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Chapter 1

Introduction and Motivation

SAMPL is a simple, functional, strictly typed, potentially platform-independent,
translated, high-performance signal processing language.

1.1 Introduction

SAMPL is a language used for signal and music processing. It produces
programs that take in audio streams as input and outputs the modified audio
stream along with text output. SAMPL also allows for the sampling of
the audio file to be transparent to the user, with the user defining desired
behavior for the program and the actual loop for the sampling happening in
the background. As a program designed for the processing of music, it has
domain-specific types. SAMPL has primitive types including time, frequency,
and intensity, along with string and integer types. SAMPL has the potential
for platform-independence as it will be translated to C. Possible applications
of SAMPL are as simple as frequency filters, effects(such as reverb), and as
complex as identifying and filtering a particular instrument.

1.2 Functional

SAMPL is a functional programming language in which programs define the
output stream in terms of various operations on the input stream. Programs
consist of a series of recursive definitions. The language provides functions
for sampling the input stream, such as
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frequency 200 hz

rmsvolume .5 sec

i.e. samples of the input which vary over time
and
highpass 400hz stream

i.e. functions for mutating streams to produce other streams

1.3 Strictly Typed

SAMPL is strictly typed, providing types directly related to signal processing
such as frequency, time, and intensity. It also provides string and integer
types. Programs specify values of these types by specifying units, as in 300
hz, 20 rad, or 50.3 sec. The language supports basic operations such as
comparing, adding, or scaling values of a given type, and provides functions
for converting between types in meaningful ways (such as frequency–time).

1.4 Control Flow

One of the key features of SAMPL is that the process of scanning and sam-
pling input is transparent to the user. Ordinarily, a program for signal pro-
cessing would need to implement a tight loop which encapsulates the process
of reading the input and updating state as necessary. This process is concep-
tually distinct from the specification of the audio transformations and users
shouldn’t need to implement it. To accommodate this, SAMPL implements
this loop in the background, and a program’s control flow is based upon
constructs for applying filters when certain conditions hold.

Such constructs include “if-then-else”, which takes on a different value
depending on some condition, as in

if rmsvolume .5 sec > .75 lfs

lowpass 5000hz input

else

input

end

which applies a low-pass filter to the input when and only when the input is
sufficiently loud.
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These control structures limit the layers of indirection between the pro-
grams and their intended effects.

1.5 Possible Applications

SAMPL has a number of possible applications, ranging from simple to com-
plex processing tasks. Simple applications in SAMPL will allow low or high
pass filters to be applied to the stream, outputting the filtered stream. An-
other application will be applying reverb to the input stream. These appli-
cations can be made more complex in applying a high pass filter whenever a
there is a frequency lower than a specified frequency and apply reverb only
when the intensity exceeds a certain value. SAMPL will also make it possible
to write applications to recognize particular instruments which will make it
possible to filter out the flute, or only filter out the flute while there is a
trumpet playing. Programs generated by the SAMPL compiler are them-
selves inherently modular, as users can easily pipe output from one program
to another.
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Chapter 2

Tutorial

2.1 Hello, world

SAMPL programs, like programs in other functional languages, consist of a
sequence of definitions. Our equivalent of a “hello, world” program is one
which defines the output equal to the input, without modification.

let intensity output = input

The let keyword signifies a new definition. intensity output is what
we are defining, that is, a term output whose value is an intensity which
varies over time. output is a special term in that the program’s output stream
takes on its value. The output term must always have type intensity.
Other possible types in general are scalar, frequency, angle, time, and
boolean. On the right hand side of the =, we define that the value of output
should be equal to the value of the term input. input is a built-in term
representing the input stream.

2.2 Functions

In SAMPL one can define terms which take arguments (functions). For
example, consider this program:

let intensity halve intensity x = x / 2

let intensity output = halve input

/* comments are C-style

multi-line comments */
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intensity halve again denotes a term halve with values of type intensity.
intensity x denotes a formal parameter x, also of type intensity. halve is
a function from intensities to intensities. SAMPL is a pure language in that
functions may not have side-effects beyond specifying an output value.

2.2.1 Higher-order functions, Currying, and partial ap-
plication

Functions in SAMPL may be treated as values in that they can be taken as
parameters or returned as results. Consider the following program:

let intensity output = filter halve input

let intensity filter intensity->intensity f intensity x = f x

let intensity halve intensity x = f x

The most important thing to note in this program is how intensity->intensity

uses the -> operator to denote a type of functions from intensity to intensity.
Multi-argument functions are implemented in SAMPL using the tech-

nique of Currying. A function taking two arguments is a function from its
first argument to a function from its second argument to its result. The
function can thus be evaluated by passing its arguments successively, that is,
by passing the second argument to the result of the first application. The “.”
operator for building functional types is appropriately right-associative—the
type signature for a function from a and b to c is a->b->c, or, more explicitly,
a->(b->c).

An interesting implication of Currying is the ability to partially apply
arguments to functions. Given the definitions above, filter halve is inter-
changeable with just halve, i.e a function which halves its argument.

2.3 Operators and types other than intensity

In general, types other than boolean may be multiplied or divided by scalar
to yield the same type. The same (non-boolean) types may be divided by each
other to obtain scalars. In addition, multiplying frequency by time yields an
angle (one Hz times one second yields one radian); the corresponding rules
for division also hold. Booleans may be combined with & and |. not is a
built-in function for negation. Any two values of the same (non-boolean)
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type may be compared with < and >. Equality tests are not provided, as
variables represent imprecise continuous numbers.

2.3.1 Constants

Constants in SAMPL are by default scalars, as used in the above programs.
To denote constants of other types, one must use a unit specifier. For ex-
ample, a frequency constant may be specified for example with 2.5 hz. The
unit specifiers are

hz for frequency
sec for time
rad for angle (in radians)
lfs for intensity

Note that lfs stands for “linear full scale”, an invented term indicating
that a value of 1 lfs denotes the maximum intensity that fits with in the
sampling parameters (full scale), and that .5 lfs is half that intensity, et
cetera (linear).

2.4 Useful functions and an example program

There are several useful functions built in to SAMPL, including:

sin x

sin takes an angle —x— and returns a scalar
cos x works similarly
highpass freq stream takes frequency and intensity arguments
It returns an intensity value corresponding to filtering out all fre-
quencies below the one specified from the provided stream.
lowpass freq stream works similarly
freqStrength freq stream takes frequency and intensity argu-
ments
It returns an intensity value representing the strength of that fre-
quency in the provided stream.
volume t stream takes time and intensity arguments and re-
turns an intensity representing the average volume using the spec-
ified window width.
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rand is a scalar value which represents randomly fluctuating noise
between 0 and 1.

The following is a complete program to add static hiss at one tenth the
original volume. It demonstrates the conciseness of most SAMPL programs.

let intensity output = hiss input

let intensity hiss intensity stream =

stream + rand * volume .1 sec stream / 10
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Chapter 3

Manual

3.1 Lexical Conventions

Tokens consist of identifiers, keywords, numbers, the ‘=’ sign, the ‘->’ type
builder, parentheses, and operators. Whitespace may include spaces, tabs,
newlines, and carriage returns, and is ignored except in that it separates
tokens.

3.1.1 Identifiers

Identifiers are strings of alphanumeric characters starting with an alphabetic
character. They are case sensitive and may be of unlimited length.

3.1.2 Keywords

The keywords have special syntactic meaning and may not be used as iden-
tifiers:

angle boolean else end frequency hz if intensity let lfs

rad scalar sec then time

if, then, else, and end are used in conditional expressions. angle,
boolean, frequency, intensity, and scalar denote types and are used for
type signatures in definitions. hz, lfs, textttrad, and sec are unit specifiers
and are used to indicate the type of numerical constants. let is a keyword
representing the start of a definition.
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3.1.3 Numbers

The convention for numbers is based upon the convention for floating con-
stants in C. They consist of an integer part, a decimal point, a fraction part,
an e or E, an exponent sign, and an integer exponent. The integer part,
fraction part, and integer exponent each consist of a sequence of digits. The
exponent sign consists of either a + or a -. Any part may be missing, so long
as the integer exponent is present exactly when the e or E is, the exponent
sign is present only when the integer exponent is, the decimal point is present
whenever both the integer and fraction parts are present, and at least one
of the integer and fraction parts is present. Numbers denote double floating
numbers in C via the usual translation.

3.2 Behavior of Generated Programs

The programs generated by the SAMPL compiler read and write audio data
streams from standard input and output, respectively. The read and write
operations occur synchronously in that there is a one-to-one correspondence
between input and output samples points, which are strictly interleaved start-
ing with input.

The audio itself is encoded as 16-bit two’s-complement little-endian single-
channel raw linear PCM data, sampled at 44.1 kHz. It may be possible to
configure many of these parameters via command-line options to the gener-
ated programs—run the generated programs with the --help flag for details.

3.3 Expressions

Expressions in SAMPL have a type and a value. The type of an expression
is implicit and does not change throughout the program’s execution. The
value of an expression may change as the program scans new input, but is
otherwise static. Due to the possibility of infinite recursion, an expression’s
value may at any point be undefined, and the program may loop indefinitely
when trying to evaluate it.
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3.3.1 Types

An expression’s type determines how it may be used, and informally spec-
ifies the interpretation of the expression’s value. The various mechanisms
for forming expressions determine the type of the resulting expression and
impose restrictions on the types of their components. Type restrictions are
checked at compile-time.

Base Types

The following are base types:

time intensity frequency angle scalar boolean

Functional Types

Given types a and b, (a -> b) is a type. These correspond to functions
from type a to type b. Functions in multiple arguments are implemented as
curried functions, that is, a function from a and b to c has type (a -> (b ->

c)).

3.3.2 Values

Values of expressions of type scalar are a double in C. These values cannot
be infinite or nan. Values of expressions of type boolean can either be true or
false. The implementation of values in other base types is not defined. We
assume the existence of a single canonical value for each; further behavior
is specified with rules for how they interact with other values in following
sections.

3.3.3 Unit Values

As discussed in the previous section, the values of expressions of base types
(excepting scalar and boolean) are based upon some canonical unit value.
The unit values are described here. One linear full-scale (lfs) is the maxi-
mum intensity of the input and output streams. Behavior is undefined upon a
value greater than 1 lfs. One second (sec) is a conceptual second as deter-
mined by the sample frequency. One radian (rad) is a conceptual radian—2π
radians form a complete wave period. One Hertz (hz) represents the angular
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frequency of a 1 Hz wave. That is, a component with an angular frequency
of one Hz has a period of 2π seconds.

Functional Values

Values of functional types are abstract. The value of an expression of type
(a -> b) consists of a mechanism which, when provided a value of type a,
produces a value of type b.

3.4 Definitions

program : definition*
definition : let name parameters = expression
name : type ID
parameters : (type ID)*

A program in SAMPL consists of a series of definitions. Each of these
definitions binds a new name whose scope consists of the entire program,
and optionally a collection of formal parameters whose scope consists of the
body of the definition. Behavior is undefined when a definition attempts to
bind an identifier twice or attempts to bind an identifier bound as a name
elsewhere in the program.

There are two special names in SAMPL, input and output. Input is an
expression of type intensity whose value is the intensity of the input signal
at any particular point in the scanning proccess. The name input must not
be bound elsewhere.

One of the program’s definitions must bind the name output with no
arguments as type intensity. After scanning a sample of input and setting
the value of the input name accordingly, a program outputs the value of the
output name. If the value of the output name is not well defined (i.e. infinite
recursion), the program may hang indefinitely.

3.4.1 Interpretation of Definitions

A name bound by a definition may be used in an expression anywhere in the
program.

Supposing identifiers in the parameter list to be expressions of their spec-
ified type, the expression on the right size of ‘=’ (which may contain the pa-
rameter identifiers) must have the same type as the type specified in name.
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Given that the type specified in name is b and the types specified in the
parameters are, from left to right, t1 . . . tn, the identifier in name is an ex-
pression which may be used anywhere in the program, and has type (t1 ->

( t2 -> ( . . . ( tn -> b ) . . . ) ) ).
The identifier mentioned in name is an expression which may be used

anywhere is the program. If it has no formal parameters, its value is the
value of the expression on the right side of its definition. If it has a single
formal parameter, then the value is a mechanism which, given a value of
appropriate type, yields the value of the expression on the right side of the
definition when taking the value of the parameter identifier to be the provided
value.

If the definition has multiple formal parameters, we use the method of
curried functions. That is, the value of the defined identifier is a mechanism
which is provided the value of the first parameter and returns a mechanism
which is provided the value of the second parameter and returns another
mechanism, et cetera. The method which is provided the value of the fi-
nal parameter returns the value of the expression given that the parameter
identifiers assume the appropriate provided values.

3.4.2 Type specifiers

type : tatom (-> type)?
tatom : base-type | LPAREN type RPAREN
base-type : angle | boolean | frequency | intensity | scalar | time

Type specifiers are used in the left side of definitions to indicate the type
signatures of arguments and results. The ‘->’ operator is right associative,
in that a->b->c is equivalent to (a->(b->c)).

3.5 Notation of Expressions

This section describes the various means of constructing expressions, their
types, and their values.

3.5.1 Conditional Expressions

expression : logical | if expression then expression else expression
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A conditional expression consists of a condition (following if), a positive
part (following then), and a negative part (following else).

The condition must have boolean type. The positive and negative parts
must have the same type—this is the type of the expression.

Whenever the value of the condition is true the value of the expression is
the value of the positive part. Whenever the value of the condition is false
the value of the expression is the value of the negative part.

If statements may be nested arbitrarily, including inside the conditional
part (though it’s not clear how that would be useful).

3.5.2 Operators

SAMPL provides four levels of operator precedence in addition to function
application, which can be interpreted as the use of an invisible “apply” op-
erator. They are, from loosest to tightest: logical, comparison, additive,
multiplicative, and function application. All operators (including function
application) are left associative.

The type and value of all operator expressions depends only on the types
and values, respectively, of their arguments.

Logical Operators

logical : comparison | logical LOP comparison
Logical operators consist of ‘|’ (logical or) and ‘&’ (logical and). Note

that these have the same precedence, unlike C and most sane languages.
The type of each argument to the operator must be boolean. The type

of the entire expression is boolean.
The value a logical “and” expression is true if and only if the value of

each of the arguments is true. The value of a logical “or” expression is true
if and only if the value of at least one of the arguments is true.

Comparison Operators

comparison : additive | comparison COP additive
Comparison operators consist of ‘<’ and ‘>’. Tests for equality are not

provided as values should be treated as more or less continuous. Notions of
equality raise issues of discretization, and SAMPL guides the programmer
intentionally away from these issues.
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Both arguments to a comparison operator must share the same type. This
type may not be boolean. The type of the resulting expression is boolean.

This reference manual does not specify the numerical details of expression
values. The behavior of comparison and many other operators is defined in
terms of properties they must satisfy.

The operators are opposites in that ‘>’ expressions have the same value
as ‘<’ expressions with swapped argument values. ‘>’ is transitive in that,
given a > b and b > c, a > c. Never do both a > b and a < b have true value.
Both a > b and a < b have false value if and only if a has the same value as
b.

Scalar values compare as double values in C.

Additive Operators

additive : multiplicative | additive AOP multiplicative
Additive operators consist of ‘+’ and ‘−’.
Both arguments to an additive operator must share the same type. This

type may not be boolean or frequency. The resulting expression has the same
type as the arguments.

Excepting rounding errors, addition and subtraction form an abelian
group. This is equivalent to the following conditions: addition is associa-
tive and commutative. The value written 0 UNIT, written here 0, is such
that a + 0 has the same value as a for all expressions a. For all expressions
a, a − a has the same value as the additive identity. a − b is equivalent to
a + (0 − b).

Multiplicative Operators

multiplicative : functional | multiplicative MOP functional
Multiplicative operators consist of ‘∗’ and ‘/’.
If one argument to ‘∗’ has type scalar, the other argument may be of

any type other than boolean. The resulting expression has this as its type.
Otherwise, one argument must have type frequency and the other time. The
resulting expression has type angle.

Scalars multiply as double do in C. Excepting rounding errors, scalars
multiply with other types as a vector spaces, equivalent to the following
conditions. If a and b have scalar type and x has any type other than boolean
and scalar, a ∗ (b ∗ x) has the same value as (a ∗ b) ∗ x. If c has scalar type
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and value zero, c ∗ x has the value of the additive identity. Similarly, if c has
value one, c∗x has the same value as x. If c has value negative one, c∗x has
the same value as d− x, where d is the additive identity of the same type as
x. If a is of scalar type and x and y are of the same type, neither boolean
nor scalar, a ∗ (x + y) has the same value as a ∗ x + a ∗ y. Finally, if a ∗ x has
the same value as x ∗ a.

If x has frequency type and y has time type, x ∗ y has the same value as
y ∗ x. Also, if a has scalar type, a ∗ (x ∗ y) has the same value as (a ∗ x) ∗ y
and (a ∗ y) ∗ x. Furthermore, 1 hz ∗ 1 s has the same value as 1 rad.

Expressions which occur as the denominator of a ‘/’ operator may only
have types scalar, time, and frequency. If the denominator is a scalar, the nu-
merator may have any type other than boolean, and the resulting expression
has the same type as the numerator. If the denominator is either time or fre-
quency, the numerator must have type angle, and the resulting expression has
type either frequency or time, whichever is not the type of the denominator.

If the denominator is a scalar, the resulting expression has the same value
as though the numerator were multiplied by the reciprocal (as a double in C)
of the denominator. Otherwise, if the denominator is either of type frequency
or time, the value of the resulting expression is such that, when multiplied
by the denominator, the result would have the same value of the numerator.

3.5.3 Function Application

functional : atom | functional atom
Functional expressions consist of a function followed by an argument.
The type of the function must be a->b for some types a and b. The

argument must have type a. The resulting expression has type b.
As mentioned in 3.3.3, the value of the function consists of the name of a

free variable and an result expression. The value of the function application
is the value of the result expression when all occurrences of the identifier
named by the free variable have been substituted with the argument.

3.5.4 Atoms

atom : constant | LPAREN expression RPAREN
LPAREN consists of a single ‘(’ character, while RPAREN consists of

a single ‘)’ character. The value and type of a parenthesized atom are the
same as of the enclosed expression.
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Constants

constant : true | false | numerical
numerical : NUMBER unit?
unit : lfs | sec | rad | hz

Constants may be true or false, which have boolean type and corre-
spond to the appropriate values, or they may be numerical constants.

Numerical constants are expressions consisting of a number followed by
an optional unit specifier. The type of a constant is determined by its unit
specifier—lfs (linear full-scale) corresponds with intensity, sec with time,
rad with angle, and hz with frequency. Numbers with no type specifier are
scalars.

The value of a scalar constant is simply the value of the double value
indicated by NUMBER. The value of other numerical constants is the same
as the value of the scalar indicated by NUMBER multiplied by the unit value
of appropriate type.
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Chapter 4

Project Plan

4.1 Development overview

The group planned the development of SAMPL largely during weekly meet-
ings, roughly an hour in length. We spent much of this time clarifying various
issues with the language and implementation. Also, Mike Haskel (the project
leader) would present documents detailing various aspects of the language
and the compiler’s programming interfaces.

After it was written, the current draft of the language reference manual
included in Chapter 3 was the canonical specification for development. Be-
yond this, there is a file describing the format for the abstract syntax trees.
The various helper classes are small and largely self-documenting.

During the development process, individual group members worked in-
dividually on large sections of code. We spent much of the coding time
together in a computer lab where we could ask each other for assistance or
advice when it arose.

Testing consists of a traditional test suite of small, demonstrative pro-
grams designed to test a range of functionality. A single command runs all
tests and reports errors. New test cases are easily added by adding a test file
in the proper file system location.

4.2 Programming style

The team did not formalize any specific programming styles. Individuals
were working on largely disjoint sections of code, and legibility was not an
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issue when they were not.

4.3 Roles and responsibilities

Mike Haskel was the project leader. He was in charge of language specifica-
tion and arbitration of language issues, organizing development, overseeing
progress and schedules, coordinating meetings, writing all documents, and
providing as-needed help and advice. Originally, he was also to be in charge
of testing.

Morgan Rhodes was originally responsible for lexing, parsing, and syntax
tree generation. This, however, was largely finished before large develop-
ment efforts were underway. Later she was responsible for the test suite and
writing libraries for use with the compiled programs. The library effort was
abandoned late in the project as it became clear we would not finish code
generation. She provided assistance writing documents.

Nav Jagatpal was originally responsible for static semantic analysis and
intermediate code generation. He played a crucial role regarding the direction
and motivation of the language. During the development process we decided
to implement code generation in antlr working directly from the syntax tree,
and Nav was to work on semantic analysis until needed elsewhere. Nav laid
the groundwork for semantic analysis but did not end up finishing it.

Mike Glass was originally responsible for code generation and program-
ming for the C environment. Mike designed, wrote, and tested this envi-
ronment, though it was not used. Mike redirected his attention to semantic
analysis near the completion of the project, and saw this through to comple-
tion.

4.4 Software environment

The entire project exists in a subversion repository on Mike Haskel’s personal
computer.

We use antlr’s Java target for scanning, parsing, and semantic analysis.
We wrote in Java a package of helper classes for use in the antlr source.

The test suite consists of a Java package to scan a directory for test cases.
We implemented a build system in ant with individual targets for run-

ning ant, compiling the Java sources, running the test suite, and cleaning
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automatically generated files.
Some of the team members (Nav and Mike Glass) used Eclipse for devel-

opment, and others (Morgan and Mike Haskel) used Emacs.

4.5 Timeline and log

As all group members were new to compiler development, we did not stick
to a formal timeline, and our intended schedule changed throughout the
semester as we became familiar with the process and requirements. Table
4.5 details an ad-hoc approximation at our desired timeline.

Additionally, the group did not maintain a formal progress log. Table 4.5
represents a summary of both the writer’s memory and the log generated by
subversion commit messages.

Table 4.1: Project log
Date Task
2007-02-07 Finished proposal
2007-02-25 Lexer completed
2007-02-25 Parser first version completed
2007-03-05 Parser stabilized
2007-03-07 LRM completed, language design solidified
2007-03-21 AST construction finished
2007-04-15 Helper classes written
2007-04-22 “be blocks” (a major feature) removed from language
2007-05-06 Semantic analysis completed
2007-05-06 Test suite completed
2007-05-07 Final report completed
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Table 4.2: Project timeline
Week Goal
Week 4 Solid language concept, project proposal
Week 6 Language details congealing, begin to develop lexer/parser
Week 8 Language details solidified, lexer/parser working to spec., ref-

erence manual finished
Week 10 Understand implementation strategy, programming interfaces

specified
Week 11 Semantic analysis and code generation drafts written
Week 12 More or less working compiler assembled, test suite finished
Week 13 Compiler solid and tested, begin work on support libraries and

demo programs and report
Week 14 Everything finished
Week 15 Buffer week (to absorb delays)
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Chapter 5

Architectural Design

Figure 5 outlines the major components of the SAMPL system. Components
depicted with dotted lines are intended but not implemented.

The scanner, parser, semantic analysis, and code generator are defined
using the antlr tool, making extensive use of SAMPL-specific helper classes
written in Java. The token stream consists of an antlr token stream, and the
AST is an antlr tree. The symbol table is a helper class.

All other software interfaces consist of C code or platform-dependent
dynamically linked libraries.

As specified in Chapter 3, audio streams are single-channel, 16-bit, two’s
complement linear pcm data sampled at 44.1 kHz.

Morgan wrote the scanner and parser. Mike Haskel started the symbol
table builder, finished and revised by Mike Glass. Nav initially wrote the
type checker, which Mike Glass recrafted and finished. Mike Haskel started
the helper classes, and Mike Glass refactored them extensively to better suit
the needs of semantic analysis.
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Figure 5.1: Architecture diagram
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Chapter 6

Test Plan

6.1 Testing overview

Our test mechanism consists of a hand-written Java “testing” package, in-
cluding a routine to run all included tests. We also provide a “test” target
for ant such that

$ ant test

is sufficient to run these tests.
There is a testing directory separate from other source code which con-

tains a hierarchy of test cases written in SAMPL. There is a subdirectory
for each type of test (syntax and semantic), each containing pass and fail

directories. These in turn contain several SAMPL programs which should
pass or fail the appropriate compilation phase, respectively.

Morgan wrote the testing functionality, while Mike Haskel wrote in test
cases.

6.2 Test details

6.2.1 Syntax tests

The tests for the syntax directory are provided by the testing.SyntacticTest
class. This test creates a scanner from the file stream, a parser from this scan-
ner, and calls the parser’s top-level program recognition routine. This test is
considered passed exactly when this process does not throw an Exception.
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6.2.2 Semantic tests

The tests for the semantic directory are provided by the testing.SemanticTest
class. This test creates a scanner from the file stream, a parser from this
scanner, and calls the parser’s top-level program recognition routine. It then
fetches the AST from the parser. With this AST it creates a tree walker.
It then calls this walker’s symbol table builder and passes the result to the
walker’s type checker.

This test is considered passed exactly when this process does not throw
an Exception. If this process throws a SemanticException, it is considered
to fail appropriately (i.e. a success for tests in the fail directory). If it
throws some other Exception, it fails in a manner inappropriate for either
case.

6.3 Role in development

While the test suite was useful in finding the existence and general location
of bugs, actual debugging typically required more case-specific tests which
the suite could not provide. We wrote these on an informal, as-needed basis.

6.4 Demonstrative examples

There was no fixed system for writing test cases. As the test suite simply
looks for files in a directory, Mike Haskel spent some time concocting minimal
cross-cutting examples of as many language issues as came to mind.

As code generation does not work, we only provide source code. Here is
a listing of one pass and one fail case for each test type.
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Figure 6.1: functypes.sampl—syntax pass case

let intensity->intensity a = a

let (intensity->intensity) a = a

let intensity->intensity -> intensity a = a

let intensity->(intensity -> intensity) a = a

let (intensity->intensity) ->intensity a = a

let (intensity -> intensity-> intensity) a = a

Figure 6.2: numproblem.sampl—syntax fail case

let intensity a = 1.1e-

Figure 6.3: implicitfunc.sampl—semantic pass case

let intensity f scalar x = f x

let scalar a = a

let intensity b = f a

Figure 6.4: wrongassign.sampl—semantic fail case

let intensity a = b

let frequency b = b
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Chapter 7

Lessons Learned

7.1 Mike Haskel’s lessons

This is my first major group programming assignment. I feel that I have two
major regrets regarding our work together. First, our language design was
too ambitious. Especially before we removed be blocks from the language,
the programs had a dual sense of time which made implementation complex
in a way that broke significantly from established designs. Our knowledge
from the course would have been more applicable to code generation had we
chosen a more traditional approach.

My second regret is regarding the scheduling and organization of pro-
gramming efforts. I sought to completely specify the software interfaces
before people began programming. Fully functional interfaces took a long
time to produce, and this is related to the earlier point regarding the imple-
mentation being non-obvious. I should have set people on coding as soon as
we knew enough to start in order to avoid the fairly significant delays this
caused.

7.2 Morgan’s lessons

This project taught me the importance of consistent work over the course of
the semester. Falling behind a little at a time will eventually aggregate into
a large problem. Also, as far as team relations go, this project has taught
me the importance of flexibility in regards to what would be worked on. The
willingness to work in unfamiliar and previously unassigned portions of the
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project in order to help with persistent bugs and other problems is necessary
for success.

7.3 Mike Glass’ lessons

Planning early is great—prototyping early is necessary. The scope of PLT
should not be “original research.” as such, being able to produce prototypes
of each stage of your compiler reveals the true complexity of a problem (as op-
posed to the perceived complexity) and allow for more equitable distribution
of responsibility early on.

Teamwork is great—but map out tasks and join together only when in-
tersections are present. Initially when coding in teams, I felt the so-called
collaboration was a waste of time and only getting in the way of me being
in my standard working environment. Later, when we were completing tasks
that meshed well together (specifically, writing the final report, writing our
test suite, and tweaking the grammar file) collaboration yielded significantly
increased productivity. Picking good intersections can speed development by
condensing the turn around time on “fix tag” to a number of minutes instead
of a number of hours or even days.
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Appendix A

Code listing

A.1 Build system

build.xml—Mike Haskel

<?xml version="1.1" encoding="UTF-8"?>

<project name="SAMPL" default="test">

<property environment="env"/>

<property name="antlrsrc" location="antlr/sampl.g"/>

<property name="javasrc" location="src"/>

<property name="antlrdest" location="${javasrc}/parser"/>

<property name="bin" location="bin"/>

<property name="jarname" location="sampl.jar"/>

<property name="testdir" location="testing"/>

<target name="init">

<mkdir dir="${antlrdest}"/>

<mkdir dir="${bin}"/>

</target>

<target name="clean">

<delete dir="${antlrdest}"/>

<delete dir="${bin}"/>

</target>
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<target name="antlr" depends="init"

description="Compiles antlr files into Java source">

<java fork="true" classpath="${env.CLASSPATH}"

classname="antlr.Tool">

<arg value="-o"/>

<arg value="${antlrdest}"/>

<arg value="${antlrsrc}"/>

</java>

</target>

<target name="compile" depends="antlr"

description="Compiles .java files to /class files">

<javac srcdir="${javasrc}" destdir="${bin}"/>

</target>

<target name="build" depends="compile"

description="Builds program into .jar file">

<jar basedir="${bin}" destfile="${jarname}"/>

</target>

<target name="test" depends="compile"

description="Runs the builtin test suite">

<java fork="true" classpath="${env.CLASSPATH}:${bin}"

classname="testing.Main">

<arg value="${testdir}"/>

</java>

</target>

</project>

A.2 Antlr grammar

antlr/sampl.g—multiple authors; see comments

header {package parser;}

class SamplParser extends Parser;
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options {

buildAST=true;

exportVocab=SamplParser;

defaultErrorHandler=false;

}

tokens {

PROGRAM;

ARGS;

APPLY;

CONST;

NAME;

BASETYPE;

EXPR;

}

program

: definition (definition)* EOF!

{ #program = #([PROGRAM,"PROGRAM"], program); }

;

definition

: "let"^ name args EQ! expression

;

name

: ( type ID )

{ #name = #([NAME, "NAME"], name); }

;

args

: (name)*

{ #args = #([ARGS,"ARGS"], args); }

;

type

: tatom ( DOT^ type)? //can recurse
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;

tatom

: "time"! {#tatom = #([BASETYPE, "time"]);}

| "intensity"! {#tatom = #([BASETYPE,"intensity"]);}

| "frequency"! {#tatom = #([BASETYPE,"frequency"]);}

| "angle"! {#tatom = #([BASETYPE,"angle"]);}

| "scalar"! {#tatom = #([BASETYPE,"scalar"]);}

| "boolean"! {#tatom = #([BASETYPE,"boolean"]);}

| LPAREN! type RPAREN!

;

expression

:

ifexpression

{#expression = #([EXPR, "EXPR"], expression);}

;

ifexpression

:

lexpression

| "if"^ ifexpression

"then"! ifexpression

"else"! ifexpression

;

lexpression

: cexpression

(

( AND^ | OR^ )

cexpression

)*

;

cexpression

: aexpression

(
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( LT^ | GT^ )

aexpression

)*

;

aexpression

: mexpression

(

( PLUS^ | MINUS^ )

mexpression

)*

;

mexpression

: fexpression

(

( MULT^ | DIV^ )

fexpression

)*

;

fexpression!

: a:atom

{#fexpression = #a;}

(b:atom {#fexpression =

#([APPLY,"APPLY"], fexpression, b);})*

;

atom

: ("true" | "false")

| ID

| FPNUM ( "sec" | "lfs" | "rad" | "hz" )?

{ #atom = #([CONST,"CONST"], atom); }

| LPAREN! ifexpression RPAREN!

;

class SamplLexer extends Lexer;

34



options {

k=2;

importVocab=SamplParser;

defaultErrorHandler=false;

}

ID

: ALPHA

( ALPHA | NUM )*

;

protected

ALPHA

: ’a’..’z’

| ’A’..’Z’

;

protected

NUM

: ’0’..’9’

;

FPNUM

: ( NUM )+

(

( ’.’

( NUM )+

)?

(

( ’e’ | ’E’ )

( PLUS | MINUS )?

( NUM )+

)?

)

| ( ’.’ ( NUM )+

(

( ’e’ | ’E’ )

( PLUS | MINUS )?
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( NUM )+

)?

)

;

LPAREN

: ’(’

;

RPAREN

: ’)’

;

DOT

: "->"

;

EQ

: ’=’

;

MULT

: ’*’

;

DIV

: ’/’

;

PLUS

: ’+’

;

MINUS

: ’-’

;
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OR

: ’|’

;

AND

: ’&’

;

LT

: ’<’

;

GT

: ’>’

;

/* Lexer rule for comments taken from class slides. */

COMMENT

: "/*"

( options {greedy=false;}:

(

( ( ’\r’ ’\n’ ) => ’\r’ ’\n’

| ’\r’

| ’\n’

)

{ newline(); }

| ~(’\n’ | ’\r’ )

)

)*

"*/"

{$setType(Token.SKIP);}

;

WS

: ( ’ ’

| ’\t’
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| ( ’\r’ ’\n’

| ’\n’

| ’\r’

)

{newline();}

)

{$setType(Token.SKIP);}

;

{import helper.*;}

class SamplTreeWalker extends TreeParser;

options {

importVocab=SamplParser;

defaultErrorHandler=false;

}

/*

common rules (require nothing)

*/

type returns [Type t]

{Type a = null; Type b = null; t = null;}

: #(DOT a=type b=type) {t = new FuncType(a,b);}

| x:BASETYPE {t = BaseType.getType(x.getText());}

;

ignoreExpr

: #(EXPR trash)

;

trash

: #("if" . . .)

| #(APPLY . .)|#(MINUS . .)|#(PLUS . .)|#(MULT . .)|#(DIV . .)

| #(AND . .)|#(OR . .)|#(LT . .)|#(GT . .)|#(CONST .)
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|"true"|"false"|ID

;

getName returns [String name]

{name = null;}

: #(NAME type v:ID ) {name = v.getText();}

;

getNameType returns [nameType nt]

{Type t; nt = new nameType();}

: #(NAME t=type v:ID) { nt.name = v.getText(); nt.type = t; }

;

/*

builds SymTable (requires empty / building SymTable)

*/

buildSymTable returns [SymTable s]

{ s = new SymTable(); }

: #(PROGRAM (addDefinition[s])*)

;

addDefinition[SymTable s]

{ String name = null;

TypeBuilder b = new TypeBuilder();

SymTable scopeType = new SymTable();}

: #("let" name=addName[b,null] addArgs[b, scopeType] ignoreExpr)

{ s.put(name, b.build(), scopeType);}

;

addArgs[TypeBuilder b, SymTable s]

: #(ARGS (addName[b, s])*)

;

addName[TypeBuilder b, SymTable scope] returns [String name]

{Type t = null; name = null;}

: #(NAME t=type v:ID )

{

b.newArg(t);
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name = v.getText();

if(scope != null)

scope.put(name,t);

}

;

/*

does semantic analysis (requires complete SymTable)

*/

checkProgram[SymTable s]

: #(PROGRAM (checkDef[s])*)

;

checkDef[SymTable s]

{nameType nt = null; String name; Type r = null, t = null;}

: #("let" nt=getNameType {name = nt.name;}

checkArgs[s] (r=checkExprRoot[s,name]))

{ if(!r.match(nt.type))

throw new SemanticException

("Inferred type "+r+" does not match specified type "+

t+" in definition of " + name); }

;

checkArgs[SymTable global]

{String name = null;}

: #(ARGS (name = getName

{ if(global.getType(name) != null)

throw new SemanticException

("Argument and definition cannot share name " + name);})*)

;

checkExprRoot[SymTable s, String parent] returns [Type t]

{t = null;}

: #(EXPR t=checkExpr[s,parent])

;
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checkExpr[SymTable s, String parent] returns [Type t]

{t=null;}

: t=checkIf[s, parent]

| t=constant

| name:ID {t=s.getScopedType(parent, name.getText());}

| #(PLUS t=checkAddExpr[s,parent, true])

| #(MINUS t=checkAddExpr[s,parent, false])

| t=checkMult[s, parent]

| t=checkDiv[s, parent]

| #(LT t=checkCompExpr[s,parent])

| #(GT t=checkCompExpr[s,parent])

| #(AND t=checkLogExpr[s,parent])

| #(OR t=checkLogExpr[s,parent])

| t=checkApply[s, parent]

;

checkIf[SymTable s, String parent] returns [Type t]

{Type condition = null,

firstblock=null,

secondblock=null;

t = null;

String endEx = " in definition of " + parent;}

:#("if" condition=checkExpr[s,parent]

firstblock=checkExpr[s,parent]

secondblock=checkExpr[s,parent])

{

if(!condition.match(BaseType.BOOLEAN))

throw new SemanticException

("Condition is not a boolean"+endEx);

if(!firstblock.match(secondblock))

throw new SemanticException

("Block types do not match"+endEx);

t = firstblock;

}

;

checkMult[SymTable s, String parent] returns [Type t]

{Type a = null;
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Type b = null;

t = null;

String endEx = " in definition of " + parent;}

: #(MULT a=checkExpr[s,parent] b=checkExpr[s,parent])

{

if(a.match(BaseType.BOOLEAN) ||

b.match(BaseType.BOOLEAN))

throw new SemanticException

("Error: multiplying by a boolean"+endEx);

// (time)*(freq) = (angle)

else if ((a.match(BaseType.TIME) &&

b.match(BaseType.FREQUENCY) ) ||

( b.match(BaseType.TIME) &&

a.match(BaseType.FREQUENCY) ) )

t = BaseType.ANGLE;

// (scalar)*(anything) = (anything)

else if(a.match(BaseType.SCALAR))

t = b;

else if(b.match(BaseType.SCALAR))

t = a;

else throw new SemanticException

("Cannot multiply types "+a+" and "+b+endEx);

}

;

checkDiv[SymTable s, String parent] returns [Type t]

{Type a = null;

Type b = null;

t = null;

String endEx = " in definition of " + parent;}

: #(DIV a=checkExpr[s,parent] b=checkExpr[s,parent])

{

if(a.match(BaseType.BOOLEAN) ||

b.match(BaseType.BOOLEAN))

throw new SemanticException

("Error: dividing by a boolean"+endEx);
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//if denom is scalar, num can be anything

else if(b.match(BaseType.SCALAR))

t = a;

// Something divided by something

// of the same type is a scalar

else if(a.match(b))

t = BaseType.SCALAR;

// Angle divided by ..

else if(a.match(BaseType.ANGLE)) {

//..time is frequency

if(b.match(BaseType.TIME))

t = BaseType.FREQUENCY;

//..frequency is time

else if (b.match(BaseType.FREQUENCY))

t = BaseType.TIME;

//.. and angle is scalar

else

throw new SemanticException

("Can only divide angle by frequency, time, or angle");

}

else throw new SemanticException

("Cannot divide types "+a+" by "+b+endEx);

}

;

checkApply[SymTable s, String parent] returns [Type t]

{Type a = null;

Type b = null;

t = null;

String endEx = " in definition of " + parent;}

: #(APPLY a=checkExpr[s,parent] b=checkExpr[s,parent])

{

if(a instanceof FuncType) {
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FuncType f = (FuncType)a;

if(f.arg.match(b))

t = f.result;

else

throw new SemanticException

("Type "+b+" wrong argument for functional type "+a+endEx);

}

else

throw new SemanticException

("Cannot apply non-functional type "+a+" to type "+b+endEx);

}

;

checkLogExpr[SymTable s, String parent] returns [Type t]

{Type a = null;

Type b = null;

t = null;

String endEx = " in definition of " + parent;}

: a=checkExpr[s,parent] b=checkExpr[s,parent]

{

if(a.match(BaseType.BOOLEAN) && b.match(BaseType.BOOLEAN))

t = BaseType.BOOLEAN;

else throw new SemanticException

("Cannot perform logical operation on non-boolean argument"+endEx);

}

;

checkCompExpr[SymTable s, String parent] returns [Type t]

{Type a = null;

Type b = null;

t = null; String endEx = " in definition of " + parent;}

: a=checkExpr[s,parent] b=checkExpr[s,parent]

{

if(a.match(BaseType.BOOLEAN) || b.match(BaseType.BOOLEAN))

throw new SemanticException

("Cannot perform comparison operation on boolean argument"+endEx);

else if(a.match(b))
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t = BaseType.BOOLEAN;

else

throw new SemanticException

("Cannot perform comparison operation between types "+a+

" and "+b+endEx);

}

;

checkAddExpr[SymTable s,

String parent,

boolean isAddition]

returns [Type t]

{Type a = null;

Type b = null;

t = null;

String endEx = " in definition of " + parent;}

: a=checkExpr[s,parent] b=checkExpr[s,parent]

{

String o;

if(isAddition)

o = "adding";

else

o = "subtracting";

if(a.match(BaseType.BOOLEAN) ||

a.match(BaseType.FREQUENCY))

throw new SemanticException

("Error: "+o+" type "+a+endEx);

else if(b.match(BaseType.BOOLEAN) ||

b.match(BaseType.FREQUENCY))

throw new SemanticException

("Error: "+o+" type "+b+endEx);

else if(!a.match(b)) {

if(isAddition)

o="plus";

else

o="minus";

throw new SemanticException

("Types "+a+" and "+b+" do not match at "+o+" sign"+endEx);
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}

t = a;

}

;

constant returns [Type t]

{t=null;}

:

("true" | "false")

{ t = BaseType.BOOLEAN; }

| #(CONST FPNUM t=unitOfConstant)

;

unitOfConstant returns [Type t]

{t=null;}

: "sec"

{ t = BaseType.TIME; }

| "lfs"

{ t = BaseType.INTENSITY; }

| "rad"

{ t = BaseType.ANGLE; }

| "hz"

{ t = BaseType.FREQUENCY; }

| //nothing

{ t = BaseType.SCALAR; }

;

A.3 Java sources

A.3.1 Package ‘helper’

src/helper/BaseType.java—originally Mike Haskel, revised Mike Glass

package helper;

public class BaseType implements Type

{

private BaseType(String s)
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{ type = s; }

public static BaseType getType(String s) {

if(s.equalsIgnoreCase("time"))

return TIME;

if(s.equalsIgnoreCase("intensity"))

return INTENSITY;

if(s.equalsIgnoreCase("angle"))

return ANGLE;

if(s.equalsIgnoreCase("scalar"))

return SCALAR;

if(s.equalsIgnoreCase("frequency"))

return FREQUENCY;

if(s.equalsIgnoreCase("boolean"))

return BOOLEAN;

return null;

}

public boolean match(Type t)

{

if(t instanceof BaseType)

return type.equalsIgnoreCase( ((BaseType) t).type );

else

return false;

}

public String toString() {

return type;

}

public final String type;

public static final BaseType TIME =

new BaseType("time");

public static final BaseType INTENSITY =

new BaseType("intensity");

public static final BaseType FREQUENCY =

new BaseType("frequency");
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public static final BaseType ANGLE =

new BaseType("angle");

public static final BaseType SCALAR =

new BaseType("scalar");

public static final BaseType BOOLEAN =

new BaseType("boolean");

}

src/helper/FuncType.java—Mike Haskel

package helper;

public class FuncType implements Type

{

public FuncType(Type arg, Type result)

{

this.arg = arg;

this.result = result;

}

public boolean match(Type t)

{

if (t instanceof FuncType){

FuncType f = (FuncType)t;

return (arg.match(f.arg) && result.match(f.result));

}

return false;

}

public String toString() {

return "("+arg + "->" + result+")";

}

public final Type arg;

public final Type result;

}

src/helper/SymTable.java—originally Mike Haskel, mostly rewritten Mike
Glass
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package helper;

import java.util.HashMap;

import java.util.Set;

import antlr.SemanticException;

public class SymTable {

public HashMap<String, Type> type;

public HashMap<String, SymTable> scope;

public SymTable() {

type = new HashMap<String, Type>();

scope = new HashMap<String, SymTable>();

}

public void put(String name, Type t, SymTable s)

throws SemanticException {

if(type.put(name, t) != null) {

throw new SemanticException

("Duplicate definitions for name " + name);

}

scope.put(name, s);

}

public void put(String name, Type t) throws SemanticException {

if(type.put(name, t) != null) {

throw new SemanticException

("Duplicate arguments for name " + name);

}

}

public Set<String> nameSet() {

return type.keySet();

}

public Type getType(String name) {

return type.get(name);

}
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public SymTable getScope(String name) {

return scope.get(name);

}

public Type getScopedType(String parent, String name)

throws SemanticException {

Type t = type.get(name);

if (t == null) {

t = scope.get(parent).getType(name);

if(t == null)

throw new SemanticException("No name exists: " + name);

}

return t;

}

public int size() {

return type.size();

}

}

src/helper/Type.java—Mike Haskel (does it matter?)

package helper;

public interface Type

{

public boolean match(Type t);

}

src/helper/TypeBuilder.java—Mike Haskel, minor refactoring Mike Glass

package helper;

public class TypeBuilder {

public TypeBuilder() {

l = null;

}
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public void newArg(Type arg) {

if(l == null)

l = new TypeList(arg, null);

else

l = l.newArg(arg);

}

public Type build() {

return l.build();

}

private TypeList l;

}

class TypeList

{

TypeList() {

type = null;

last = null;

}

TypeList(Type result, TypeList prev)

{

type = result;

last = prev;

}

TypeList newArg(Type arg)

{

return (new TypeList(arg,this));

}

TypeList reverse(TypeList tail)

{

if (last == null)

return new TypeList(type, tail);
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else

return last.reverse(new TypeList(type, tail));

}

TypeList append(Type x)

{

if (last == null)

return new TypeList(type, new TypeList(x,null));

else

return new TypeList(type, last.append(x));

}

TypeList reverseExceptLast()

{

TypeList x = reverse(null);

if (x.last == null)

return x;

else

return x.last.append(x.type);

}

Type build ()

{

return reverseExceptLast().buildInternal();

}

Type buildInternal()

{

if (last == null)

return type;

else

return (new FuncType(type, last.build()));

}

private Type type;

private TypeList last;

}

src/helper/nameType.java—Mike Glass (because Java doesn’t have pairs)
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package helper;

public class nameType {

public String name;

public Type type;

}

A.3.2 Package ‘testing’

src/testing/Main.java—Morgan

/* Runs Syntactic and Semantic tests on files specified

* in syntax/pass, syntax/fail, semantic/pass

* and semantic/fail in the directory passed in

* as a command-line argument

*/

package testing;

import helper.*;

import parser.*;

import java.io.*;

public class Main

{

public static void main(String[] args) throws Exception

{

SyntacticTest st;

SemanticTest sem;

String path;

String pass_path;

String fail_path;

String[] pass_files;

String[] fail_files;

String[] pass_files_sem;

String[] fail_files_sem;

File pass;

File fail;

53



int errCount = 0;

int total_err = 0;

path = args[0];

path += "/syntax";

System.out.println("PATH: " + path + "\n");

pass_path = path + "/pass";

fail_path = path + "/fail";

pass = new File(pass_path);

fail = new File(fail_path);

/* fills an array with files in the directory */

pass_files = pass.list();

fail_files = fail.list();

if(path.indexOf("syntax") != -1)

{

System.out.println("SYNTAX TESTING\nPASS tests:\n");

for(int i = 0; i < pass_files.length; i++)

{

String tmp = "";

tmp = pass_path + "/" + pass_files[i];

/* only tests files ending in ".sampl" */

if(tmp.endsWith(".sampl"))

{

st = new SyntacticTest(tmp, 0);

System.out.println(st.test());

errCount += st.getErr();

}

}

System.out.println("\nFAIL tests:\n");

for(int j = 0; j < fail_files.length; j++)

{

String tmp2 = "";

tmp2 = fail_path + "/" + fail_files[j];
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if(tmp2.endsWith(".sampl"))

{

st = new SyntacticTest(tmp2, 1);

System.out.println(st.test());

errCount += st.getErr();

}

}

total_err += errCount;

if(errCount == 0)

System.out.println("\nALL SYNTAX TESTS COMPLETED CORRECTLY\n");

}

errCount = 0;

path = args[0];

path += "/semantic";

System.out.println("PATH: " + path + "\n");

pass_path = path + "/pass";

fail_path = path + "/fail";

pass = new File(pass_path);

fail = new File(fail_path);

pass_files_sem = pass.list();

fail_files_sem = fail.list();

if(path.indexOf("semantic") != -1)

{

System.out.println("SEMANTIC TESTING\nPASS tests:\n");

for(int i = 0; i < pass_files_sem.length; i++)

{

String tmp3 = "";

tmp3 = pass_path + "/" + pass_files_sem[i];

if(tmp3.endsWith(".sampl"))

{

sem = new SemanticTest(tmp3, 0);
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System.out.println(sem.test());

errCount += sem.getErr();

}

}

System.out.println("\nFAIL tests:\n");

for(int j = 0; j < fail_files_sem.length; j++)

{

String tmp4 = "";

tmp4 = fail_path + "/" + fail_files_sem[j];

if(tmp4.endsWith(".sampl"))

{

sem = new SemanticTest(tmp4,1);

System.out.println(sem.test());

errCount += sem.getErr();

}

}

}

total_err += errCount;

if(errCount == 0)

{

System.out.println("\nALL SEMANTIC TESTS COMPLETED CORRECTLY");

}

if(total_err == 0)

{

System.out.println("\nALL TESTS COMPLETED CORRECTLY");

}

else

{

System.out.println("\nTotal Errors: "+

(total_err - errCount) +

" syntactic errors\n\t" +

errCount +

"semantic errors");
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}

}

}

src/testing/SemanticTest.java—Morgan

package testing;

import parser.*;

import helper.*;

import antlr.*;

import antlr.collections.*;

import java.io.*;

import java.util.*;

public class SemanticTest

{

/* test is file name to be tested for semantic correctness

* passOrFail = 0 to test for pass, 1 to test for failure

* prepares lexer and parser

*/

public SemanticTest(String test, int passOrFail)

throws Exception

{

ret = "";

errCount = 0;

this.passOrFail = passOrFail;

this.test = test;

t = new FileInputStream(test);

lexer = new SamplLexer(t);

parser = new SamplParser(lexer);

}

/* Returns String with results of run,

* file that was tested, Exceptions for any errors

* (Semantic errors and other errors),

* along with stack trace for other errors (debugging help).

*/
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public String test() throws Exception

{

if(passOrFail == 0)

{

/* try to parse, build AST, build SymTable,

* and then do static semantic analysis.

* If no exceptions are thrown,

* assumed success of test

*/

try {

parser.program();

AST t = parser.getAST();

SamplTreeWalker walker = new SamplTreeWalker();

SymTable s = walker.buildSymTable(t);

walker.checkProgram(t,s);

ret = "SUCCESS " + test;

} catch (Exception e){

if(e instanceof SemanticException)

{

ret = "SEMANTIC FAILURE: " +

test +

"\nSemanticException: " +

e.getMessage();

errCount++;

}

else

{

ret = "OTHER FAILURE: " +

test +

"\nException: " +

e.getMessage();

e.printStackTrace();

errCount++;

}

}

}

else

{
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/* fail tests.

* Should fail due to semantic exceptions,

* no other exceptions.

*/

try {

parser.program();

AST t = parser.getAST();

SamplTreeWalker walker = new SamplTreeWalker();

SymTable s = walker.buildSymTable(t);

walker.checkProgram(t,s);

ret = "INCORRECT SUCCESS: " + test;

errCount++;

} catch (Exception e){

if(e instanceof SemanticException)

{

ret = "CORRECT FAILURE - SEMANTICS: " +

test +"\nSemanticException: " +

e.getMessage();

}

else

{

ret = "FAILED WITHOUT SEMANTIC EXCEPTION! " +

test +

"\nException: " +

e.getMessage();

e.printStackTrace();

errCount++;

}

}

}

return ret;

}

/* returns errCount (# of files with errors)

* in semantic analysis

*/

public int getErr()
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{

return errCount;

}

private FileInputStream t;

private SamplLexer lexer;

private SamplParser parser;

private String test;

/* passOrFail = 0 => pass testing; = 1 => fail testing */

private int passOrFail;

private int errCount;

private String ret;

}

src/testing/SyntacticTest.java—Morgan

package testing;

import parser.*;

import antlr.*;

import antlr.collections.*;

import java.io.*;

import java.util.*;

public class SyntacticTest

{

/* passOrFail: 0 if you are testing for ’pass’,

* 1 if you are testing for ’fail’

* test is filename

* Prepares Lexer and Parser to run.

*/

public SyntacticTest(String test, int passOrFail)

throws Exception

{

ret = "";

errCount = 0;

this.passOrFail = passOrFail;

this.test = test;
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t = new FileInputStream(test);

lexer = new SamplLexer(t);

parser = new SamplParser(lexer);

}

/* returns a string containing the result of the test,

* the file that was tested

* and any exceptions that would have been thrown

*/

public String test() throws Exception

{

if(passOrFail == 0)

{

try {

parser.program();

ret = "SUCCESS " + test;

} catch (Exception e){

ret = "SYNTACTIC FAILURE: " +

test +

"\nException: " +

e.getMessage();

errCount++;

}

}

else

{

try {

parser.program();

ret = "INCORRECT SUCCESS: " + test;

errCount++;

} catch (Exception e){

ret = "CORRECT SYNTACTIC FAILURE: " +

test +

"\nException: " +

e.getMessage();

}

}
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return ret;

}

/* returns the error count (number of files with errors)

* for the syntactic tests

*/

public int getErr()

{

return errCount;

}

private FileInputStream t;

private SamplLexer lexer;

private SamplParser parser;

private String test;

/* passOrFail = 0 => pass testing; = 1 => fail testing */

private int passOrFail;

private int errCount;

private String ret;

}

A.4 Test cases

testing/semantic/fail/buildtype.sampl—Mike Haskel

let intensity f scalar x boolean y = f x y

let scalar a = a

let boolean b = b

let intensity c = f b a

testing/semantic/fail/wrongassign.sampl—Mike Haskel

let intensity a = b

let frequency b = b

testing/semantic/fail/wrongfuncapply.sampl—Mike Haskel
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let (intensity->scalar) f = f

let intensity x = x

let intensity y = f x

testing/semantic/fail/wrongfuncassign.sampl—Mike Haskel

let (intensity->intensity) a = b

let intensity b = b

testing/semantic/fail/wrongfuncassign2.sampl—Mike Haskel

let (intensity->intensity) a = b

let (scalar->intensity) b = b

testing/semantic/fail/wrongfuncassign3.sampl—Mike Haskel

let (intensity->intensity) a = b

let (intensity->scalar) b = b

testing/semantic/fail/wrongfuncresult.sampl—Mike Haskel

let (intensity->scalar) f = f

let intensity x = x

let intensity y = f x

testing/semantic/pass/additive.sampl—Mike Haskel

let intensity a = a + a - a

let scalar b = b + b - b

let time d = d + d - d

let angle e = e + e - e

testing/semantic/pass/comparison.sampl—Mike Haskel

let intensity a = a

let scalar b = b

let frequency c = c

let time d = d

let angle e = e

let boolean x = a > a | b > b | c > c | d > d | e > e

let boolean y = a < a | b < b | c < c | d < d | e < e
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testing/semantic/pass/funcargs.sampl—Mike Haskel

let intensity->intensity f = f

let intensity a = f a

testing/semantic/pass/funcargs2.sampl—Mike Haskel

let intensity->scalar->boolean f = f

let intensity a = a

let scalar b = b

let boolean c = f a b

testing/semantic/pass/ifthenelse.sampl—Mike Haskel

let boolean t = t

let intensity a = a

let intensity b = if t

then a

else a

testing/semantic/pass/implicitfunc.sampl—Mike Haskel

let intensity f scalar x = f x

let scalar a = a

let intensity b = f a

testing/semantic/pass/implicitfunc2.sampl—Mike Haskel

let boolean f scalar x intensity y = f x y

let scalar a = a

let intensity b = b

let boolean c = f a b

testing/semantic/pass/logical.sampl—Mike Haskel

let boolean a = a | a

let boolean b = b & b

let boolean c = c | c & c | c

testing/semantic/pass/multdiv.sampl—Mike Haskel
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let scalar a = a

let intensity x = a * x / a

let time t = a * (o / f) / a

let frequency f = a * (o / t) / a

let angle o = a * (t * f) / a

testing/semantic/pass/otherassign.sampl—Mike Haskel

let intensity a = b

let intensity b = a

testing/semantic/pass/otherassignfunc.sampl—Mike Haskel

let intensity->intensity a = b

let intensity->intensity b = a

testing/semantic/pass/selfassign.sampl—Mike Haskel

let intensity a = a

let frequency b = b

let time c = c

let angle d = d

let scalar e = e

let boolean f = f

testing/semantic/pass/selfassignfunc.sampl—Mike Haskel

let intensity->intensity a = a

let intensity->intensity->intensity b = b

let (intensity->intensity)->intensity c = c

testing/semantic/pass/ski.sampl—Mike Haskel

let intensity I intensity x = x

let intensity K intensity x intensity y = x

let intensity S

intensity->intensity->intensity x

intensity->intensity y

intensity z =

x z (y z)
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testing/syntax/fail/idstartnum.sampl—Mike Haskel

let intensity 1a = a

testing/syntax/fail/nolet.sampl—Mike Haskel

intensity a = a

testing/syntax/fail/nolet2.sampl—Mike Haskel

let intensity a = a

intensity b = b

testing/syntax/fail/numproblem.sampl—Mike Haskel

let intensity a = 1.1e-

testing/syntax/pass/application.sampl—Mike Haskel

let intensity a = a b

let intensity a = a b c

let intensity a = (a b) c

let intensity a = a (b c)

let intensity a = (a b)

testing/syntax/pass/arg1.sampl—Mike Haskel

let intensity a intensity b = a

testing/syntax/pass/arg2.sampl—Mike Haskel

let intensity a intensity b intensity c = a

testing/syntax/pass/basetypes.sampl—Mike Haskel

let scalar a = a

let boolean a = a

let intensity a = a

let time a = a

let frequency a = a

let angle a = a

testing/syntax/pass/basic.sampl—Mike Haskel
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let intensity a = a

testing/syntax/pass/binop.sampl—Mike Haskel

let intensity a = a + a

let intensity a = a - a

let intensity a = a * a

let intensity a = a / a

let intensity a = a < a

let intensity a = a > a

let boolean a = a | a

let boolean a = a & a

let intensity a = (a < a)

let intensity a = (a * a)

let intensity a = (a + a)

let intensity a = (a < a)

let boolean a = (a | a)

testing/syntax/pass/binopmulti.sampl—Mike Haskel

let intensity a = a + a + a + a

let intensity a = a + a * a + a

let intensity a = a / a / a + a * a | a

testing/syntax/pass/binopnested.sampl—Mike Haskel

let intensity a = (a + a) / a + (a - a)

let intensity a = (a + (a + (a - (a + (d * c) / (a | a)))))

testing/syntax/pass/functypes.sampl—Mike Haskel

let intensity->intensity a = a

let (intensity->intensity) a = a

let intensity->intensity -> intensity a = a

let intensity->(intensity -> intensity) a = a

let (intensity->intensity) ->intensity a = a

let (intensity -> intensity-> intensity) a = a

testing/syntax/pass/ifthenelse.sampl—Mike Haskel
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let boolean a = if a then a else a

let boolean a = (if a then a else a)

testing/syntax/pass/ifthenelsenested.sampl—Mike Haskel

let boolean a = if a

then a

else if a

then if a

then a

else a

else a

let boolean a = (if a

then a

else (if (if a then a else a)

then (if (a)

then a

else a)

else a))

testing/syntax/pass/mixexpr.sampl—Mike Haskel

let intensity a = if a

then a + b

else a < b

let intensity a = if a | b

then a < foo b

else (a * b)

testing/syntax/pass/multidef.sampl—Mike Haskel

let intensity a = a

let intensity b = b

let intensity c = b
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