

 Project Proposal

Windshield
Windows Shell Script

 Columbia University

COMS W4115 Programming Languages and Translators
Spring 2007

Prof. Stephen A. Edwards

Team members

 Wei-Yun Ma wm2174 wm2174@columbia.edu
 Tony Wang tw2174 tw2174@columbia.edu

Tzu-Jung Liu tl2263 tl2263@columbia.edu

Introduction

On command line-based operating systems, shell scripts are especially useful.
Through the evolution of versions, shell programming has been consistently
integrating new functions, such as variables, loops, conditions, strengthening shell
scripts to be capable of much more. One of the important features of shell scripts is its
ability to “glue” software, which is available under its current operating system (shell
scripts are also known as glue languages). Due to the rise of GUI, WWW, and
component frameworks, we need a better, more powerful alternative to integrate
software.

With the likes of Bourne Shell, Bourne-Again Shell(bash), Korne Shell, UNIX had
enjoyed a great variety of powerful shell scripting language. Windows on the other
hand, utilizes batch files and software such as 4DOS, 4NT to strengthen the former;
however, still can not program as powerfully as UNIX shell scripting language.

We therefore propose to implement Windows Shell Script(Windshield). Using the
Bash script as reference and implementing the fundamentals, we try to develop a
prototype of a Windows Shell Script and a corresponding compiler to simulate the
functions of the interpreter. We also seek to add other useful functionalities to further
enhance programming with Windshield. Our compiler will read in the source code,
and produce a Perl file, executable under Windows.

Variables

Like the Bash shell script, there are no specific data types in Windshield. A variable in
Windshield can contain a number, a character, a string of characters. Programmers can
save the work of declaring variables, instead assigning values to its reference creates
it.

Sample:
 STR="Hello World!"
 echo $STR

Line 2 creates a variable named STR and assigns the string "Hello World!" to it. Then
the VALUE of this variable is retrieved by putting the '$' in at the beginning.

Condition and Loop Statement

Windshield provides the basic if-then-else condition statement and three loop
statements: while, for and for in. The syntax is demonstrated below:

if [condition];
then

code if condition is true.
else
 code if condition is flase.
fi

while [condition]
do

code if condition is true.
done

for [expr1; condition; expr2]
do
 code if condition is true.
done

for variable in list
do
 code
done

Using the command line or calling other programs
One of the most important features of a shell script is it can directly utilize shell
command or call existing programs to collaboratively achieve the goal.

Sample:

cat file1 | sed s/Hello/World/ > file2
 C:\myprogram.exe file2 > file3
copy the content into file2 but replace any “Hello” with “World” in file2.
Execute C:\myprogram.exe which take the inputfile-file2 and output an outputfile- file3

Unix/Linux shells provide much stronger commands than Windows. Therefore in
Windshield we do not adopt/allow DOS commands. On the contrary, the small part
but basic Unix/Linux commands will be included in Windshield, such as echo, cp, mv,
rm, mkdir, rmdir, cd, df, du, ls, cat, pwd, basename, expr and read. We also intend to
implement two useful utilities-sed and grep in Windshield. The two utilities allow
regular expression representation for their inputs. Therefore, we would compile
regular expression statement into their corresponding target codes.

I/O Redirection
I/O redirectors are used to send output of command to file or to read input from file.
Windshield provides basic I/O redirection functions which used frequently in
Unix/Linux shells. There are three main redirection symbols in UNIX/Linux shell:
>,>>,<. Windshield would provide two of them: >, >>.

(1) >
Syntax:
command/program > filename
To output command/program result (output of command/program) to file. If file
already exist, it will be overwritten else new file is created. Ex: $ ls > myfile
(2) >>
Syntax:
command/program >> filename
To output command/program result (output of command/program) to END of file. If
file exists, it will be opened and new information/data will be written to END of file,
without losing previous information/data. And if file does not exist, then new file is
created. Ex: $ date >> myfile

Pipeline
Pipeline lets programs use the output of a program as the input of another one with the
symbol: |
Take the previous example:

cat file1 | sed s/Hello/Word/ > file2
 myprogram.exe file2 > file3

If file2 is not the concerning file, the above two lines can be combined into the
following one line:

cat file1 | sed s/Hello/Word/ | myprogram.exe > file3

Compile Example
The following program is to convert the filename extension “.htm” of every file into
“.html”

Source Windshield Code:
for file in *.htm;
do
 echo "processing $file"
 mv $file `echo $file | sed s/\.htm/\.html/`
done

Target Perl Code:
foreach my $file (glob "*.htm")
{
 print "processing $file";
 $desfile=$file;
 $desfile=~s/\.htm/\.html/;
 rename $file $desfile;
}

