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What is SIGL?

• Simple Image Generation Language: simple language for drawing

2D images

• Motivation

– VRML language: standard 3D model specification

– Lack of controlling flow

– Repetition required

– Only suitable for machine generation

• Introduce more control in form of C-like syntax
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Drawing in SIGL

• Draw 3 vertically aligned boxes

for (i = 0;i < 3;++i)
{

:translate(0, i * 2): {
rectangle(0, 0, 1, 1);

}
}
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Features

• Drawing features

– OpenGL-like drawing mechanism

– Support commonly used primitives: lines, circle, ellipse, polygons

– Transformations: translation, rotation, scale

• Language features

– C-like language

– Support nearly all C constructions (except for switch)

– Data types: int, double, boolean, associative array

– Dynamic type system, no type decoration

– Static scoping

– Applicative evaluation order
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Grammar

• C-like operators / comments / ID

– Three types of operational tokens: Integer, real number, logical

• C-like arithmetic precedent etc.

– Mult, Div, and Mod precedence over addition and subtraction

• C-like function declaration and flow control statements

– for, if, while, break, continue, return, empty statement (;)
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Parser - Walker

• Build AST tree in 2 steps

– Build default ANTLR tree (Parser)
while_stmt : "while"^ LPAREN! expr RPAREN! stmt ;

– Transform default AST tree into object tree (Walker)
#("while" e1=expr s1=stmt { s = new While(e1, s1); } )

• Store location of the expressions for debugging purposes.

#(LOR a=expr b=expr { e = new LogicalOperation("||", a, b);
e.setLine(#LOR.getLine()); e.setColumn(#LOR.getColumn()); } )

• The object tree makes Walker simpler, allows language flexibility
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Class Hierarchy

Stmt 

Value 

IntValue RealValue ArrayValue BoolValue FunctionValue ThunkValue 

Expr 

BinaryOperation 

UnaryOperation 

ArithmeticOperation 

LogicalOperation 

BoolConstant 

IntConstant 

RealConstant RelationalOperation 

If 

For 

While 

Block 

Break 

Continue 

Return 

Function 
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Type checking

• Expressions are evaluated into Values

• Type-checking is done using Values

• Example: “%” operator

– Evaluate left hand side to val1
– Evaluate right hand side to val2
– Check that both val1 and val2 are both of type IntValue
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Environment

• Stored current states of the program

• Components:

– Symbol table

– Drawing canvas (this includes colors, etc.)

– Current transformation

– Break, continue, return flag
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Symbol table

• Desired behavior

x = 1; // x is bound to 1
{

x = 5; // x is bound to 5
y = 6; // x is bound to 5, y is bound to 6

}
// x is bound to 5, y is unbound

name stub value 

name 

name stub value 

value 

Clone Extend 

name stub value 

value stub 

Extend destructively 
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Functions

• Functions are first-order entities in SIGL

– Can be passed as arguments to other functions

• Function declarations are evaluated into FunctionValues

• FunctionValue: tuple of 2 values fv = (f,env)

– The function f itself

– A cloned environment env of the environment at which the

function is declared

• Handle recursive function: bind destructively f to fv in env
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Function call evaluation

• Retrieve FunctionValue associated with the given name

• Execute the function (stored in FunctionValue)

– Static scoping: using the environment stored in FunctionValue

– Dynamic scoping: using the current environment

• Evaluation order

– Applicative order: evaluate each argument expressions and pass

to the function

– Normal order: create a ThunkValue

∗ ThunkValue: tuple (expr,env)
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Modified access in symbol table

• ThunkValue should only be evaluated once

• Access is called:

– Get the value

– If the value is ThunkValue

∗ Evaluate expr in ThunkValue using env in ThunkValue

∗ Replace ThunkValue in symbol table with new value

– return value
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Built-in functions

• Don’t need to change lexer/parser

• Implement as FunctionValue

• Automatically loaded
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Testing

• Some unit testing using JUnit

• Peer-review

• Big-bang testing
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Thank you

Questions?
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