
CRYPS Language Reference Manual

Hsiu-Yu Huang
hh2360@columbia.edu

Minita Shah
mjs2225@columbia.edu

Saket Goel
sg2679@columbia.edu

Sarfraz Nawaz

sn2355@columbia.edu

1 Introduction

CRYPS is a language designed to help regular users as well as
programmers perform cryptographic operations . The language has
support for generation, storage and processing of numbers in singular
and collection forms, which is essential to implementation of common
cryptography mechanisms and research on newer ones.

CRYPS is intended to be used by diverse backgrounds of people.
Internet users can use it to encipher messages before exchanging
confidential information over mail or instant messengers. Also, it could
be used for E-commerce and banking transactions requiring web
authentication. Enterprises with intranet systems can encrypt
employee credentials with CRYPS. Most importantly, it can be used as
a tool to develop new cryptographic algorithms.

2 Lexical Conventions

2.1 Identifiers

An identifier can consist of one or more letters, digits and underscore.
The first character should be a letter followed by any sequence of
letters, digits and underscore character. First ten characters are
significant. Uppercase and lowercase letters are different.

2.2 Comments

Single line comments start with a # character and are terminated at
the end of a line.

Multiple line comments start with ‘(#’ and are terminated with ‘#)’.

2.3 Whitespace

The only way to represent whitespace is by binding it with double
quotes (“ “) on either side, all other forms of whitespace are not
considered.

2.4 Reserved Keywords

if

else

while

for

switch

case

break

default

return

int

void

AND

OR

inc

1.5 Data Types

Fundamental data types are int and void. Apart from the fundamental
data types, there is a class of derived types constructed from
fundamental data types in the following ways:

(1) Arrays of objects of int - The syntax convention for an array is an
identifier followed by ‘[‘ and ‘]’.

(2) Matrix of objects of int

(3) Functions which may or may not return objects of a given type.

1.6 Constants

CRYPS has only integer constants.

1.7 Separators

The ‘,’ symbol is used to represent a comma separated list. The symbol
‘;’ is used to indicate the end of a statement.

1.8 Scope Rules

CRYPS is a block-structured language, and the scope of names
declared in a block is within the body of the block. That is the language
using static scoping.

3 Expressions and Operators

Symbol Operations Associativity

+ Addition Left associative

- Subtraction Left associative

* Multiplication Left associative

/ Division Left associative

^ Exponential Left associative

% Modulus Left associative

= Equal to Left associative

!= Not equal to Left associative

< Less than Left associative

<= Less than or Equal to Left associative

> Greater than Left associative

>= Greater than or Equal to Left associative

<< Left Shift Left associative

>> Right Shift Left associative

@ EXOR Left associative

, Sequence Left associative

AND Logical And Left associative

OR Logical Or Left associative

<- Assignment Right associative

3 Control Structures

Conditional Statement

if (expression) statement

if (expression) statement else statement

While statement

While (expression) statement

For statement

for identifier <- expression to expression statements inc val
statements

Switch statement

switch expression {case constant statements break; default
statements}

4 Declaration

Declarations are used within function definitions to specify the
interpretation for each identifier; Declarations have the form:

declaration:

 decl-specifiers declarator-list;

decl-specifiers:

 type-specifier

type-specifier:

 int

 void

declarator-list:

 declarator

 declarator, declarator-list

Declarators have the syntax:

declarator:

 identifier

declarator ()

5 Namespace

We have only one namespace and have no support for features like
class definitions or typedefs that require additional namespaces.

6 Grammar

prg -> statements

statements -> '{'(stmt';')+ '}'

stmt -> if-stmt | while-stmt | for-stmt | switch-stmt | function-defn

|var-decl | expn | return-stmt

expn -> expn binop expn | unary-op expn |'('expn')'

| function-call | array-val | val

binop -> '+'|'-'|'*'|'/'|'^'|'%'|'<'|'<='|'>'|'>='|'<<'|'>>'|'@'

|'AND'|'OR'|'!='|'='

digit -> ['0' - '9']

assignment-op -> '<-'

unary-op -> '!'|'~'|'-'

type -> int | void

array -> '[' E | expn ']'

array-val -> id '[' expn ']'

matrix -> '[' E | expn ']' '[' E | expn ']'

matrix-val -> id '[' expn ']' '[' expn ']'

if-stmt -> if expn statements

|if expn statements (elseif expn statements)* else statements

while-stmt -> while expn statements

for-stmt -> for id assignment-op val 'to' val ('inc' val)? statements

switch-stmt -> switch expn '{'(case digit+ statements break';')+

default statements'}'

function-defn -> type id '('E | parameters')' statements

parameters -> type parameter ',' parameters | type parameter

parameter -> id | array | matrix

assignment-expn -> id assignment-op expn | id array assignment-op

digit-set

 | id matrix assignment-op digit-mat-set

digit-list -> digit ',' digit-list

digit-set -> '{' digit-list '}'

digit-mat-set -> '{' digit-mat-list '}'

digit-mat-list -> digit-list | digit-list ';' digit-mat-list

function-call -> id '(' E | argument-list ')'

argument-list -> argument | argument ',' argument-list

argument -> val|expn

val -> id | digit+

var-decl -> type var-decl-list

var-decl-list -> id | id',' var-decl-list

 | assignment-expn | assignment-expn',' var-decl-list

 | array | array ',' var-decl-list

 | matrix | matrix ',' var-decl-list

return-stmt -> return | return expn | return val

	CRYPS Language Reference Manual
	Minita Shah 				
	mjs2225@columbia.edu
	Sarfraz Nawaz		 		
	sn2355@columbia.edu

