
Project Proposal

Group Members:
 Vaishnav Janardhan, Rob Katz, Carlos Rene Perez, Albert Tsai

1. Describe the language you want to implement.

Analog Additive Synthesis Language

Sound is nothing more than variations in air pressure and, as such, can be predictably generated and 
modified using mathematical formulas.  Synthesizers have been doing this for decades using analog 
circuitry and some simple digital effects (delays, etc.).  In the past couple of decades, these analog 
circuits have been replaced by digital counterparts.  However, the basic elements, such as oscillators 
and envelopes, and the methods for combining them, remain the same.  The goal of this language is to 
encapsulate common data types and methods, corresponding to these classic elements, which will 
facilitate the creation of original sounds.

There is a similar project from the Fall 2006 PLT class (Music Mixing Language [MARS]). However, that 
language is concerned mostly with the arrangement of music tracks, and minor sound alterations like 
fading in/fading out. This idea is more fundamental - we want a language to help create sounds from 
scratch.

Our "Hello World" program will be a short piece of code that can output to a sine wave to the file, 
Sound.wav.

What is a sound?

Every program outputs a CD-quality sound(44.1k, 16-bit WAV file).  This sound is the summation of the 
outputs of mixers and oscillators.  The output of a mixer is, in turn, the summation of the outputs of 
oscillators and other mixers. Oscillators are associated with a waveform and a central frequency.  Every 
oscillator has an input for frequency control and an input for amplitude control.  Each input may be 
attached to a constant, an envelope, or another oscillator.  The output of an oscillator is a modified 
version of the waveform associated with it.  This output cannot exceed a frequency of 20 kHz or an 
amplitude of 1.
Envelopes are graphs that portray change over time.  This graph can be described by a set a pairs.  
Each pair is of the form (time, amplitude).  Both values must be between 0 and 1.

When an oscillator is attached to either the frequency or amplitude input of another oscillator, it's 
output acts as a control signal. For example, say osc1's output is a 1Hz sine wave at half maximum 
amplitude (control signal).  This oscillator is attached to the frequency input of osc2, which is associated 
with a square wave and has a central frequency of 440 Hz.  The output of osc2 would be a square wave 
who's frequency varies.  The width of this variance from the central frequency would be half the 
maximum allowed amount (due to the amplitude of osc2).  The central frequency occurs at each zero 
crossing of the control waveform, in this case every half second (due to the frequency of osc2). In other 
words, the sine wave output by osc1 can be viewed as a graph where the x-axis is time, the y-axis is 
the frequency of osc2, and a when y=0 osc2's output it's central frequency.
An envelope's value is tracked similarly, but they do not loop as oscillators do.

For the purposes of our language, we shall define a sound with the following syntax:
A,B,C are Signals.

"A : B + C" = A is the output of adding(super positioning) B and C together.
"A : B, C" = Used to separate a list of attributes.
"A : B[C]" = Signal1 is modified by Signal2.

And we shall define a sound as:
Sound : Mixers(s) + Oscillators(s);



Mixer : Oscillator(s) + Mixers(s);
Oscillator : Waveform, Amplitude[Envelope], Frequency[Envelope];
Envelope : Graph describing modification over specified time duration;
Constant : Modifier unrestricted by time;
Modifier : Integer value multiplied against a specific attribute;
Waveform : The shape of a signal;

2. What problems does this language solve and how should it be used?

The Analog Additive Synthesis language allows a user to create an enormous variety of sounds.  No 
stand-alone synthesizer and few software synthesisers allow for such flexibility in terms of the number 
of components a sound can include or accessibility to each component's characteristics.  The language 
is most suitable for those wishing to generate simple to complex analog-type sounds and noises, 
perhaps to be manipulated using other audio software. While it could be used to generate melodies or 
harmonic progressions, this would most likely prove terribly time-consuming and not worth the effort.

3. Data type for language

The basic data types of the language are:
              1. Contants: It is an integer constant while defining the frequency of the oscillator and it is a 
floating point number when defining the amplitude of an oscillator.
              2. Envelopes: Envelope defines the variation of either the frequency of the amplitude over 
time.
              3. Oscillators:  Oscillator will define the type of the wave, frequency and the amplitude range 
of the wave.
              4. Mixers: Mixer takes two different wave forms as input and mixes them input a single output 
waveform.

4. Operators of the language

The operations  permitted are "+" and "*".  Both the "+" and "*" operators are overloaded.

Addition: "+" operator can be used to,
                              1. Add two constants values
                              2. Add a mixer to an oscillator (result is input to another mixer)
                              3. Add two oscillators.   (result is input to another mixer)
                              4. Cannot add two envelopes.

Multiplication: "*"  operator can be used to
                              1. Multiply a constant value and an oscillator. (result is a term in a mixer 
assignment)
                              2. Multiply a constant value with a mixer. (result is a term in a mixer assignment)

5.1 Keywords

mixer                            start                                 end                      header                  
      
func                             connect                             env                      osc                        
          
def                               _TONELENGTH_                  _SINE_                  _SQUARE_         
               
_SAW_                         _REVSAW_                         _OUTPUT_
   



 

Legend:
    Triangles => Constant Values
   Circles => Signal Generators
   Pentagon => Envelopes
   Rectangle => Mixer or OUTPUT

6. Example program in your language.

Every program would be broken up into two segments, a header and a main function.  More segments 
can occur if the user chooses to implement functions, which are discussed below.
In the header, the name of the output file and the length in seconds of the output are given.  Every 
function, including main, also contains two segments, named 'def' and 'connect'.  In the the 'def' 



section, all the elements (oscillators, envelopes, and mixers) are defined.  In the 'connect' section, 
elements are attached to one another.  Following the 'connect' section in every function, _OUTPUT_ is 
assigned.
The language will support the use of functions.  Functions should be thought of as modules that 
encapsulate and generalize entire sections of the synthesizer.  For example, should a user want multiple 
instances of an oscillator controlling the frequency of another oscillator, but wishes to vary the 
frequency of the controlling oscillator in each instance, such a structure could be defined in a function.  
The function would take the controlling oscillator's frequency as an argument.  The main function will 
never receive any arguments.  Functions will only be called in the 'connect' section; within 'connect', 
they can be used anywhere an oscillator would be, with their _OUTPUT_ acting as the output of an 
oscillator.

start header
    _OUTPUT_ = "testsound.wav"
    _TONELENGTH_ = 10                //10 second sound
end header

start func main()
    start def                //define all elements first
        mixer S1(2);                //defines a mixer for 2 oscillators to attach to
        mixer S2(2);

        osc o1(_SINE_);        //defines a sine wave oscillator, o1
        osc o2(_SINE_);
        osc o3(_SQUARE_);
        osc o4(_SAW_);
        osc o5(_SQUARE_);
        osc o6(_REVSAW_);

        env e1{ (0.0,0.3) (0.2,0.2) (0.4,0.2) (0.8,0.8) (1.0,0) };
             //defines envelope w/ (time, amp)
        env e2{ (0.0,0.0) (0.3,0.0) (1.0, 1.0) };
    end def                       //end definitions

    start connect                //now connect elements
        o1(40, e1);
        o2(e2(8000), o3);
        o3(2, 0.5);                //control LFO
        o4(2, 0.8);                //inaudible osc
        o5(o6(440), 0.5);
        o6(220, 1.0);                //very high freq LFO

        S1 = 0.4*o1 + 0.6*o2;
        S2 = 2*S1 + 3*o4;
    end connect
    _OUTPUT_ = S1 + o5;
end func main


