

COMS 4115: Programming Languages and Translators

SBML: Shen Bi Ma Liang

Chinese Character: 神筆馬良
English Translation: Magic Pen Boy

Language Reference Manual

Bin Liu (bl2329@columbia.edu)
 Yiding Cheng (yc2434@columbia.edu)

 Hao Li (hl2489@columbia.edu)
 Wenhan Zhang (wz2174@columbia.edu)

Oct. 22, 2008

1. INTRODUCTION 3

2. LEXICAL CONVENTIONS 4

2.1 KEYWORDS 4
2.2 IDENTIFIERS (NAMES) 4
2.3 CONSTANTS 4
2.4 STRING 4
2.5 OTHERS 4

3. DATA TYPES 5

3.1 BUILT-IN TYPES 5

4. OPERATORS AND SPECIAL CHARCACTERS 8

4.1 OPERATORS 8
4.1.1 ARITHMETIC OPERATOR 8
4.1.2 COMPARISON OPERATOR 8
4.1.3 LOGIC OPERATOR 8
4.2 SPECIAL CHARACTERS 8

5. FUNCTIONS 10

5.1 USER DEFINED FUNCTIONS 10
5.2 FUNCTION DEFINITION SYNTAX 10
5.3 BUILT-IN FUNCTIONS 10

6.SCOPE RULES 11

7.EXPRESSIONS 12

7.1 PRIMARY EXPRESSIONS 12
7.2 DIGIT(S) 12
7.3 LETTER 12
7.4 IDENTIFIER 12
7.5 OPERATION_CODE 12
7.6 BINARY_OPERATION 12
7.7 ARGUMENT_LIST 12
7.8 ATTRIBUTE_LIST 12
7.9 SET AND GET VALUE 13

8. STATEMENTS 14

9. SAMPLE CODE 15

1. Introduction

SBML is a computer language to generate webpage with versatile objects only based on

the program designed by web designer. The basic idea of this language is to firstly

understand the web design from the user, and then implement the demanded work via

generating corresponding Javascript code, which can be run directly by web browsers.

The name, SBML, inspired by a famous Chinese fairy tale, Shen Bi Ma Liang (Chinese

characters: 神筆馬良), which is the story of a boy who has a magic pen, and whatever

he drew with that pen, it going to turn alive. Unfortunately, the language can not

effectively turn drawings alive, but it can make human thoughts alive on webpage.

SBML actually saved web designers from spending their time to learn various web

development techniques, what they only need is the language designed by us which is

easily understandable, then they don't have to anything else to design the web. By using

SBML, user could create fantastic web pages with various complex shapes. Also, to

make the drawings alive, users are allowed to attach events to every shape they create.

SBML also supports business application. By importing our standard library, designers

may create lots of chart, such as Bar, Line which are Microsoft Excel compatible, which

could be easily utilized to show demos and other fancy stuff to promote your business.

2. Lexical Conventions

2.1 Keywords

The following identifiers are reserved for use as keywords in SBML language:

int bool String

Color Start Born

Draw Mem for

if return else

Coordinate Line Label

Content Page Image

Circle Rect

2.2 Identifiers (Names)

Identifiers are sequences of letters and digits. Identifiers are case sensitive.

2.3 Constants

There is a kind of constant, as follows:

Integer Constants

An integer constant is a sequence of digits. Integers in SBML are all taken as decimal.

The keyword to declare an integer is int.

2.4 String

In SBML, a string is a sequence of characters surrounded by double quotes “ " ”.

2.5 Others

In SBML, we use semicolon “ ; ” as a line break and support empty symbol which use

space “ ” to express.

3. Data Types

type : int | string | build-in-shape;

Types Description

Integer A basic type that contains a 32 bit signed integer, with

a range of -2147483648 to 2147483647

String A basic type that contains a sequence of characters like

Line A built-in type used to draw a line, which has 4

parameters: xstart, ystart, color, stroke

Point A built-in type used to draw a point, which has a

certain postion, containing 2 parameters: xstart, ystart

Circle A built-in type used to draw a Circle, which has 4

parameters: radius, heart, fillcolor, color

Image A built-in type used to load a picture on the page

Page A built-in type used to add a page on the website

Coordinate A built-in type which has two parameters:xstart,ystart

Rect A built-in type which expresses a rectangle in the

image with 6 parameters, position, color, content,

stroke, width, height

Label A built-in type which expresses a data type of a

sequence of characters (or a class used to draw a string,

with 5 parameters: content, font, size, color, coordinate)

3.1 Built-in Types

build-in-shape : Page | Rect | Line | Image | Circle | Color |

Coordinate | Label;

 Color

Color is a type consisting of 4 parameters, the first one for a measurement of

transparency, and the latter three parameters for each chromatic component of a pixel:

red, green and blue. When a color object is created, its properties are all initialized to the

value zero.

 Color

 {

 int A;

 int R;

 int G;

 int B;

 }

 Label

 Label is a data type of a sequence of characters (or a class used to draw a string,

which has 5 parameters: content, font, size, color, coordinate.)

 Label

 {

 String content;

 String font;

 int size;

 Color color;

 Coordinate position;

 }

Coordinate

 Coordinate describes the position of a point in the image by its x and y

coordinates. When a coordinate object is created, its properties are all initialized to the

value zero.

 Coordinate

 {

 int x;

 int y;

 }

Line

Line is a class used to draw a line, which has 4 parameters: xstart, ystart, color,

stroke.

 Line

 {

 Coordinate position;

 Color color;

 int stroke;

 }

Circle:

 Circle is a class used to draw a Circle, which has 4 parameters: radius, heart,

fillcolor, color.

 Circle

 {

 int radius;

 Color color;

 Coordinate heart;

 int stroke;

 }

Rect:

Rect describes a rectangle in the image with 6 parameters, position, color, content,

stroke, width, height.

Rect

{

 Coordinate position;

 Color color;

 Text content;

 int stroke;

 int width;

 int height;

}

4. Operators and special charcacters

4.1 Operators

4.1.1 Arithmetic operator

+

Usage example: operation_code + operation_code // add the two operation codes

-

Usage example: operation_code - operation_code // the fore operation code

subtracts the latter

*

Usage example: operation_code * operation_code // the fore operation code

multiplies the latter

/

Usage example: operation_code / operation_code // the fore operation code

divides the latter

All arithmetic operators are binary operators, among them, multiplication and divide have the
same precedence which is higher than plus and minus, as the same as in basic math.

4.1.2 Comparison operator

In SBML, “<”, “>”, “==”, “<=”, “>=”, “!=” are defined “less than”, “greater than”,

“equal to”, “equal or lesser than”, “equal or greater than”, “unequal to” separately as

comparison operators, which are used between two operation codes as the same as the

computing operators.

4.1.3 Logic operator

In SBML, “||”, “&&” are defined “or”, “and” separately as logic operators, which are

used between two operation codes as the same as the operators mentioned above.

4.2 Special Characters

In SBML, there are some special characters with functional significance:

Special Characters Use Example

() Expression grouping; also used as a

function parameter list delimiter

string a();

{} Initializer list, function body for a = 1 to 2

{ ;

}

" " String literal string str = "hello world";

, Argument list separator string getstring(string a,

string b)

; Line break a=5;

> Draw a graph onto a page Draw rect > page;

. Get the attribute belonged to an

identifier

Rect.width = 5

5. Functions

5.1 User Defined Functions

SBML allows users to create their own functions to realize the specific operations

desired by their on-going design projects. Also the user-defined functions could be

stored in a shared library in order to be accessed and utilized by multiple users or for

multiple projects.

5.2 Function definition syntax
function_declaration : type identifier '('

(declaration (','declaration)* | empty)')'

 '{'

 statements (return_statement semicolon)?

 '}'

5.3 Built-in Functions

build-in-fun : fun_start | fun_draw | fun_mem | fun_born;

 Start (used to create a new page)

Usage example: Start page p; //starts a page p

fun_start : 'Start' 'Page' identifier;

 Born (used to create a new object)

Usage example: Born Circle c; //creates a circle c

 fun_born : 'Born' '(' attribute_list ')';

 Draw (draw an object to a page)

Usage example: Draw c>p; //draws circle c to page p

 fun_draw : 'Draw' identifier '>' identifier;

 Mem (save a page)

Usage example: Mem p; //saves a page p

 fun_mem :'Mem' identifier;

6.Scope Rules

 In SBML, the scope rules are very similar to those in C or C++. A variable or function is
not available until it is declared. Functions cannot be nested and therefore cannot be
overridden after they are declared. They are declared in the global scope and available until
the program completes execution. A variable is available until the end of the block, in which it
was declared, is reached. In the case of variable declared in the global scope, the variable only
goes out of scope on program termination. Nested blocks can access variables defined in
parent blocks. If a new variable is declared in a nested block with the same name as a variable
from a parent block, said variable was overridden. The nested block will then only have access
to the new variable from point of declaration. When the block is closed, the original variable will
return to scope.

7.Expressions

7.1 Primary Expressions
Primary expressions in SBML involving

right_value (identifier, digits, string, binary_operation),

declaration, function_call.

7.2 Digit(s)
The expression digit is defined to include ‘0’-‘9’, and digits is the closure of digit, which

denoted as digit digit *

7.3 Letter
The expression letter includes the lower case letters ‘a’-‘z’ and the upper case letters

‘A’-‘Z’ in English alphabet.

7.4 Identifier
The expression Identifier is the concatenation of the expression letter and the closure of digit or

letter, which is denoted by letter(digit | letter)*.

7.5 Operation_code
The expression operation_code includes digits or identifier, denoted by digits |
identifier

7.6 Binary_operation
The expression binary_operation has the form of the concatenation of a digits or identifier

with a operator followed by another digits or identifier, denoted by

(digits | identifier)(arithmetic operator | comparison_operator |

logical_operator)(digit | identifier)

7.7 Argument_list

Argument is separated by “,”

 argument_list : empty | identifier (',' identifier)*;

7.8 Attribute_list

 attribute : type ':' right_value;

 attribute_list : (attribute)* ;

7.9 Set and get value

 set_value : identifier'.'type;

8. Statements
In SBML, statements are execute sequentially, the following are the types of statements:

statement : declaration | function_call | assignment |

binary_operation | build_in_function | if_statement | for_statement;

statments : (statement semicolon)*;

program : (statements | function_declaration)*;

 If statement:
if_statement : 'if' '(' binary_option ')'

 '{'

 statements

 '}'

 ‘else’

 ‘{’

 Statements

 ‘}’

 Iteration statement:
for_statement : 'for' identifer '=' digits 'to' digits

 '{'

 statements

 '}'

 Declaration statement:
type identifier;

 Assignment statement:
(identifier.attribute | type identifier | identifier) = (string |

digits | identifier | binary_operation)

 Return statement:

return_statement : 'return' identifier | digits | string |

binary_operations;

 Function call statement:
function_call : identifier '(' argument_list ')';

9. Sample Code

This sample code is going to generate a rectangle with a label “hello world” in the page.

Start Page page;

string str = "hello world";

Born Color color = Color{R:0f;G:57;B:89;};

Born Label label = Label{Content:str;Color:color;};

Born Rect rect = Rect{Label:label;Color:color;Width:100;Height:100;};

Draw rect > page;

Mem page;

