
Columbia University
Programming Languages and Translators

Spring 2007
Professor Edwards

Semester Project Proposal

Steve Henderson
Levi Lister
Abe Skolnik
Wei Teng

SLAWscript Language Proposal Page 2 of 4

Executive Summary
Two modes:
• Text: simplified Python.
• GUI: HyperCard for the Java age.

Introduction
The name of our language is “SLAWscript” (Steve, Levi, Abe, and Wei’s scripting language).
SLAWscript is a general-purpose (yet simple) scripting language, designed to enable the easy
production of either text (i.e. command-line environment) applications or GUI applications that
are made of dialog boxes, optionally with custom graphics. Amongst other possible uses,
it will allow for quickly programming and deploying interactive training, tutorial,
and survey applications.
SLAWscript is modeled on Python, but on a smaller scale. SLAWscript has no arrays, classes,
or objects. At this time, only the three standard UNIX-like channels (stderr, stdin, and stdout)
are accessible; that is to say, files cannot be opened and used. Also, SLAWscript is not strict
about the use of leading spacing.

Fundamental Need
The Java Swing Application Programming Interface (“API”) provides a rich set of Graphical
User Interface (“GUI”) widgets that can create useful and intuitive GUI interfaces. Because such
interfaces are based on Java, they are highly portable and deployable and thus are desirable for
mixed-OS, mixed-CPU-architecture communities. However, Swing requires considerable Java
knowledge and experience to create a functional GUI application. This can prevent a
non-Swing-savvy researcher, engineer, or other programmer from experiencing the benefits of
Swing. For example, a seventh-grade music teacher may want to quickly design a GUI-based
tutorial for reviewing musical notation. He or she envisions a series of windows where the
student reviews and demonstrates knowledge of musical notation. However, although the
teacher is highly familiar with the content of the tutorial, he or she has no idea how to implement
it. He or she doesn’t have the time to learn Swing (or another language’s GUI library),
and needs a custom solution with per-student question generation and answer processing that
cannot be performed (or cannot be easily performed) with common presentation tools such as
Microsoft PowerPoint.
We are developing SLAWscript to address this need. SLAWscript allows a designer to use a
simple scripting language to develop a program that may use a series of customizable dialog
boxes that interact with an end-user. SLAWscript allows a programmer to focus primarily on
the content of the application and to use SLAWscript’s program control logic to specify how
the application should behave based on user input. The more complicated aspects of Swing
applications (component layout, event handling, etc.) are handled by the
SLAWscript implementation.

SLAWscript Language Proposal Page 3 of 4

Key Features
• Conventional

SLAWscript attempts to use conventional notation where possible, as limited by the
expressive abilities of ASCII. For example, the bar symbol (’|’) is used to both begin and end
an operator which returns either the absolute value (for numeric operands) or the string
length (for string operands).

• Dynamic
In SLAWscript, variables don’t need to be declared, and they are allowed to contain different
data types at different points in time.

• Flexible
In SLAWscript, the addition operator can take either a number or string as either of its
parameters, and intelligently decides whether to perform arithmetic addition or string
concatenation. The multiplication operator is similarly flexible, and intelligently decides
whether to perform arithmetic multiplication or string multiplication (i.e. multiplying 3 by
“Hi” produces “HiHiHi”). In general, wherever a number is required, a variable containing
a string containing an appropriate number may be used instead. (The primary exception:
“assert” statements.) This allows for easier use of user-entered numbers in SLAWscript
programs. For example, if the user entered “3” in response to a prompt, and that string is
stored in a variable called “input”, then the expression (10–input) yields the number seven.

• Interpreted
Our implementation of SLAWscript is an interpreter, which facilitates rapid development.

• Intuitive
SLAWscript is designed to use the English language as a basis whenever it is helpful to do
so; for example, to copy the data from a variable named ‘a’ to a variable named ‘b’,
simply use the command: “copy a to b”.

• Portable and architecture-neutral
Our implementation of SLAWscript is based on Java, which gets us “for free” the advantages
that it should be able to run correctly on many different operating systems and CPU types.

• Reduced ambiguity
In SLAWscript, the equals sign means only one thing: test for equality. Copying data
unchanged from one variable to another can be done with the “copy” verb,
and general-purpose assignment can be accomplished with the “set” verb.

SLAWscript Language Proposal Page 4 of 4

Representative program
One representative program is an exam preparation assistant for a course in the humanities,
such as a history course. Many of these tests require memorization of large amounts of
information. SLAWscript can easily be used to create a program to act as an interactive practice
exam. This practice exam would involve a series of text prompts or dialog boxes that display
practice questions, prompting for student input after each question. SLAWscript’s control logic
allows the test designer to then branch and evolve the exam based on the student’s input.
For example, if the student answers incorrectly, hints can be presented to aid in memorization.
Or, if the student is mastering the questions corresponding to a certain level of difficulty,
the test can provide more difficult questions, thus adapting to the individual student.
A study guide for a typical Art Humanities course is already in the early-prototype stage.
The plan for this program is for it to act as a set of interactive flash cards by (for each
available picture) displaying a picture of a painting and presenting appropriate
multiple-choice questions, and then responding appropriately depending on
whether the user answers correctly or incorrectly.

Examples of Syntax
set a to 9 # this is how we “load” a literal value
set a to a+1 # this is how we increment a variable
copy a to b # this is how we copy from one variable to another
put b to stdout # this is how we “print”
put b+"\n" to stdout # this is how we “println”

the CLI way to ask a question and get the user’s answer

put "What is your favorite color?" to stdout
get color from stdin

the GUI way to do it

get color from string dialog with message "What is your favorite color?"

Future Expansion
If time permits, we will program and provide a “bundling” utility which will package together
the SLAWscript interpreter, a program written in SLAWscript, and (optionally) picture files
needed for the SLAWscript program into a single Java Archive (jar) file. In this way,
SLAWscript programmers may create royalty-free distributable SLAWscript
applications that can be started simply by entering a single command,
for example “java -jar ArtHumanitiesStudyGuide.jar”, or by
double-clicking the jar file in graphical environments that
support running Java jar-based programs in that way.

