
 COMS W4115 Programming Languages & Translators FALL2008

Proposal

VideO Processing Language

VOPL

Sep. 20
th

, 2008

Baolin Shao bs2530

 Huning Dai (hd2210)

 Jia Li jl3272

 Xuyang Shi xs2137

 COMS W4115 Programming Languages & Translators FALL2008

Introduction

Thanks to the information technology, now we are living a digital life, and gone are

the days, when people must have their pictures developed and put into albums.

Instead, we began to use digital cameras and to save pictures in a computer years ago,

which led to an increasing popularity of picture-editing tools. Currently, however,

booming of multi-media requires us move one-step further: we not only want to easily

process images but also to manipulate videos. Unfortunately, there are few languages

that can help programmers effectively develop video-editing tools, keeping them

away from miscellaneous video processing routines. For example, C and C++ are

effective, but they require experienced programmers to do everything from scratch,

such as designing a video class or carefully calculating pixels' positions. Compared

with C and C++, Matlab is more productive, because it provides mechanisms to

directly manipulate images so that complicated image processing becomes simply

calling Matlab’s build-in functions. It is, however, still impossible for programmers to

directly work on videos. Therefore, we propose to develop a VideO Processing

Language (VOPL) by which programmers can easily edit videos. What makes VOPL

unique is that it facilitates video programming by incorporating English-like

statements into the language, much as SQL does for databases. Besides, VOPL

provides basic sequential and flow-control operations with a C-like semantics.

Scope and Limitations

VOPL has basic arithmetic operations and flow-control constructs with a C-like

semantics. This basically allows programmers to specify any mathematical algorithm

they apply to a video. VOPL also offers common routines in video editing, such as

open, delete, insert, etc. As a special feature in VOPL, these instructions are all

English-like statements. What is more, VOPL provides an editing mechanism for

programmers so that they can easily apply customized operations to a video.

Although VOPL seems to be powerful enough to make “stupid video programming”

possible, it still has many limitations. Primarily, there is a constraint on the video’s

format that VOPL can handle. As a course project, VOPL only accepts “.yuv” format,

 COMS W4115 Programming Languages & Translators FALL2008

which contains only raw data without any compression. For more complex file

format, such as rmvb, mpeg and H.26x, we can extend VOPL by adding libraries. The

second issue not addressed in VOPL is efficiency. We assume that computers are fast

enough and have enough resources to complete a task, which is based on the

following arguments. Firstly, video processing is always a resource-consuming task

even implemented by C. Secondly, since computers are growing faster and faster, the

first issues should be considered less and less. Finally, and most importantly,

simplicity and productivity should have first priority among any other considerations,

because people, not computers, are the most expensive resource.

Language Overview

In this section, first we will introduce VOPL's key constructs like load, store, insert,

delete, copy and update. Afterwards, we will present a small VOPL program, which

loads two videos, smoothes part of the first one, and then inserts it into some specific

place of the second one.

Load

Syntax

load video1 from file1 with w and h;

Semantics

Video1 must be a variable defined with a build-in type video and file1 is a string,

indicating the path of the file. “w” and “h” correspond to the width and height of the

video respectively. The load instruction will put data into the video1 variable. This

instruction frees programmers from worrying how data are organized in a file.

Store

Syntax

store video1 to file2;

 COMS W4115 Programming Languages & Translators FALL2008

Semantics

As load, store also requires video1 and file2 to be a video type and a string

respectively. As its name tells, store will put the processed data back to file2.

Insert

Syntax

insert video1 into video2 from i;

Semantics

Video1 and video2 are two video variables and i is an integer number. This instruction

will insert a video, say video1, into another video, say video2, from the i-th frame.

Delete

Syntax

delete video1 from i1 to i2;

Semantics

Delete will cut off video1 from the i1-th frame to the i2-th frame and combine the

remaining two parts together.

Copy

Syntax

copy video1 from i1 to i2 into video2;

Semantics

Copy will duplicate video1's frames from i1 to i2 and put them into video2.

Update

Syntax

update video1 from i1 to i2

 COMS W4115 Programming Languages & Translators FALL2008

{ statements };

Semantics

Update is the most powerful and complex instruction in VOPL. It allows

programmers to design any algorithm and iteratively apply it to a sequence of frames.

Statements within this block can be any C-like statement, but cannot be video related

statements, such as load, store, copy, insert, delete and update. Function calls are

prohibited either. To symbolically manipulate the frame in each iteration, VOPL

provides a dummy frame variable, called this. Programmers can access pixels of this

dummy frame by this(x,y), where x and y are positions of this pixel.

Sample program

void main()

{ video v1,v2;

 load v1 from “/film1.yuv” with 128 and 128;

 load v2 from “/film2.yuv” with 128 and 128;

 update v1 from 5 to 10

 {// a very simple and stupid smoothing algorithm

int i,j;

for(i=0;i<128-1;i++)

 for(j=0;j<128-1;j++)

 this(i,j)=(this(i,j)+this(i+1,j)+this(i,j+1)+this(i+1,j+1))/4;

 };

 delete v1 from 0 to 4;

 delete v1 from 11 to end;

 insert v1 to v2 from 15;

 store v1 to “/film1_new.yuv”;

 store v2 to “/film2_new.yuv”;

 }

 COMS W4115 Programming Languages & Translators FALL2008

Project Plan

Milestones and Timeline

S# Milestones Deliverables Milestone

Date

Responsibility

01 Completion of Project

plan

Project

Proposal

2008-9-24 PM

02 Completion of Language

Reference Manual

 Language

Reference

Manual

 2008-10-10 Everyone

03 Completion of Coding +

Unit Testing

Code, Unit test

results

 2008-11-23 Everyone

04 Completion of Integration

testing

Code,

Integration test

results

 2008-12-1 ML, PM

05 Completion of

Presentation

Presentation of

the language

2008-12-6 PM

06 Completion of Final

Report

Final Project

Report

2008-12-15 Everyone

Life Cycle Process

LC Stage Deliverables

Plan Project plan

Requirement Analysis Language Manual

High Level Design HLD Integrated Test Plan

Detailed Level Design DLD Unit Test Plan

Coding Source Code, Unit test results

Testing Test results

Deployment Product, Presentation, Final Report

 COMS W4115 Programming Languages & Translators FALL2008

Reviews

LC Stage Review Item Type of Review

Group Review/One Person

Review etc

Plan PM plan Group review

Requirement

Analysis

Language Manual Group review

High level

design

HLD, Integrated Test Plan Group review

Detailed level

design

DDL, Unit Test Plan Single / Peer review

Coding Source Code, test results Single / Peer review

Final Report Final Report Group review

Presentation Presentation Group review

Project Organization

 COMS W4115 Programming Languages & Translators FALL2008

Roles and Responsibilities

Role Responsibilities

Project Manager Interaction with quality person

Responsible for the project delivery and entire team coordination

Responsible for handing over the project

Creation of PM plan along with team members

Configuration

Coordinator

Maintain CVS

Maintain all versions of coding

Manage the file ‘defect tracking’ everyday

Make sure the defect are dealt by the owner

Developer Coding

Participation in the team

Can give suggestions

Testing of self coded modules and also other modules

