

Programming Languages and Translators

COMS 4115

Ecosystem Modeling Language

EcoMod Language Reference Manual

 Vika Kanchakouskaya

 June 26, 2007

1. Introduction

EcoMod is a language that helps simulate simplified models of ecosystems

for the purposes of observing, studying, and experimenting with such

models. EcoMod syntax resembles that of C++ or Java, making it easy to

pick up for programmers familiar with those languages. However it is

domain-specific and has build-in high-level constructs, which make

ecosystem modeling easier than with general purpose programming

languages. This manual describes the rules and the conventions of EcoMod

and can be used as a reference by EcoMod programmers.

The following conventions are used in this manual to describe the rules of

the language.

* is used to denote one or more of the preceding token

< > are used to enclose a group of tokens

[] are used to enclose an optional token or group of tokens

2. Lexical Conventions

There are 5 types of tokens in EcoMod: keywords, identifiers, constants,

operators and punctuation. White spaces denoted by space, tab, newline, and

carriage return characters serve as separators between tokens and are

otherwise ignored. At least one white space character is required to separate

keywords, identifiers, constants and operators.

2.1 Comments

Comments follow C++ or Java style single line comment convention: all

characters between // and new line or carriage return are considered

comments and are ignored by the compiler. There is no support for multi-

line comments, and // has to be placed at the beginning of every line

intended as a comment.

2.2 Keywords

The following items are reserved as EcoMod keywords and may not be used

otherwise:

if int float System States

else string return Object Habitat

for bool Qualities

while true Transitions

goto false Action

EcoMod is a case sensitive language, and upper and lower case letters are

considered different. It should be noted that domain-specific keywords like

System and Object start with an upper case letter to differentiate them from

general keywords like for and else.

2.3 Identifiers

Identifiers are sequences of alphanumeric characters or underscores starting

with a letter. EcoMod keywords cannot be used as identifiers. E.g. Whale,

piglet, human_being and zebra2 are valid identifiers, while _frog, 4rest, and

Object are invalid.

2.4 Constants

There are 3 types of constants: integers, floats and strings.

Integers are sequences of digits and can only be decimal.

Floats consist of integer part, decimal point, and fractional part.

Integer and fractional parts are sequences of digits and both are

required to form a valid floating constant.

Strings are sequences of characters enclosed in double quotes. A

double quote can be included into a string by escaping it with ‘\’ .

2.5 Operators

EcoMod supports a number of arithmetic, relational and logical operators.

Arithmetic operators: + - / * %

Relational operators: < > <= >= == !=

Logical operator: && ||

Initialization operator: =

Dot operator: .

The meaning and the precedence of the operators is the same as in C++ and

Java. Dot operator is used to select a member of an Object or a System,

similar to selecting a member of a class in C++/Java.

2.6 Punctuation

Punctuation is used to delimit other language tokens. The following

punctuation symbols are supported in EcoMod

; statement delimiter, denotes end of statement

 [] used for array indexing

 {} delimiter for a block of statements

 () delimiter for arguments to a function

“” string delimiter

3. Types

EcoMod supports the following storage types

int 32 bit integer

float floating point number with fractional part

string a string of characters

bool boolean type with values true or false

Object type for objects inhabiting the ecosystem

4. Statements

In EcoMod statements are executed sequentially, unless stated otherwise.

This section describes the types of statements supported in EcoMod

4.1 Expression statements

This is a most common type of statement. Expressions are usually

assignments or function calls and should be separated by semicolons. It is a

good practice to put one expression per line in an EcoMod program.

4.2 Conditional statements

The following types of conditional statements are supported:

 if (expression) { statement; * }

 if (expression) { statement; * } else {statement; * }

In each conditional statement expression is evaluated, and if non-zero or

true, the block of statements is executed, otherwise, if else clause is present,

the block of statements following else is executed. The else ambiguity is

resolved according to C language convention: else is bound to the last

elseless if.

4.3 Loops

 EcoMod supports the traditional while and for loops of the following

format:

while (expression) { statement; * }

for (expression1; expression2; expression3) {statement;*}

In the while loop, the expression is repeatedly evaluated in a loop and the

block of statements is executed as long as the expression is non-zero or true.

In a for loop, expression1 is loop initialization; expression2 is a test

performed before each iteration, which determines if the block of statements

is going to be executed; expression3 is executed after each iteration.

 4.4 Return statements

 return expression;

Return statements are used to return the value of the expression to the caller

of the function.

5. Functions

Due to the fact that EcoMod is a domain specific language that uses FSM to

describe the states that the objects are in, there are several types of functions

supported by the language.

5.1 Transitions

Transitions are functions that check on a specific condition associated with

them and change the state in which the object is in, if the condition holds

true. Transitional functions are implicitly defined as part of Object definition

in the following form:

FSM_name { < state : if (expression) goto state; > * }

FSM_name denotes the name of the group of states and transitions that are

part of one Finite State Machine. This is used to provide support for multiple

FSM’s per Object. Transitions are never called directly, and their evaluation

can be triggered by calling updateFSM() built-in member function as

follows:

 Object_name.updateFSM(FSM_name);

Examples of transition definitions and calls are provided at the end of this

document.

5.2 Actions

Actions are special function that are accessible by the users and provide the

user interface for interacting with the members of the Habitat and for

manipulating their behavior. Actions don’t have return values and are

defined with Action keyword:

Action identifier ([parameter list]) { <statement> *}

5.3 Standard functions

EcoMod also supports standard C++ or Java -like functions, which should be

defined in a traditional way including return type, function name, list of

arguments, and function body enclosed in { }. Such function are private to

Objects and can only be accessed from the body of the Object declaration.

5.4 Built-in functions

Add(Object) - member of System, adds a copy of the Object to the

global Habitat array

Remove() - member of Object, removes the Object from Habitat

Size() - member of Habitat, returns the array size

updateFSM() - member of Object, call all transitional functions and

updates the states

onExit() - member of a State, if defined – is implicitly called

when Object leaves the state

onEntrance() - member of a State, if defined – is implicitly called as

Object enters the state

print() - prints constants to stdout

6 Additional EcoMod Language Specifications and Summary

An EcoMod program generally consists of two parts: definition and main.

6.1 Definition Part

Definitions consist of defining System and Objects that inhabit it. There can

only be one System per EcoMod program. System has a built-in Habitat

array that contains all the objects inhabiting the System. Objects that are

defined within the body of the System definition are added to Habitat

automatically. Additional Objects can be inserted via Add(Object) function

call.

Object definition should be nested into System definition. The first release of

EcoMod only supports one type of Object per System, consequently there

can be only one nested Object definition; however multiple instances of that

Object can be added to the system with the help of Add(Object) function.

Objects may possess certain Qualities, which can be depicted with the help

of Qualities keyword. Qualities are a set of significant attributes, such as

age, sex, defense strategy, health, etc. The behavior of the objects is modeled

via FSM representation, with States and Transitions. Every state has built-in

functions onExit() and onEntrance(), which may or may not be defined.

Actions are Object members that provide a public interface for Object

manipulation.

6.2 Main

Main part of the program in enclosed in void main() function. This is the part

of the program where simulation takes place. main() function with void

return type and no arguments should always be part of an EcoMod program.

7. Sample EcoMod program

// This very simple program defines an experimental humanity
// which is originally inhabited by one person.
// 100 years of humanity development is simulated
// in order to observe how its population grows.
// We make a simplifying assumption that a person
// is able to regenerate independently.
System Humanity
{

 // nested Object declaration
 Object Human
 {
 // Qualities are member variables of the Object
 Qualities:
 int age = 0;
 int avgNumChildren = 2;
 bool hasChildren = false;

 States:
 // FSM name followed by states comprising it
 development = child, adult, aging, dead;

 // Transitions must be defined for every pair of states that can be
 // transformed from one to another with help of Transitions keyword
 Transitions:
 development {
 child:
 if age >= 16 goto adult;
 adult:
 if age >= 45 goto aging;
 aging:
 if age >= 80 goto dead;
 death:
 // onEntry() is defined for State death
 //the Object removes itself from Habitat

 onEntry { Remove();}
 }

 Action Regenerate()
 {
 // checks what the current state of FSM
 // and if the Human regenerated already
 if (development == adult && hasChildren == false)
 {
 for (int i=0; i<avgNumChildren; i++)
 {
 Humanity.Add(Human); // copies Human and adds it to Habitiat
 }
 hasChildren = true;
 }
 }
 }
}

// Main part of the program
void main()
{

 int period = 100;

 for(int year =0; year < period; year = year+1)
 {
 for (int index = 0; index < Habitat.Size(); index = index+1)
 {
 Habitat[index].age++;
 Habitat[index].updateFSM(development);
 Habitat[index].Regenerate();
 }
 }
 print(“Humanity has ”);
 print(Habitat.Size());
 print(“ people\n”);
}

