
 

 
 
 

Team SoundHammer: 

Language Proposal for 

Atomic Sound Manipulation Language 

(ASML) 
Frank A. Smith  
fas2114@columbia.edu  
 
Tim Favorite  
tuf1@columbia.edu  
 

Introduction  

    Atomic Sound Manipulation Language is Team SoundHammer's solution to the 
problem of how to make a high level computer language that describes effects that 
can be applied to sound waves.  The idea is to give the programmer access to the 
most elemental levels of a sound's composition in an easy, intuitive way.  This 
elemental access to sounds is the idea from which our language derives its name, as 
we intended the language to operate upon sound at the "atomic" level. 
    ASML will feature typical computer language constructs such as loops, if 
statements, comparators, and arithmetic operators. It will use these features to 
manipulate new primitive types based upon the most fundamental components of 
sound: frequency, amplitude, and time.  Programmers in ASML will be able to use 
these statements and operators to produce general purpose and specialized functions 
to act upon sound waves, their individual frequencies, and other available types.  
Programmers will then be able to aggregate these functions into even more robust 
effects that can be intelligently triggered. 
    Team SoundHammer would like ASML to bring power and ease to the manipulation 
of sound waves in the same way that a language like AWK makes it easy to write 
powerful text file manipulation programs.  We would like to have the user be able to 
use simple commands to open wav files, isolate frequencies and time ranges from 
those files, and manipulate the data therein on either a micro or a macro scale. 

Functional Aspects  

Functionality  

    Any real world sound is, in essence, a sum of the amplitudes of the range of 



frequencies audible to the human ear (20 Hz - 20 kHz). Each frequency is represented 
by a simple sine wave with a unique wavelength. When a dog barks, or a violin plays, 
many frequencies are emitted, each at different amplitudes, and the combination of 
these (called a complex wave) is what gives the sound its unique character.  

   

 

 

 

  
Figure 1: Three simple waves followed by a complex wave made up of the sum of the three simple 
waves (in black) (obtained from 
http://www.umanitoba.ca/faculties/arts/linguistics/russell/138/sec4/specgraf.htm)  
 
So to work with a sound at the most basic level and perform functions such as pitch 
shifting or high-pass filtering, we must be able to pull out individual frequencies or 
ranges of frequencies from the complex wave of an input sound, and manipulate 
them. We'll represent input sound as an indexed list of frequencies, and users will be 
able to access an individual frequency as in the following example, where we are 
accessing the 440 Hz frequency:  

wave f440 = get wave from input at 440hz; 

Users will also be able to access a given sample time from the input sound, as in the 



following example, where we access a 1 second sample starting at 5 seconds into the 
input: 

wave sec5 = get wave from input at 5000ms to 6000ms;  

The "wave" type can represent simple waves (one frequency) or complex waves 
(many frequencies). All waves will be considered 2-dimensional matrices consisting of 
amplitudes, and indexed by frequency and time. For simple waves, all other 
frequencies besides the frequency represented by the simple wave will be considered 
to have an amplitude of zero at all times. 

Major Characteristics  

    ASML will be implemented as a functional language.  The program will accept wav 
files as input and move the input through a series of functions in order to accomplish 
the desired effects upon the sounds.   We may stray from the notion of a purely 
stateless language where it allows for better ease of programming.  
    We will also be implementing ASML as a strongly typed language.  While we will not 
be allowing users to create user defined types, we would also like to ensure against 
users doing actions that do not make sense within the context of sound manipulation.  
There is no reason for a user to write an equation for an amplitude as a function of a 
frequency, so we should prevent a user from doing this.  

• For example:  
• freq f = 10000hz; 
• amp a = f/16;  

Such an equation does not make sense from the perspective of sound manipulation 
because frequency and amplitude are measurements of two collaborating but 
unrelated characteristics of sound.  What's more significant with respect to why we are 
making this a strongly typed language is that such a construction is not really useful.  
The numbers applying to these two different characteristics are on different scales and 
magnitudes and simply do not play well together for such a function, so we intend to 
make the program more strict in this respect.  However, in case sound designers come 
up with ideas that we haven't thought of yet, we will try to incorporate a casting 
system between primitives that are based on numerals (e.g. frequency and time). 
    ASML will also be implemented with lazy evaluation of arguments in mind.  The 
current rationale for this is the fact that sound engineering generally operates upon 
massive and repetitive data structures.  If there is a situation where an argument in a 
function is only used in 40% of the calls made to the function, we would like to save 
that calculation.  We may change our minds on this later depending on the difficulty of 
execution and the value of implementing it this way. 
    Another feature of the language will be the ability to create library files to store and 
share functions.  It is beyond the scope of this project for Team SoundHammer to 
create more than just a few library functions, but we will create a small number for 
testing and demonstration purposes.  This is a core feature of the language as it is 
what will allow programmers and sound designers to make large and interesting 
effects. 
    Although this paper has thus far focused on proposed new primitive types, the 
language will include such standbys as ints, floats, and strings as well.  There is clear 



value in having arithmetic types in such a language, and we will allow new primitives 
to be coerced into these old types where that is logical. 

•     For example  
• amplitude time1 = get amplitude from wave1 at 500ms;  
• amplitude time2 = get amplitude from wave1 at 600ms;  
• float ratio = time1/time2;  
• set amplitude of wave1 at 500ms to ratio;  

Furthermore, these types can be useful for purposes of debugging in the language, 
and this is a reason that we shall also try to include a console printing facility. 
    Finally, it is a goal of ours to try to implement a whole language syntax style that is 
closer to English than most existing high level languages.  The small pieces of code so 
far are intended to represent our notion of how this could look and it is a standard 
that we will try to accomplish in our working version of the compiler. 
    

Control Flow 

   Programs will always have at least one argument: an input file, specified by a -i in 
the command line. In the code, this is represented by the reserved word input.  More 
than one input argument is possible, an output file, specified by a -o. Further 
arguments will be represented within the code by arg_0, arg_1, arg_2,...,arg_n for n 
additional arguments in the code. When the program is executed, it searches the code 
for a main function, and then executes all of the code inside of it. External function 
calls to functions defined in the same file or defined in an external library file included 
via an include statement are permitted. The main must end with a return statement 
that returns a data structure that can be written to a wav file, which will be written to 
the output file (if there is a -o argument) or back to the input file (if there is no -o). 
 
An example program which applies reverb is below: 
 
include "reverb.asml" 
 
main 
    double reverb_time = (double)arg_0; 
    wave out = reverb(input, reverb_time); 
    return out; 
 
end main 

Possible Applications  

   ASML allows for the creation of new sound effects by sound engineers in the realms 
of music, television and film, and telecommunications. Its support for libraries will 
make a standard set of effects readily available for sound engineers who are satisfied 
with the broad range of effects available in applications such as Pro Tools, but their 
open nature will allow for the potential of tweaking the effects as well, should that be 
desirable. 



Challenges  

    Major challenges involve finding the tools in the Java Sound API to achieve the 
granularity desired in our language - it seems to have been designed with pre-set 
mixer functions already built in. Further research needs to be done to determine 
whether this API will be suitable or not.  If it is the case that Java does not offer a 
suitable API, then it will be a major challenge for us to tackle the mathematical 
problems inherent in working with a sound based language.  Naturally, as the focus of 
the class is not sound, we will probably only implement the features that require only 
the most casual knowledge of music theory and calculus. 


