

 REL
Rules Engine Language

White Paper

Sudhakar Perumal
(skp2111@columbia.edu)

Introduction

 Rules Engine Language (REL) is a simple language to represent condition and
action statements in an effective manner and at the same time it can be interpreted and
executed dynamically during runtime.

1.1 Background

One of the most common challenge that is encountered during software
application design and development is efficiently managing the rules. Rules can be found
in so many forms in software programs, sometimes they are the if-then-else statements
that control the flow of logic and sometimes they are the statements that validate a data
model. Often these rules make up large percentage of the code. Programmers spend most
of their time to organize the rules so that the code becomes manageable and easy to
debug. And in some applications its often required to change the rules frequently, for
example, a sales application may change their rules based on the customer feedback and
market conditions. In those applications its required to externalize the rules from the
application source, so that the programmers need not recompile the entire code base when
those rules change. This introduces another challenge that is how can these rules be
represented so that it can be dynamically interpreted during runtime and executed. It
forces the programmers to formulate syntax to represent these rules and write programs
that can interpret these statements and execute during runtime. This type of software
architectures don’t follow any standard way of representing the rules statements, which
makes it very difficult to learn the syntax and write the rules. Also, it becomes very
difficult to manage the program, which interprets and executes these rules. Common
Programming languages like c++ and java doesn’t provide an concise way to represent
and load these rules dynamically.

 REL provides a clear solution to this problem. This language provides an easier
way to represent the rules in java like syntax. So that it can be understood by anybody
who is familiar with java like language. REL interpreter provides a way to load these
rules dynamically during runtime, which allows the programmer to externalize the rules
into a separate text file and not be part of the main source code. That gives the ability to
modify the rules easily without having to recompile the source code for every little
change in rules.

1.2 GOAL

 Generally, rules consists of a conditional part, which tells what condition should
be satisfied, and the action part, which tells what to do when that condition is satisfied.
Main objective of this language is to provide a way to represent these rules easily and
provide an interpreter to parse the rules and convert into bytecode and then execute them
in JVM.

1.2.1 Portability

Since REL converts the rules into bytecode and then executes it, REL can be used

in all the platforms supported by SUN JVM.

1.2.2 Efficiency

Since the rules are converted into bytecode before execution, REL provides an

efficient way to execute the rules dynamically.

1.3 Main language features

1.3.1 Data types

 Basic data types supported by this language are int, float, string and boolean. It
also supports a collection – map. In order to allow grouping of rules, REL provides an
additional datatype - ruleset.

1.3.2 Statements

The language supports Boolean expressions, if-then-else statements, for loops.

1.3.3 Internal Functions

 The language provides basic functions like print, loadRules and eval (to execute
rules).

1.4 Tutorial

Here is a simple program that will validate a data model. This program
demonstrates how a dataset with certain elements related to person can be
validated against ruleset that dictates what should be the value of each element.
In this example, its required to enter name, add1, city, state and zip. Email is
optional. And zip must be either 5 or 9 characters in length.

 Let us assume the following script is stored as “formvalidation.script”

function boolean isInvalidField(string value) {
 if (value == null)
 return true;
 if (value == "")
 return true;
}

ruleset Validate_PersonalInfo {
 {isInvalidField(name)} -> {error “Please enter name”}
 {isInvalidField(add1)} -> { error “Please enter add1”}
 {isInvalidField(city)} -> { error “Please enter city”}
 {isInvalidField(state)} -> { error “Please enter state”}
 { (zip.length() != 5) || (zip.length() != 9)} -> { error “Invalid zip” }
}

Following program will make use of above script, performs validation
and.displays whether the provided datamodel is valid or not.

loadRules(“formvalidation.script”);

map input, output;

input.name = "test";
input.add1 = "test";
input.city = "test";
input.state = null;
input.zip = “123123”;

boolean ret = eval(“Validate_PersonalInfo”, input, output);

if (!ret)
 print(“Invalid model”);

// output will contain all the fields that resulted in error and corresponding
message if any

while (map.hasMoreElements()) {
 map.next();
 print(map.key + map.value);
}

	REL
	Rules Engine Language
	White Paper
	Sudhakar Perumal
	Introduction
	1.2 GOAL
	1.3 Main language features

