
SIGL Language Reference Manual

Phong Pham Abelardo Gutierrez Alketa Aliaj

Programming Languages and Translators
Spring 2007

1 Introduction

Simple Image Generation Language (SIGL) is a simple drawing language based on Virtual
Reality Modeling Language (VRML), widely used for specifying 3D models. It deploys
the familiar image specification methodology and syntax of VRML while providing more
control and flexibility with conditional branching and loop similar available in any other
modern programming languages. Our designing goal for SIGL is to provide users with a
simple, natural and yet flexible way to draw 2D images. This document acts as a complete
reference manual for the language.

2 Lexicon

SIGL uses a standard grammar and character set. The specific elements that comprise this
grammar and character set are described in the following sections:

• Character set (Section 2.1)

• Rules for identifiers (Section 2.2)

• Use of comments in a program (Section 2.3)

• Keywords (Section 2.4)

• Operators (Section 2.5)

• Interpretation of constant values (Section 2.6)

SIGL compiler treats source code as a stream of characters. These characters are grouped
into tokens, which can be punctuators, operators, identifiers, keywords, or constants. Tokens
are the smallest lexical element of the language. The compiler forms the longest token
possible from a given string of characters; the token ends when white space is encountered,
or when the next character could not possibly be part of the token.

White space can be a space character, new-line character, tab character, form-feed
character, or vertical tab character. Comments are also considered white space. Section 2.1
lists all the white space characters. White space is used only as a token separator, but is
otherwise ignored in the character stream, and is used mainly for human readability.

In order to simplify the complexity of implementing the language, we choose not to
support strings in SIGL. Being a drawing language, this limitation is acceptable in most
cases.

1

2.1 Character set

SIGL supports only a small subset of ASCII characters as follows:

• The 26 lowercase Roman characters
a b c d e f g h i j k l m n o p q r s t u v w x y z

• The 26 uppercase Roman characters
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The 10 decimal digits
0 1 2 3 4 5 6 7 8 9

• The 23 graphic characters
! % & * () - _ = + ; / | \ { } [] , . < >

• White spaces: space, horizontal tab, new line, carriage return

2.2 Identifiers

An identifier in SIGL is a sequence of characters consisting of one or more uppercase or
lowercase alphabetic characters, the digits from 0 to 9, and the underscore character (_).
Identifiers must not starts with a digit. SIGL identifiers are case-sensitive, i.e. test1, TEST1,
Test1 are 3 different identifiers. In general, any sequence of characters satisfying the previous
rules can be used as identifier, except for some reserved words known as keywords(see Section
2.4). An identifier represents a name for variables and functions.

2.3 Comments

SIGL supports 2 commonly used comment styles:

• Conventional C multi-line comments: the /* (slash, asterisk) characters, followed by
any sequence of characters (including new lines), followed by the */ characters. This
syntax is the same as ANSI C. Comments of this type are not allowed to be nested.

• C++ single-line comments: the // (two slashes) characters, followed by any sequence
of characters. A new line not terminates this form of comment.

2.4 Keywords

Keywords are special sequences of characters reserved by compiler, and are not allowed to
be used as identifiers. Table 1 shows all the keywords used in SIGL

break else return ellipse rotate color
continue for while line scale
do if polygon translate fun

Table 1: SIGL keywords

2

2.5 Operators

SIGL supports almost all unary, binary, and ternary operators in C, both arithmetic and
logical operators. Summary of all operators, their precedences and associativity are shown
in Table 2.

Precedence Operator Description Examples Associativity
1 () Grouping operator (a + b) / 4 left to right

[] Array access a[i]
2 ! Logical negation if (!done) right to left
3 * Multiplication i = 2 * 4 left to right

/ Floating point division i = 9 / 4
Integer division i = 9 2

% Modulo i = 9 % 2
4 + Addition i = 3 + 4 left to right

- Subtraction i = 4 - 3
5 < Comparison less-than if (i < 42) left to right

> Comparison greater-than if (i > 42)
<= Comparison less-than-or-equal if (i <= 42)
>= Comparison greater-than-or-equal if (i >= 42)

6 < Comparison equal-to if (i == 42) left to right
< Comparison not-equal-to if (i != 42)

7 && Logical AND if (a && b) left to right
8 || Logical OR if (a || b) left to right

Table 2: Summary of SIGL operators

2.6 Constants

There are 2 types of constants in SIGL, integer constants (such as 63, 0, 42), and floating-
point constants (such as 1.2, 0.00, 77E + 2).

Integer constants are used to represent whole numbers. To specify a decimal integer
constant, use a sequence of decimal digits 0 . . . 9. Value of a decimal constant is computed
in base 10. Integer constant values are always nonnegative; a preceding minus sign is
interpreted as a unary operator, not as part of the constant.

A floating-point constant has a fractional or exponential part. Floating-point constants
are always interpreted in decimal radix (base 10). Floating-point constants can be expressed
with decimal point notation, signed exponent notation, or both. A decimal point without
a preceding or following digit is not allowed (for example, .E1 is illegal).

The significand part of the floating-point constant (the whole number part, the decimal
point, and the fractional part) may be followed by an exponent part, such as 32.45E2 .
The exponent part (in the previous example, E2) indicates the power of 10 by which the
significand part is to be scaled.

3

3 Declaration

3.1 Variables

SIGL does not require explicit variable declaration. A variable is declared when its value
is assigned for the first time. SIGL deploys a dynamic type system, variable types are
determined at runtime.

3.2 Functions

The syntax for declaring a function is as follows

fun function-name (parameter-list)

{

statement*

}

The function will take parameter list as its parameters (this can be empty). The type of
the function depends on the type of the return value yielded from executing function body.
Recursive function is also supported. Functions are not allowed to be nested.

4 Program execution

Program execution is from top to bottom. Function definitions are not part of the execution.
However, a function must be defined before it can be called.

5 Expressions

Primary expressions

5.0.1 identifier

An identifier is a primary expression.

constant

An integer or floating-point constant is a primary expression. Its type is int in the former
case, and is double in the latter.

(expression)

A parenthesized expression is a primary expression whose type and value are identical to
those of the unadorned expression. The presence of parentheses does not affect whether the
expression is an lvalue.

primary-expression [expression]

A primary expression followed by an expression in square brackets is a primary expression.
This is used to refer to an element of an associative array. Its type is the type of the object
stored in the associative array.

4

primary-expression (expression-list)

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function.
In preparing for the call to a function, a copy is made of each actual parameter; thus,
all argument-passing in SIGL is strictly by value. A function may change the values of
its formal parameters, but these changes cannot possibly affect the values of the actual
parameters. Recursive calls to any function are permissible. The type of the function call
is the type of its return value.

5.1 Unary operators

– expression

The result is the negative of the expression, and has the same type. The type of the
expression must be int, or double.

!expression

The result of the logical negation operator ! is true if the value of the expression is
false, and false if the value of the expression is true. The type of the result is boolean.
Expression must also have type boolean.

5.2 Multiplicative operators

expression * expression

The binary * operator indicates multiplication. If both operands are int, the result is int; if
one is double, the other is converted to double, and the result is double; if both are double,
the result is double. No other combination is allowed.

expression / expression

The binary / operator indicates floating-point division. Both operands, if not already of
type double, are converted to double. The result is double.

expression \ expression

The binary \ operator indicates integer division. Both operands must be of type int. The
result is of type int.

expression % expression

The binary % operator yields the remainder from the division of the first expression by the
second. Both operands must be int, and the result is int. In the current implementation,
the remainder has the same sign as the dividend.

5

5.3 Additive operators

expression + expression

The result is the sum of the expressions. If both operands are int, the result is int. If both
are double, the result is double. If one is int, it is converted to double and the result is
double. No other type combinations are allowed.

expression - expression

The result is the difference of the operands. If both operands are int, or double, the same
type considerations as for + apply.

5.4 Relational operators

expression < expression

expression > expression

expression <= expression

expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater
than or equal to) all yield false if the specified relation is not valid and true if it is satisfied.
Both operands must be of boolean type.

5.5 Equality operators

expression == expression

expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence (Thus a < b == c < d is true whenever a < b
and c < d have the same truth value). However, they can be used to compare any 2 objects
of same type, both must be boolean, or both must be numeric. Comparison between int
and double or double and double might yield unexpected result.

5.6 expression && expression

The && operator returns true if both its operands are true, false otherwise. The second
operand is not evaluated if the first operand is false. Both operands must have boolean
type.

5.7 expression || expression

The || operator returns true if either of its operands is true, and false otherwise. The
second operand is not evaluated if the value of the first operand is true. Both operands
must have boolean type.

6

5.8 Assignment operator lvalue = expression

The value of the expression replaces that of the object referred to by the lvalue. The type
of the expression is the type of expression. The type of lvalue is also changed to type of
expression after the assignment.

6 Statements

Except as indicated, statements are executed in sequence

6.1 Expression statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

6.2 Compound statement

So that several statements can be used where one is expected, the compound statement is
provided:

compoundstatement:

{ statement* }

6.3 Conditional statement

The two forms of the conditional statement are

if (expression) statement

if (expression) statement else statement

In both cases the expression is evaluated and if it is true, the first substatement is executed.
In the second case the second substatement is executed if the expression is false. As usual
the else ambiguity is resolved by connecting an else with the last encountered elseless if.

6.4 While statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains true.
The test takes place before each execution of the statement.

6.5 For statement

The for statement has the form

for (expression1 ; expression2 ; expression3) statement

This statement is equivalent to

7

expression1;

while (expression2) {

statement

expression3;

}

Thus the first expression specifies initialization for the loop; the second specifies a test,
made before each iteration, such that the loop is exited when the expression becomes false;
the third expression typically specifies an incrementation which is performed after each
iteration. Any or all of the expressions may be dropped. A missing expression2 makes
the implied while clause equivalent to while(true); other missing expressions are simply
dropped from the expansion above.

6.6 Break statement

The statement

break ;

causes termination of the smallest enclosing while or for statement; control passes to the
statement following the terminated statement.

6.7 Continue statement

The statement

continue ;

causes control to pass to the loop continuation portion of the smallest enclosing while, or
for statement; that is to the end of the loop.

6.8 Return statement

A function returns to its caller by means of the return statement, which has one of the
forms

return ;

return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is
returned to the caller of the function. Flowing off the end of a function is equivalent to a
return with no returned value.

6.9 Translate statement

Creates an translation environment

translate (expression1, expression2)

{

statement*

}

all drawing statements in this environment would be executed under effect of the translation.
The amount of translation is determined by expression1 and expression2.

8

6.10 Rotation statement

Creates an rotation environment

rotate (expression)

{

statement*

}

all drawing statements in this environment would be executed under effect of the rotation.
The amount of rotation is determined by expression. The rotation center is at the origin.

6.11 Scale statement

Creates an rotation environment

scale (expression1 , expression2)

{

statement*

}

all drawing statements in this environment would be executed under effect of scaling. The
scaling factor is determined by expression1 and expression2.

6.12 Color statement

Specify the color for the current drawing environment

color (r-expression , g-expression , b-expression);

Notice that the color is similar to variable, the effect of the color is only valid in the scope
it is defined.

7 Scoping

A variable is declared when it is first used. The scope of a variable is the context within
which it is defined. Any variable declared within a function is only local to that function.
The scope of a parameter of a function definition begins at the start of the function block and
persists through that function. The programmer can start a new scope any time they create
a statement block with { }, such as in iterative statements or if/else statements. Moreover,
identifiers declared within curly bracket are not accessible outside of the brackets.

SIGL is a static scope language. The environment of a function is the environment at
the time it is defined, not the time it is called.

8 Sample SIGL programs

8.1 Example 1

/* Draw a simple image */

polygon{ // we would like to draw a polygon

{0,0}, // list of vertices of the polygon

{0,1}, // here the vertices will form unit square

{1,1},

{1,0}

}

translate(0.5,0.5){ // draw a circle inside the square

9

circle(0.5);

}

// we’ll draw the same square here

// except that this square would be rotated and translated

translate(2,0){ // translate it in horizontal direction by 2 units

rotate(45){ // rotate it counter-clockwise by 45 degree

polygon{ // the same drawing instructions as above

{0,0},

{0,1},

{1,1},

{1,0}

}

translate(0.5,0.5){

circle(0.5);

}

}

}

8.2 Example 2

/* Draw many squares with increasing size and rotating angles */

fun square (size)

scale(size){ // we use scale to get the size we want

polygon{

{0,0},

{0,1},

{1,1},

{1,0}

}

}

}

for (i = 0;i < 36;i = i + 10)

{

rotate(i * 10)

{

square(i);

}

}

10

	Introduction
	Lexicon
	Character set
	Identifiers
	Comments
	Keywords
	Operators
	Constants

	Declaration
	Variables
	Functions

	Program execution
	Expressions
	identifier
	Unary operators
	Multiplicative operators
	Additive operators
	Relational operators
	Equality operators
	expression && expression
	expression || expression
	Assignment operator lvalue = expression

	Statements
	Expression statement
	Compound statement
	Conditional statement
	While statement
	For statement
	Break statement
	Continue statement
	Return statement
	Translate statement
	Rotation statement
	Scale statement
	Color statement

	Scoping
	Sample SIGL programs
	Example 1
	Example 2

