

Monte Carlo Simulation Language

Reference Manual

Diego Garcia (dg2275)

Eita Shuto (es2908)

Yunling Wang (yw2291)

Chong Zhai (cz2191)

MCSL LRM

Page 2 of 23

1. Introduction ... 5

Overview ... 5

Goal ... 5

Sub-algorithms: ... 5

Key feature .. 6

Hybrid Style .. 6

2. Lexical Conventions ... 7

Comments ... 7

Identifiers .. 7

Keywords .. 7

Constants ... 8

Integer constants ... 8

Floating constants ... 8

Character constants ... 8

Strings ... 8

3. Conversions ... 9

Floats and integers .. 9

Random type resolution .. 9

4. Expressions ... 10

Objects and lvalues ... 10

Primary expressions .. 10

Identifiers .. 10

Constants ... 10

Strings ... 10

Parentheses .. 10

Functions ... 10

Arrays .. 10

Unary Logical Operator ... 11

! operator .. 11

Arithmetic Operators.. 11

* operator ... 11

_ operator ... 11

operator .. 11

% operator .. 11

MCSL LRM

Page 3 of 23

+ operator ... 11

- operator .. 11

Comparison operators ... 12

< operator .. 12

> operator .. 12

<= operator .. 12

>= operator .. 12

== operator .. 12

!= operator ... 12

Logical operators... 12

& operator ... 12

| operator.. 13

5. Declaration .. 14

Variables .. 14

Type specifier .. 14

Declarator-list .. 14

Declarator .. 14

functions .. 14

6. Statements ... 16

Expression statement... 16

Statement sequence ... 16

Declaration statement .. 16

Branching statement .. 16

Scoping statement ... 17

Listing statement ... 17

Looping statement ... 17

7. Scope ... 18

General Rules .. 18

Scope Classifications .. 18

File Scope .. 18

Function Scope .. 18

Assistant Scope ... 18

Local Scope ... 19

8. Compiler Control Lines .. 20

MCSL LRM

Page 4 of 23

File inclusion ... 20

9. Examples ... 21

PI calculation... 21

Pollard Monte Carlo factorization method .. 21

10. Appendix ... 23

Mc.aggregate (func, input, time) ... 23

Mc.list (func, input, time) ... 23

MCSL LRM

Page 5 of 23

 1. Introduction

Overview

We are studying O'Caml when design this general purpose simulation language. The language aim to

simplify the simulation programming with Monte Carlo method, free the programmers to the

programming details about the simulation and focus on the model of particular problems. The

discussion on generality provided the theoretical base for the feasibility of this idea.

Varieties and derivatives are introduced. For example Quasi-Monte Carlo method, known as the

Halton-Hammersley-Wozniakowski algorithm, uses quasirandom numbers-also called low discrepancy

sequences. And it has much faster speed on the evaluation of numerical integrations. It was

implemented in Mathematica as NIntegrate[f, ..., Method ->QuasiMonteCarlo?]. Matlab uses this

algorithm when calculate t cumulative distribution function for four or more dimensions: mvtcdf uses a

quasi-Monte Carlo integration algorithm based on methods developed by Genz and Bretz. In 1992 a

research group in the computer Science Department at Columbia University started testing QMC, using

improved low discrepancy sequences (LDS), on a 360 dimensional CMO provided by Goldman Sachs.

To our surprise QMC always beat MC. Their research turned into a patent for an estimation method and

system for complex securities using low-discrepancy deterministic sequences.

Goal

Since we are not experts on Monte Carlo theory which becomes more and more subtle and is still under

development. Our goal is not to compare or test the result for different algorithms. Beside, we are going

to provide a language which simplifies the process of generate random numbers or low discrepancy

sequences, aggregation the simulation results and keeps the track of convergences or variational

conditions. Due to the scale of this project, there would been no GUI or any graphics statistics tools.

Importing and exporting will be supported, so data could be visualized in other mathematical softwares.

Sub-algorithms:

 Generation of random numbers

 Uniform distribution:

Mersenne twister: It is designed with Monte Carlo simulations and other statistical

simulations in mind. Researchers primarily want good quality numbers but also

benefit from its speed and portability. Advantages: It was designed to have a period

of 219937 − 1 (the creators of the algorithm proved this property). In practice, there

is little reason to use larger ones, as most applications do not require 219937 unique

combinations (219937 is approximately 4.3 × 106001). It has a very high order of

dimensional equidistribution. It passes numerous stringent tests for statistical

randomness.

 Arbitrary distribution:

Most distribution could be generated by using Uniform[0,1] random numbers.

Algorithms is distribution depended, inverse transformation, acceptance-rejection

method, composition method and etc.

http://code.google.com/p/deyz/w/edit/QuasiMonteCarlo

MCSL LRM

Page 6 of 23

 Generation of low discrepancy sequences

Sobol' type, Van der Corput Sequence, Halton Sequence and Faure Sequence.

Key feature

Most calculations are based on random or quasi-random numbers. So we introduce rand as a built-in

type for our language, the only thing programmer has to do is to specify the algorithm to be used and

the type of distribution.

Hybrid Style

Most parts of the language follows the style of C-language, such as naming of keywords, comments

and functional structures. But we also introduced some features from O'Caml which we believe are

convenient and elegant, such as List.map, List.fold_left and List.iter.

MCSL LRM

Page 7 of 23

 2. Lexical Conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other

separators. In general blanks, tabs, newlines, and comments as described below are ignored except as

they serve to separate tokens. At least one of these characters is required to separate otherwise adjacent

identifiers, constants, and certain operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to

include the longest string of characters which could possibly constitute a token.

Comments

The characters /* introduce a comment, which terminates with the characters */.

Identifiers

An identifier is a sequence of letters and digits; the first character must be alphabetic. The underscore

‘‘’’ counts as alphabetic. Upper and lower case letters are considered different.

Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

int

float

char

string

bool

list

array

vector

if

else

for

rand

return

continue

break

MCSL LRM

Page 8 of 23

Constants

There are several kinds of constants, as follows:

Integer constants

An integer constant is a sequence of digits.

Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of

digits. Either the integer part or the fraction part (not both) may be missing; either the decimal

point or the e and the exponent (not both) may be missing. Every floating constant is taken to be

double-precision. In this language, some mathematical floating constants are referred by their

conventional names in capital case, such as: PI, E. Due to the frequency of their usage, it’s

supported by the language, not math library.

Character constants

A character constant is 1 or 2 characters enclosed in single quotes ‘‘ ´’’. Within a character

constant a single quote must be preceded by a back-slash ‘‘\’’. The language supports basically

alphabetic characters. Certain non-graphic characters, and ‘‘\’’ itself, may be escaped according

to the following table:

BS \b NL \n CR \r HT \t \ \\

The escape ‘‘\ddd’’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to

specify the value of the desired character. A special case of this construction is ‘‘\0’’ (not

followed by a digit) which indicates a null character.

Strings

A string is a sequence of characters surrounded by double quotes ‘‘ "’’. A string has the type

array-of-characters (see below) and refers to an area of storage initialized with the given

characters. The compiler places a null byte (\0) at the end of each string so that programs which

scan the string can find its end. In a string, the character ‘‘ "’’ must be preceded by a ‘‘\’’ ; in

addition, the same escapes as described for character constants may be used.

MCSL LRM

Page 9 of 23

 3. Conversions

In different circumstances, an expression of one type can be used to fulfill the role of a different

type. This section lists the type conversions that can be used implicitly

Floats and integers

All integers may be converted without loss of significance to float. Conversion of float to integer

takes place with truncation towards 0. Erroneous results can be expected if the magnitude of the

result exceeds 2,147,483,647.

Random type resolution

Whenever a randomFloat or a randomInt is used where a float or integer is expected, the

variable's value is resolved.

MCSL LRM

Page 10 of 23

 4. Expressions

An expression is a sequence of operators and operands. The precedence of expression operators

is the same as the order of this section (highest precedence first).

Objects and lvalues

Objects are a manipulable region of memory, and lvalues are expressions referring to objects. In

other word, lvalue can be placed at the left side hand of an assignment statement. Each object has

its type.

Primary expressions

Identifiers

An identifier is name of variables and functions. It begins with any alphabet or underscore and is

any combination of alphabet, digit & underscore. A variable identifier is an lvalue expression.

Constants

A decimals (integer) is a primary expression for an int type, and a floating constant is one for a

float type. A constants is not an lvalue expression.

Strings

A string is a primary expression for a string type. A string is not an lvalue expression.

Parentheses

A parenthesized expression is a primary expression whose type and value are identical to those

of the unadorned expression. The presence of parentheses does not affect whether the expression

is an lvalue

"(" expression ")"

Functions

A function call is a primary expression followed by a list of expression in parentheses. This list is

called argument and can be empty. All arguments is passed by value. Even if function changes

the values of argument, these changes do not affect the value of actual parameters. A function

may return value.

lvalue := expression "(" expression expression ... expression ")"

Arrays

An index of array is specified by integer constants and arithmetic operators. Arithmetic operators

are defined later. It is called a constant expression.

lvalue := expression ".[" constant_expression "]"

MCSL LRM

Page 11 of 23

Unary Logical Operator

! operator

This operator is an unary operator and the result is a negation of the operand.

lvalue := '!' expression

Arithmetic Operators

Arithmetic operators can be used with int and float type. All operand of an operator must be

same type but an auto conversion can be applied. In principle, a type of the result is same as

operands.

* operator

The result is the multiplication of the expressions. This operator can be used with vector type. In

this case, The result is the cross product of the vectors.

lvalue := expression '*' expression

_ operator

The operator is used only with a vector type. The result is the scalar product and a float type. The

number of dimension of operand should be same.

lvalue := expression '_' expression

/ operator

The result is the quotient of the division of the expressions.

lvalue := expression '/' expression

% operator

The result is the reminder of the division of the expressions.

lvalue := expression '/' expression

+ operator

The result is the sum of the expressions. This operator can be used with a vector type, sequence

form and a string type. In case of a sequence form and a string type, the result is the combination

of operands.

lvalue := expression '+' expression

- operator

The result is the difference of the expressions. This operator can be applied to a vector type.

lvalue := expression '-' expression

MCSL LRM

Page 12 of 23

Comparison operators

The result of comparison operators is a boolean type object. The restriction of operands are same

as arithmetic operators.

< operator

When the value of the left hand operand is less than one of right hand operand, this operator

returns true. Otherwise, it returns false.

lvalue := expression '<' expression

> operator

When the value of the left hand operand is greater than one of right hand operand, this operator

returns true. Otherwise, it returns false.

lvalue := expression '>' expression

<= operator

When the value of the left hand operand is less than or equal to one of right hand operand, this

operator returns false. Otherwise, it returns false.

lvalue := expression '<=' expression

>= operator

When the value of the left hand operand is greater than or equal to one of right hand operand,

this operator returns false. Otherwise, it returns false.

lvalue := expression '>=' expression

== operator

When the operands has same value, this operator returns true. Otherwise, it returns false.

lvalue := expression '==' expression

!= operator

When the operands has different value, this operator returns true. Otherwise, it returns false.

lvalue := expression '!=' expression

Logical operators

Operands of logical operators must be a boolean type. The result is also a boolean type.

& operator

The result is a conjunction of the operands.

lvalue := expression '&' expression

MCSL LRM

Page 13 of 23

| operator

The result is a disjunction of the operands.

lvalue := expression '|' expression

MCSL LRM

Page 14 of 23

 5. Declaration

Declarations are used to specify the interpretation which MCSL gives to each identifier; The

declarations of variables and functions are treated differently.

Variables

All variables should be explicitly declared as below:

type-specifier declarator-list;

The type-specifier specified the datatype of the variables in the declarator-list(see section

DataType_?).

The declarator-list specified a list of declarators as explained below.

Type specifier

The type specifiers are:

type specifier:
 int

 char

 float

 boolean

 string

 vector

 list

 array

 randomint

 randomfloat

If the typespecifier is missing from a declaration, it is generally taken to be float.

Declarator-list

The declarator-list is a list of declarators with following format:

declarator-list:
 declarator, declarator-list

 declarator

Declarator

The declarators are names of the variables that are declared.

functions

The declarations of functions have the form

type func function-name (parameter-list) := statement;;

The type is the return type of the function. The func is a keyword indicating what follows is a

http://code.google.com/p/deyz/w/edit/DataType_

MCSL LRM

Page 15 of 23

function declaration. The function-name is the name of the function. The parameter-list is a list

of parameters for the function. They are seperated with comma, and enclosed by "(" and ")".

parameter-list:
 type1 parameter1, type2 parameter2, ... typeN parameterN

statement is defined in the section Statement.

MCSL LRM

Page 16 of 23

 6. Statements

Statements are executed sequentially in the order they are given. For statements with sub-

statements, the statement's type and value is the same as the sub-statement's.

Expression statement

The most basic statement is an expression statement:

expression

This statement has the same type and value as the expression.

Statement sequence

To write a sequence of statements, which are executed left to right, they must be separated by the

;; token:

statement-sequence:
 statement ;; statement-sequence
 statement

This statement has the same type and value as the expression.

Declaration statement

Identifier declaration is done through the following statement:

type-specifier identifier parameter-declarationopt := statement

Where

parameter-declaration:
 (parameter-listopt)

And

parameter-list:
 type-specifier identifier parameter-list
 type-specifier identifier

This form declares identifier as a variable or function. For variables, parameter-declaration is

omitted. For functions, parameter-declaration is mandatory. More on declarations can be read at

the ImplicitDeclaration section.

Branching statement

This statement has the following form:

if expression then statement else-list endif

Where

else-list:
 else statement
 elseif expression then statement else-list

In all forms, the expressions must be of type boolean, and all sub-statements must be of the same

type. The first expression is evaluated, and if true, the following statement is executed. If false,

http://code.google.com/p/deyz/wiki/ImplicitDeclaration

MCSL LRM

Page 17 of 23

the process is repeated with the next elseif expression/statement (if any). If all expressions

evaluate false, the else sub-statement is executed.

Scoping statement

Scoping statements are used to limit the scope of declarations.

with statement-sequence do statement done

Any declarations in the expression will only be valid for the sub-statement.

Listing statement

This statement is used to process list elements.

for identifier in list-identifier do statement done

For each element in the list, the identifier is assigned the element and then the statement is

executed. This is done sequentially in the same order the elements are found in. The identifier

will have the same type than the list's elements. Also, the identifier's scope is limited to the sub-

statement.

Looping statement

Looping statements are used to iterate other statements.

loop statement while expression done

The expression must be of boolean type. The sub-statement is executed, and then expression will

be evaluated. This process will repeat as long as the expression is true.

MCSL LRM

Page 18 of 23

 7. Scope

There are basically two kinds of scopes: lexical scope and scope of externals. Lexical scope is

the region of a program during which it may be used without drawing "undefined identifier"

diagnostics; the scope of externals is the region within which the the same external identifiers are

referenced to the same object. The rules talked here are generally lexical scope rules, as our

language assume the preprocessor will include the external source files into the application

program where the external identifiers are used, thus transferred all the external identifiers into

local ones.

General Rules

Generally, for the different scopes in our language, the variables in the outer scopes are always

visible in the inner scopes, while those in inner scopes are invisible in outer scopes. There are

circumstances, however, that variables in one scope are visible in another scope that is not

overlapped with it. The next section provides detailed explanations for this situation.

Scope Classifications

Below is the typical scope illustration for our language.

file-starts-here
 func a(...)={

 B

 }

 with{

 C

 }

 do{

 D

 }

 A

file-ends-here

There are 4 kinds of different scopes in the illustration above. A is called file scope; B is called

function scope; C is called assistant scope; D is called local scope;

File Scope

The file-scope variables are so called "global variables". The lexical scope of these kinds of

variables is the entire file, which means the variables are visible in all the functions within this

file.

Function Scope

This scope is enclosed by the "{" and "}" after the function declaration. The function-scope

variables refer to the variables that are only visible in one function, that is, the function within

which they are used.

Assistant Scope

This scope is enclosed by the keywords with and do. The variables within this scope are visble in

MCSL LRM

Page 19 of 23

both this assistant scope and the local scope (see local scope that is matched to the current

assistant scope.

Local Scope

This scope is enclosed by the "{" and "}" after the keyword do. Variables within a certain local

scope are only visible within this region.

MCSL LRM

Page 20 of 23

 8. Compiler Control Lines

When a line begins with the character #, it is interpreted not by the compiler itself, but by a

preprocessor which is capable of inserting named files into the source program. In order to cause

this preprocessor to be invoked, it is necessary that the very first line of the program begin with

#. Since null lines are ignored by the preprocessor, this line need contain no other information.

File inclusion

A compiler control line of the form

include "filename"

results in the replacement of that line by the entire contents of the file filename.

MCSL LRM

Page 21 of 23

 9. Examples

PI calculation

This approximates pi by getting random points in a square, and calculating how many fall into an

inscribed circle.

func inCircle (randFloat x, randFloat y) :=

 with

 vector v := <<x, y>>

 do

 if v.size <= 1

 then 1

 else 0

 endif

 done

;;

randFloat domain := Rand.float(0, 1) ;;

func begin(int iterations) :=

 (MC.aggregate (inCircle, (domain, domain), iterations)) / iterations

;;

Pollard Monte Carlo factorization method

 int func rec gcd(int x, int y):=

 if x==0

 then y

else if y==0

then x

else

 gcd(x, y%x)

endif

;;

 int func fact(int N, int b) :=

 with

 k := Math.factorial(b) ;;

 randInt a := Rand.int(2, N-2)

 do

 loop

 f := gcd(mod(a^k-1,N),N)

 while

 f==1

 done

 done

 ;;

 int * int func begin (int N, int b) :=

MCSL LRM

Page 22 of 23

 with

 int f := fact(N, b)

 do

 (f, N/f)

 done

 ;;

MCSL LRM

Page 23 of 23

 10. Appendix

We have a series of Library functions called Monte-Carlo functions that are used exclusively for

Monte-Carlo simulations. All of them are actually loop statements (See the section Statement).

Mc.aggregate (func, input, time)

This function performs simulation for time times. It takes one element of input each time, apply

that to the simulation function func, and add the simulation result to the final return value.

Mc.list (func, input, time)

This function is similar to Mc.aggregate, except that instead of returning the aggregation of all

the simulation result, it returns a list with all the simulation results

