TestSuite/Tests/pattern17.drultest

140



p0 = map( pattern ( ”010101” ) , pattern ( ”111000” ) , pattern ( ”000001” ) )

{
i f ( ( $1 . note ( ) | | $2 . note ( ) ) && $3 . r e s t ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 111100

../TestSuite/Tests/pattern17.drultestout

111100

../TestSuite/Tests/pattern18.drultest

p0 = map( pattern ( ”010101” ) , pattern ( ) )

{
i f ( $1 . note ( ) | | 1==1 ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 111111

../TestSuite/Tests/pattern18.drultestout

111111

../TestSuite/Tests/pattern19.drultest

// take s every even index , s t a r t i n g at 0

pat = pattern ( ”00101110100010” ) ; // even indexes : 0111101

he lpe r = pattern ( ”10” ) . r epeat ( pat . l ength ( ) / 2 ) ;

p0 = map( pat , he lpe r )
{

i f ( $2 . note ( ) )

141



{
i f ( $1 . note ( ) ) { return pattern ( ”1” ) ; }

else { return pattern ( ”0” ) ; }
}

else { return pattern ( ”” ) ; }
} ;

p r i n t ( p0 ) ; // shou ld re turn 0111101

../TestSuite/Tests/pattern19.drultestout

0111101

../TestSuite/Tests/pattern2.drultest

p1 = pattern ( ”0101” ) ;
p2 = p1 . repeat ( 3 ) ;
p r i n t ( p2 ) ;

../TestSuite/Tests/pattern2.drultestout

010101010101

../TestSuite/Tests/pattern20.drultest

// copy

p0 = map( pattern ( ”000111010101” ) )
{

i f ( $1 . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;

p r i n t ( p0 ) ; // shou ld re turn 000111010101

../TestSuite/Tests/pattern20.drultestout

000111010101

142



../TestSuite/Tests/pattern21.drultest

pattern = 3 ;
p r i n t ( ” j u s t a s s i gned something to ’ pattern ’ ” ) ;

../TestSuite/Tests/pattern21.drultestout

I l l e g a l ass ignment attempted on l i n e 1 : can ’ t use keyword ’ pattern ’ as a va r i ab l e

../TestSuite/Tests/pattern22.drultest

a = pattern ( ”31” ) ;
p r i n t ( ”bad” ) ;

../TestSuite/Tests/pattern22.drultestout

I nva l i d pattern s t r i n g on l i n e 3 : Patterns d e f i n i t i o n s must be a s t r i n g o f 0 ’ s and 1 ’ s

../TestSuite/Tests/pattern3.drultest

p1 = pattern ( ”001” ) ;
p2 = pattern ( ”111” ) ;
p3 = pattern ( ”101” ) ;

p4 = concat (p2 , p3 , p1 ) ;
p r i n t ( p4 ) ;

../TestSuite/Tests/pattern3.drultestout

111101001

143



../TestSuite/Tests/pattern4.drultest

p1 = pattern ( ) ;
p r i n t ( p1 ) ;
p2 = pattern ( ”” ) ;
p r i n t ( p2 ) ;
p r i n t ( ”end” ) ;

../TestSuite/Tests/pattern4.drultestout

end

../TestSuite/Tests/pattern5.drultest

p1 = concat ( pattern ( ”01” ) , pattern ( ”10” ) , pattern ( ) , pattern ( ”” ) ) ;
p r i n t ( p1 ) ;

../TestSuite/Tests/pattern5.drultestout

0110

../TestSuite/Tests/pattern6.drultest

p1 = pattern ( ”01110” ) . r epeat ( 5 ) ;
a = p1 . l ength ( ) ;
p r i n t ( a ) ;

../TestSuite/Tests/pattern6.drultestout

25

144



../TestSuite/Tests/pattern7.drultest

p1 = pattern ( ”101” ) ;
p2 = map (p1 )
{

i f ( $1 . note ( ) ) { return pattern ( ”11” ) ; }
else { return pattern ( ”0” ) ; }

} ;
p r i n t ( p2 ) ;

../TestSuite/Tests/pattern7.drultestout

11011

../TestSuite/Tests/pattern8.drultest

p1 = pattern ( ”1110111” ) ;
p2 = map(p1 )
{

i f ( $1 . note ( ) ) { return pattern ( ”” ) ; }
else { return pattern ( ”1” ) ; }

} ;
p r i n t ( p2 ) ;

../TestSuite/Tests/pattern8.drultestout

1

../TestSuite/Tests/pattern9.drultest

p9 = map( pattern ( ”1101” ) )
{

i f ( $1 . note ( ) && $1 . next ( 1 ) . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

} ;
p r i n t ( p9 ) ;

145



../TestSuite/Tests/pattern9.drultestout

1000

../TestSuite/Tests/pattern reverse1.drultest

p1 = pattern ( ”010101” ) ;
p2 = pattern ( ”101010” ) ;

p r i n t ( concat ( p2 . r e v e r s e ( ) , p1 . r e v e r s e ( ) ) ) ;

../TestSuite/Tests/pattern reverse1.drultestout

010101101010

../TestSuite/Tests/print.drultest

pr in t ( ” t h i e r r y ” ) ;
p r i n t ( ” r u l z z z z z ! ” ) ;
p r i n t ( ” !@#$%ˆ&∗() )∗&%ˆ +HSVWUO@@” ) ;
p r i n t ( ”//” ) ;
p r i n t (123456 ) ;
p r i n t ( t rue ) ; p r i n t ( f a l s e ) ;

../TestSuite/Tests/print.drultestout

t h i e r r y
r u l z z z z z !
!@#$%ˆ&∗() )∗&%ˆ +HSVWUO@@
//
123456
TRUE
FALSE

../TestSuite/Tests/print stringescapes.drultest

pr in t ( ” h e l l o /\\ ˜ h e l l o |− NIL” ) ;
p r i n t ( ” I ’m r e a l l y \” exc i t ed \” about t h i s t e s t . . . ” ) ;

146



../TestSuite/Tests/print stringescapes.drultestout

h e l l o /\ ˜ h e l l o |− NIL
I ’m r e a l l y ” exc i t ed ” about t h i s t e s t . . .

../TestSuite/Tests/rand1.drultest

r = rand ( ) ;

i f (0 <= r && r <= 1) { pr in t ( ” I t works ! ” ) ; }
else { pr in t ( ”What the h e l l ?” ) ; }

../TestSuite/Tests/rand1.drultestout

I t works !

../TestSuite/Tests/rand2.drultest

r = rand ( 4 ) ;

i f (0 <= r && r <= 3) { pr in t ( ” I t works ! ” ) ; }
else { pr in t ( ”What the h e l l ?” ) ; }

../TestSuite/Tests/rand2.drultestout

I t works !

../TestSuite/Tests/rand3.drultest

rand = 4 ;
p r i n t ( ” a s s i gned something to ’ rand ’ ” ) ;

../TestSuite/Tests/rand3.drultestout

I l l e g a l ass ignment attempted on l i n e 1 : can ’ t use keyword ’ rand ’ as a va r i ab l e

147



../TestSuite/Tests/return1.drultest

p = pattern ( ”111” ) ;

p2 = map (p)
{

return $1 . next ( 1 ) ;
} ;

p r i n t ( p2 ) ;

../TestSuite/Tests/return1.drultestout

11

../TestSuite/Tests/return2.drultest

p = pattern ( ”111” ) ;

p2 = map (p)
{

return $1 . prev ( 1 ) ;
} ;

p r i n t ( p2 ) ;

../TestSuite/Tests/return2.drultestout

11

../TestSuite/Tests/slice1.drultest

p3 = pattern ( ”0011100” ) ;
p r i n t ( p3 . s l i c e (3 , 3 ) ) ;

../TestSuite/Tests/slice1.drultestout

111

148



../TestSuite/Tests/slice2.drultest

p3 = pattern ( ”0011100” ) ;
p r i n t ( p3 . s l i c e (1 , 3 ) ) ;

../TestSuite/Tests/slice2.drultestout

001

../TestSuite/Tests/slice3.drultest

p3 = pattern ( ”0011100” ) ;
p r i n t ( p3 . s l i c e (5 , 3 ) ) ;

../TestSuite/Tests/slice3.drultestout

100

../TestSuite/Tests/trueassign.drultest

t rue = 3 ;

../TestSuite/Tests/trueassign.drultestout

Syntax e r r o r on l i n e 1 between cha ra c t e r s 0 and 4

../TestSuite/Tests/truthtable.drultest

pr in t ( t rue && true ) ;
p r i n t ( t rue && f a l s e ) ;
p r i n t ( f a l s e | | t rue ) ;
p r i n t ( t rue | | f a l s e ) ;

149



../TestSuite/Tests/truthtable.drultestout

TRUE
FALSE
TRUE
TRUE

../TestSuite/Tests/unaryops.drultest

pr in t (−3);
p r i n t ( ! t rue ) ;

../TestSuite/Tests/unaryops.drultestout

−3
FALSE

../TestSuite/Tests/variable readwrite.drultest

a = 42 ;
p r i n t ( a ) ;

../TestSuite/Tests/variable readwrite.drultestout

42

C.2.3 LaunchTestsParser.py

#! /usr / bin /env python
”””
DruL team , Columbia (2008) PLT c l a s s
copyr ight DruL team

contact : tb2332@columbia . edu

name : LaunchTests . py
language : python
programer : Thierry Bertin−Mahieux

main program of the t e s t su i t e , launch a l l t e s t s that i t can f i nd .
”””

150



import os
import sys
import glob
import time
import t emp f i l e

drulpath = ” . . / ”
t e s t spa th = ” . / ParserTest s /”
logspath = ” . /LOGS/”
t e s t i ngp rog = ” . . / Parser / t e s t i n g ” #ac tua l program to t e s t s t u f f

# re turns a l i s t o f f i l e in current d i r
# to use with os . walk
def g r ab t e s t s ( arg=l i s t ( ) , path=”” , names=”” ) :

t e s t s = glob . g lob ( os . path . j o i n ( os . path . abspath ( path ) , ’ ∗ . d r u l t e s t ’ ) )
for t in t e s t s :

arg . append ( t )
return arg

# launch any command , re turn outputs ( s t d i n and s t d e r r )
def command with output (cmd ) :

i f not type (cmd) == unicode :
cmd = unicode (cmd , ’ ut f−8 ’ )

#shou ld t h i s be a part o f s l a s h i f y or command with output?
#i f sys . p la t form==’darwin ’ :
# cmd = unicodedata . normal ize ( ’NFC ’ ,cmd)

( c h i l d s t d i n , ch i l d s tdou t , c h i l d s t d e r r ) = os . popen3 (cmd . encode ( ’ ut f−8 ’ ) )
data1 = ch i l d s t d ou t . read ( )
data2 = c h i l d s t d e r r . read ( )
c h i l d s t d ou t . c l o s e ( )
c h i l d s t d e r r . c l o s e ( )
return ( data1 , data2 )

# launch one t e s t , g iven a t e s t path , re turns s tdou t or s t d e r r
# ( output i s f i r s t wr i t t en to a f i l e , than read )
def l a unch one t e s t ( tpath ) :

cmd = te s t i n gp rog + ” < ’ ” + tpath + ” ’ ”
( outdata , out e r r ) = command with output (cmd)
return ( outdata , out e r r )

# read f i l e g iven a path , re turn l i n e s
def r e a d f i l e (p ) :

f I n = open (p , ’ r ’ )
r e s = f I n . r e a d l i n e s ( )
f I n . c l o s e ( )
return r e s

151



# compare two l i s t o f l i n e s , re turns t rue or f a l s e
def check output ( l i n e s ) :

i f l i n e s == ”” :
return True

i f l i n e s . count ( ”Fata l e r r o r : ” ) > 0 :
return False

return True

# c r e a t e l o g f i l e , r e turns a path
# i f path a l ready e x i s t s , add something at the end
def c r e a t e l o g f i l e ( ) :

r e s = ” LOG parsertests ”
r e s += s t r ( time . ct ime ( ) ) . r ep l a c e ( ’ ’ , ’ ’ )
r e s += ’ . l og ’
r e s = os . path . abspath ( os . path . j o i n ( logspath , r e s ) )
i f os . path . e x i s t s ( r e s ) :

counter = 1
while os . path . e x i s t s ( r e s ) :

counter = counter + 1
r e s = r e s [ : −4 ] + ’ ( ’ + s t r ( counter ) + ’ ) . l og ’

return r e s

# add l i n e s to a l o g path , can pass in one s t r i n g or l i s t o f s t r i n g
def add to l og ( l og f , l i n e s ) :

f l o g = open ( l og f , ’ a ’ )
# i f s t r i n g
i f type ( l i n e s ) == type ( ” ” ) :

f l o g . wr i t e ( l i n e s + ’ \n ’ )
else :

for l in l i n e s :
f l o g . wr i t e ( l + ’ \n ’ )

# c l o s e
f l o g . c l o s e ( )

# he lp menu
def d i e w i th u sage ( ) :

print ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
print ’Welcome to DruL t e s t s u i t e ’
print ’ to launch te s t , type : ’
print ’ LaunchTests . py −go ’
print ’ ’
print ’ t e s t f i l e s should end in : . d r u l t e s t ’
print ’ and corre spond ing outputs : . d r u l t e s t ou t ’
print ’Of course , t e s t names must match , l i k e : ’
print ” ’ t e s t pa t t e rn1 . d r u l t e s t ’ and ’ t e s t pa t t e rn1 . d ru l t e s t ou t ’ ”
print ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
sys . e x i t (0 )

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# MAIN

152



i f name == ’ ma in ’ :

# launch he lp menu i f needed
i f l en ( sys . argv ) < 2 or sys . argv [ 1 ] != ”−go” :

d i e w i th u sage ( )

# check i f t e s t i n g program e x i s t s and can be found
i f not os . path . e x i s t s ( t e s t i n gp rog ) :

print ”you didn ’ t i n s t a l l the t e s t i n g program , make t e s t i n g ”
sys . e x i t (0 )

# grab a l l t e s t s
t e s t s = l i s t ( )
os . path . walk ( te s t spath , g r ab t e s t s , t e s t s )

# make sure we found t e s t s
i f l en ( t e s t s ) == 0 :

print ”dummass , the re ’ s no t e s t s ”
sys . e x i t (0 )

else :
print ’ l aunching ’ , l en ( t e s t s ) , ’ t e s t s ’

# get l o g f i l e
l o g f i l e = c r e a t e l o g f i l e ( )

# launch every t e s t
counter = 0
countpassed = 0
coun t f a i l e d = 0
for t in t e s t s :

counter = counter + 1
( out , ou t e r r ) = l aunch one t e s t ( t )
isOK = check output ( oute r r )
i f isOK :

countpassed = countpassed + 1
add to l og ( l o g f i l e , s t r ( counter ) + ’ ) t e s t PASSED: ’+t )

else :
c o un t f a i l e d += 1
add to l og ( l o g f i l e , s t r ( counter ) + ’ ) t e s t FAILED: ’+t )
add to l og ( l o g f i l e , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
add to l og ( l o g f i l e , ’ l a s t l i n e s : ’ )
i f l en ( out ) < 100 :

add to l og ( l o g f i l e , out )
add to l og ( l o g f i l e , ou t e r r )

else :
add to l og ( l o g f i l e , out [ −100 : ] )
add to l og ( l o g f i l e , ou t e r r )

add to l og ( l o g f i l e , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )

# r e s u l t s
print ’ passed ’ , countpassed , ’ t e s t s out o f ’ , counter
add to l og ( l o g f i l e , ’ ’ )

153



add to l og ( l o g f i l e , ’########## SUMMARY: ’ )
add to l og ( l o g f i l e , ’ passed ’+s t r ( countpassed)+ ’ t e s t s out o f ’+s t r ( counter ) )

C.2.4 Parser test files

../TestSuite/ParserTests/comparisons.drultest

a = 1 ;
b = 2 ;
a < b ;
a <= b ;
a > b ;
a >= b ;
a != b ;
a == b ;
a > b > a ;
( a <= b ) ;
a == b != a > b < a >= a <= b ;

../TestSuite/ParserTests/complexmap1.drultest

map ( h i , you )
{

$1 . note ( ) ;
$2 . r e s t ( ) ;
a = pattern ( ”01” ) ;
i f ( $1 . r e s t ( ) ) { return pattern ( ”” ) ; }
e l s e i f ( $2 . note ( ) ) {return a ;}
else { return a . r epeat ( 2 ) ; }

} ;

../TestSuite/ParserTests/concat.drultest

p1 = pattern ( ”01” ) ;
p2 = concat ( p1 , p1 ) ;
p3 = concat (p1 , p2 , p1 ) ;

../TestSuite/ParserTests/dollarsign.drultest

154



p new rev = map ( p new )
{

$1 . r e s t ( ) ;
} ;

map ( h i , you )
{

$1 . note ( ) ;
$2 . r e s t ( ) ;

} ;

../TestSuite/ParserTests/if1.drultest

i f (1 == 2)
{a = 3 ;}

i f (2 == 2) {}

i f (4 == 4)
{

” a l l o ” ;
b = 1 ;

}

../TestSuite/ParserTests/if2.drultest

i f ( f a l s e && true ) { pattern ( ”01” ) ; }

e l s e i f ( pattern ( ”01” ) == pattern ( ”001” ) )
{ i f ( 3 != 2 ) { pr in t ( ” a l l o ” ) ; }

}

e l s e i f ( t rue | | f a l s e | | ( pattern ( ”0101” ) . r epeat (4 ) >= pattern ( ”0101” ) ) )
{ pr in t ( ”yo ! ! ! ! ! ! ! ! ! ! ” ) ; }

else { a = 2 ; ; ; ; ; }

../TestSuite/ParserTests/ifbare.drultest

i f (1 > f oo ) { bar ; }
1 ;

155



../TestSuite/ParserTests/ifelse1.drultest

a = 1 ;
i f ( a == 1) {b = 3 ;}
else {b = 4 ;}

../TestSuite/ParserTests/ifelseif.drultest

i f (1 > 3) { f oo ; } e l s e i f (1 < 3) {bar ;}

../TestSuite/ParserTests/ifelseifelse.drultest

i f ( foo ) { 1 ; } e l s e i f ( bar ) { 2 ; } else {3 ;}

../TestSuite/ParserTests/instrument.drultest

inst ruments ( yo , man , whats , up ) ;

intruments ( can , we , set , more , complex , th ing s ) ;

intruments ( whats , up ) ;

../TestSuite/ParserTests/logicalAND.drultest

a = 1 ;
b = 2 ;
a && b ;
t rue && true ;
f a l s e && f a l s e ;
t rue && f a l s e ;
f a l s e && true ;
t rue && f a l s e && true ;
f a l s e && f a l s e && true && true ;
( f a l s e && true ) && ( ( f a l s e && f a l s e ) && true ) ;

156



../TestSuite/ParserTests/logicalOR.drultest

a = 1 ;
b = 2 ;
a | | b ;
t rue | | t rue ;
f a l s e | | f a l s e ;
t rue | | f a l s e ;
f a l s e | | t rue ;
t rue | | f a l s e | | t rue ;
f a l s e | | f a l s e | | t rue | | t rue ;
( f a l s e | | t rue ) | | ( ( f a l s e | | f a l s e ) | | t rue ) ;

../TestSuite/ParserTests/logicalORAND.drultest

a = 1 ;
b = 2 ;
( f a l s e | | t rue && f a l s e ) ;
( t rue && f a l s e | | t rue ) ;
( a | | b && 3 | | f a l s e && true ) ;
( t rue | | f a l s e ) && ( ( f a l s e && true | | t rue ) | | t rue ) ;

../TestSuite/ParserTests/mapper.drultest

mapper mymapper (p)
{

return pattern ( ”1” ) ;
}

p = pattern ( ”01” ) ;
p2 = map (p) mymapper ;

mapper mymapper2 ( b la )
{

a = 3 ;
b = 4 ;
r e s = pattern ( ”010101” ) ;
return r e s ;

}

../TestSuite/ParserTests/mappercall.drultest

157



map( a ,b , c ,−3 ) // tha t w i l l be a problem , t ha t w i l l . . .
{a + 3 ; b+ 15 ; ” foo ” ;}
;

../TestSuite/ParserTests/noendline.drultest

//

../TestSuite/ParserTests/patternrepeat.drultest

a = pattern ( ”001” ) ;

b = pattern ( ”01” ) . r epeat ( 4 ) ;
d = a . repeat ( 3 ) ;

../TestSuite/ParserTests/pnote.drultest

// are there o ther use p o s s i b l e s ?
// i s p . note () or p . note ? samething f o r r e s t

p . note ( ) ;
p . r e s t ( ) ;

../TestSuite/ParserTests/print.drultest

pr in t ( ”1” ) ;
p r i n t ( ” a l l o ” ) ;
p r i n t ( ”yo !3748473222937 ‘1−232−/. (∗&ˆ%$#@” ) ;

p r i n t ( pattern ( ”” ) ) ;
p r i n t ( pattern ( ”010111001” ) ) ;

a = pattern ( ”11110” ) ;
p r i n t ( a ) ;
b = 3 ;
p r i n t ( b ) ;

c = c l i p ( a ) ;
p r i n t ( c ) ;

158



../TestSuite/ParserTests/rand.drultest

// not sure o f the syntax , no examples in the Reference Manual

rand ( ) ;

a = rand ( 1 ) ;

../TestSuite/ParserTests/refmanexamplecode.drultest

// copied / pas te from the RefManual , current ver s ion on 11/19/2008

//This code manipulates some pat terns , a s s o c i a t e them to instruments and
// sends them to outputs .
// F i r s t the Instrument d e f i n i t i o n . I t has to be done be f o r e
//any c l i p s are created , o therwi se there w i l l be an error .

inst ruments ( h ihat , bassdrum , crash , snare ) ; // de f ine four instruments

// In t e ge r v a r i a b l e s used as tempos f o r c l i p s .

a = 350 ;
b = 300 ;

//Patterns .

p1 = pattern ( ”100100100” ) ;
p2 = pattern ( ”” ) ; //empty pa t t e rn
p3 = pattern ( ”0” ) ; // pa t t e rn with only one r e s t in i t .
p4 = pattern ( ”1” ) ; // pa t t e rn with only one n o t e in i t .

// p concat i s e s s e n t i a l l y concatenat ion o f th ree pa t t e rn s .

p concat = concat (p1 , pattern ( ”11110000” ) , pattern ( ”00011” ) ) ;

//Make a new pat t e rn us ing above pa t t e rn s and
// the l i b r a r y methods r e p e a t and s l i c e .

p custom = concat ( p2 , p3 . r epeat ( 2 ) , p4 . r epeat ( 3 ) ,
p3 . r epeat (2 ) , p4 . r epeat ( 4 ) , p concat ) ;

p custom new = concat ( p custom , p3 . repeat (2 ) , p concat , p4 . r epeat ( 3 ) ) ;
p new = concat ( p custom new . s l i c e ( 4 , 10 ) ,

p concat . s l i c e (5 , p1 . l ength ( ) ) , p3 . r epeat (7 ) ) ;

//Now some complex pa t t e rn manipulat ion .
//New Patterns .

a l t e r n a t e b e a t s = pattern ( ”10” ) . r epeat ( 8 ) ;
P concat new = concat ( p concat , p custom ) ;

//Anonymous mapping .

159



p new rev = map ( p new )
{

i f ( $1 . r e s t ( ) ) { pattern ( ”1” ) ; }
else { pattern ( ”0” ) ; }

} ;

//Mapper d e f i n i t i o n s .

mapper newMapper1 ( p any )
{

i f ( p any . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”” ) ; }

}

mapper newMapper2 ( p any , a l t e r n a t e b e a t s )
{

i f ( a l t e r n a t e b e a t s . r e s t ( ) ) { return pattern ( ”” ) ; } // pa t t e rn o f l en g t h 0
e l s e i f ( p any . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

}

mapper improved newMapper2 ( p any , a l t e r n a t e b e a t s )
{

i f ( a l t e r n a t e b e a t s . r e s t ( ) ) { return pattern ( ”” ) ; }
e l s e i f ( p any . note ( ) ) { return pattern ( ”1” ) ; }
e l s e i f ( p any . next ( 1 ) . note ( ) ) { return pattern ( ”1” ) ; }
else { return pattern ( ”0” ) ; }

}
p custom new notes = map ( p custom new ) myMapper1 ;
p concat new downbeats = map ( p concat new ) newMapper2 ;

// pr in t out the crea ted pa t t e rn s to Standard Output .

pr in t ( ”Output from Sample DruL Code : ” ) ;
p r i n t ( p concat ) ;
p r i n t ( p custom ) ;
p r i n t ( p custom new ) ;
p r i n t ( p new ) ;
p r i n t ( p new rev ) ;
p r i n t ( p custom new notes ) ;
p r i n t ( p concat new downbeats ) ;
p r i n t ( ”END OF OUTPUT” ) ;

//Pattern a s s o c i a t i on s us ing c l i p s .

// CLIP SYNTAX HAS TO BE REDEFINED
c l i p c omp l e t e = c l i p
(
h ihat <− p concat new downbeats ,
bassdrum <− p custom new notes ,
c rash <− p new rev ,
snare <− p new

) ;

// output c l i p as a midi f i l e

160



out . midi ( ” o u t f i l e 1 . midi ” , c l i p comp l e t e , a ) ; //a = tempo ( Beats per minute )

// Last instrument has an empty beat−pa t t e rn .

c l i p p a r t i a l = c l i p ( p concat , p custom new , p custom ) ;

// output c l i p as a midi f i l e

out . midi ( ” o u t f i l e 2 . midi ” , c l i p p a r t i a l , b ) ; //b = tempo

../TestSuite/ParserTests/simpleint.drultest

a ;

b ;
a ; c ;
d=1;
d = 3 ;
a = d ;

../TestSuite/ParserTests/simplepattern.drultest

a = pattern ( ”01” ) ;
b = pattern ( ”” ) ;
c =pattern ( ” 01010001010101001010101001010101001” ) ;

../TestSuite/ParserTests/simplestring.drultest

” a l l o ” ;
” yo ” ;
” dru l rocks ! ” ;
” 17681217298190@#$%ˆ&∗() #” ;

”//” ;
”” ;

a = ”01010101” ; // may be bad
b = ”” ; // may be bad
c = a + b ; // may be bad

../TestSuite/ParserTests/stdC.drultest

161



a = 1 ;
b = 2 ;
c = 3 ;
d = a ∗ b ;
d = a ∗ b ∗ c ;
e = 1 ∗ 3 ;
f = c / b ;
f = c / b / a ;
g = 4 /2 ;
g = 12 / 24 ;
h = a % b ;
h = a % b % c ;
i = 3 % 14 ;
(3 % 4 / 5) ∗ ( ( a ∗ 2 / h) % ((9 / 3) ∗ (14 ∗ 5 ) ) ) ;

162


	Language White Paper
	Introduction
	Language specification
	Quick tutorial
	Integers
	Pattern
	Map
	Mapper
	More complex examples
	Instruments and Clips


	Tutorial
	Introduction
	The Very Basics
	Say hello!
	Fundamentals
	One more variable type: patterns

	Combining Patterns
	Manipulating Patterns
	Named mappers
	Assembling clips
	The Big Payoff

	Language Reference Manual
	Introduction
	Lexical Conventions
	Comments
	Whitespace
	Characters
	Identifiers
	Keywords

	Types
	integer
	pattern
	beat
	clip
	string

	Statements
	Expression Statements
	Assignment Statements
	Selection Statements
	Mapper Definition Statements
	Return statements
	Instrument definition

	Blocks, namespace and scoping
	Blocks
	Namespace
	Scoping

	Patterns and pattern operations
	Patterns
	Map
	Mapper

	Clips
	Instruments
	Clips

	Outputs
	Standard output
	Text file
	MIDI file
	Lilypond file


	Project Plan
	Processes
	Style Guide
	Timeline
	Roles and Responsibilities
	Tools and Languages
	Tools
	Code Editors
	Documentation
	Version Control

	Project Log

	Architectural Design
	Architecture Diagram
	Component Interfaces
	Component Implemented By

	Test Suite
	Overview
	Implementation
	Sample tests
	Tests for DruL Parser
	Tests for DruL

	Conclusion

	Lessons Learned
	Introduction
	Rob (team leader)
	Ben
	Thierry
	Waseem

	Appendices
	Number of Lines of Code
	Project Log (SVN Commit Log)
	Code Listings
	Language code
	drul_interpreter.ml
	drul_main.ml
	drul_helpers.ml
	drul_output.ml
	drul_printer.ml
	drul_types.ml
	drul_parser.mly
	drul_scanner.mll
	test.ml
	treedump.ml
	drul_ast.mli
	Makefile

	Test Code
	LaunchTests.py
	General test files
	LaunchTestsParser.py
	Parser test files



