
SAMPL Reference Manual

Mike Haskel Mike Glass Morgan Rhodes
Navarun Jagatpal

March 5, 2007

1 Lexical Conventions

Tokens consist of identifiers, keywords, numbers, the ‘=’ sign, and operators.
Whitespace may include spaces, tabs, newlines, and carriage returns, and is
ignored except in that it separates tokens.

1.1 Identifiers

Identifiers are strings of alphanumeric characters starting with an alphabetic
character. They are case sensitive and may be of unlimited length.

1.2 Keywords

The keywords have special syntactic meaning and may not be used as iden-
tifiers:

be else end hz if let lfs rad sec start then until

1.3 Numbers

The convention for numbers is based upon the convention for floating con-
stants in C. They consist of an integer part, a decimal point, a fraction part,
an e or E, an exponent sign, and an integer exponent. The integer part,
fraction part, and integer exponent each consist of a sequence of digits. The
exponent sign consists of either a + or a -. Any part may be missing, so long
as the integer exponent is present exactly when the e or E is, the exponent

1

sign is present only when the integer exponent is, the decimal point is present
whenever both the integer and fraction parts are present, and at least one
of the integer and fraction parts is present. Numbers denote double floating
numbers in C via the usual translation.

2 Behavior of Generated Programs

The programs generated by the SAMPL compiler read and write audio data
streams from standard input and output, respectively. The read and write
operations occur synchronously in that there is a one-to-one correspondence
between input and output samples points, which are strictly interleaved.

The audio itself is encoded as 16-bit two’s-complement little-endian single-
channel raw linear PCM data, sampled at 44.1 kHz. It may be possible to
configure many of these parameters via command-line options to the gener-
ated programs—run the generated programs with the --help flag for details.

3 Expressions

Expressions in SAMPL have a type and a value. The type of an expression
is implicit and does not change throughout the program’s execution. The
value of an expression may change as the program scans new input, but is
otherwise static. Due to the possibility of infinite recursion, an expression’s
value may at any point be undefined, and the program may loop indefinitely
when trying to evaluate it.

3.1 Types

An expression’s type determines how it may be used, and informally spec-
ifies the interpretation of the expression’s value. The various mechanisms
for forming expressions determine the type of the resulting expression and
impose restrictions on the types of their components. Type restrictions are
checked at compile-time.

3.1.1 Base Types

The following are base types:

time intensity frequency angle scalar boolean

2

3.1.2 Functional Types

Given types a and b, (a.b) is a type. These correspond to functions from type
a to type b. Functions in multiple arguments are implemented as curried
functions, that is, a function from a and b to c has type (a.(b.c)).

3.2 Values

Values of expressions of type scalar are a double in C. These values cannot
be infinite or nan. Values of expressions of type boolean can either be true or
false. The implementation of values in other base types is not defined. We
assume the existence of a single canonical value for each; further behavior
is specified with rules for how they interact with other values in following
sections.

3.3 Unit Values

As discussed in the previous section, the values of expressions of base types
(excepting scalar and boolean) are based upon some canonical unit value.
The unit values are described here. One linear full-scale (lfs) is the maxi-
mum intensity of the input and output streams. Behavior is undefined upon a
value greater than 1 lfs. One second (sec) is a conceptual second as deter-
mined by the sample frequency. One radian (rad) is a conceptual radian—2π
radians form a complete wave period. One Hertz (hz) represents the angular
frequency of a 1 Hz wave. That is, a component with an angular frequency
of one Hz has a period of 2π seconds.

3.3.1 Functional Values

Values of functional types are abstract. The value of an expression of type
(a.b) consists of a mechanism which, when provided a value of type a, pro-
duces a value of type b.

4 Definitions

program : definition*
definition : let name parameters = expression

3

name : type ID
parameters : (type ID)*

A program in SAMPL consists of a series of definitions. Each of these
definitions binds a new name whose scope consists of the entire program,
and optionally a collection of formal parameters whose scope consists of the
body of the definition. Behavior is undefined when a definition attempts to
bind an identifier twice or attempts to bind an identifier bound as a name
elsewhere in the program.

There are two special names in SAMPL, input and output. Input is an
expression of type intensity whose value is the intensity of the input signal
at any particular point in the scanning proccess. The name input must not
be bound elsewhere.

One of the program’s definitions must bind the name output with no
arguments as type intensity. After scanning a sample of input and setting
the value of the input name accordingly, a program outputs the value of the
output name. If the value of the output name is not well defined (i.e. infinite
recursion), the program may hang indefinitely.

4.1 Interpretation of Definitions

A name bound by a definition may be used in an expression anywhere in the
program.

Supposing identifiers in the parameter list to be expressions of their spec-
ified type, the expression on the right size of ‘=’ (which may contain the
parameter identifiers) must have the same type as the type specified in
name. Given that the type specified in name is b and the types specified
in the parameters are, from left to right, t1 . . . tn, the identifier in name is
an expression which may be used anywhere in the program, and has type
(t1.(t2.(. . . (tn.b) . . .))).

The identifier mentioned in name is an expression which may be used
anywhere is the program. If it has no formal parameters, its value is the
value of the expression on the right side of its definition. If it has a single
formal parameter, then the value is a mechanism which, given a value of
appropriate type, yields the value of the expression on the right side of the
definition when taking the value of the parameter identifier to be the provided
value.

If the definition has multiple formal parameters, we use the method of
curried functions. That is, the value of the defined identifier is a mechanism

4

which is provided the value of the first parameter and returns a mechanism
which is provided the value of the second parameter and returns another
mechanism, et cetera. The method which is provided the value of the fi-
nal parameter returns the value of the expression given that the parameter
identifiers assume the appropriate provided values.

The need for type specifiers is a last-minute realization, and details are
forthcoming.

5 Notation of Expressions

This section describes the various means of constructing expressions, their
types, and their values.

5.1 Sequential Expressions

expression : sequential | conditional
sequential : be (seq-continuation | start ID atom*)
seq-continuation : conditional (until conditional sequential)?

An expression a which is a bare conditional is equivalent the sequential
expression denoted be a.

A sequential expression describes a value which changes upon designated
conditions. The structure consists of several instances of the keyword be

followed by a value expression, separated by the keyword until followed by
a transition expression. Note that a programmer may only assign a sequential
expression directly to a name; sequential expressions do not nest inside other
expressions.

A sequential expression may contain the keyword start followed by a
tail specifier and a number of arguments. The tail specifier must be an
identifier defined in the present scope and must not be a formal parameter.
The number and types of the arguments must exactly match those of the
formal parameters in the definition of the tail specifier. The use of the start
keyword denotes that the value and transition expressions of the present
sequential expression are considered conjoined with those in the definition
of the tail specifier, after variable substitution. The definition of the tail
specifier may in turn end with a tail specifier, and so on.

The type of all value expressions in a sequential expression must be the
same—this is the type of the entire expression. The type of each of the

5

transition expressions must be boolean.
At any time, exactly one of the value expressions is considered current.

The value of the expression is the value of the current value expression. If at
any time the value of the transition expression following the current expres-
sion becomes true, the next value expression (after the current expression)
which is followed by a false transition expression becomes the current expres-
sion. If no transition expression follows the current expression, the current
expression remains current until the program terminates.

5.2 Conditional Expressions

conditional : logical | if conditional then conditional else conditional end
A conditional expression consists of a condition (following if), a positive

part (following then), and a negative part (following else).
The condition must have boolean type. The positive and negative parts

must have the same type—this is the type of the expression.
Whenever the value of the condition is true the value of the expression is

the value of the positive part. Whenever the value of the condition is false
the value of the expression is the value of the negative part.

5.3 Logical Operators

logical : comparison | logical LOP comparison
Logical operators consist of ‘|’ (logical or) and ‘&’ (logical and). Note

that these have the same precedence, unlike C and most sane languages.
The value of all operator expressions depends only on the values of their
arguments.

The type of each argument to the operator must be boolean. The type
of the entire expression is boolean.

The value a logical “and” expression is true if and only if the value of
each of the arguments is true. The value of a logical “or” expression is true
if and only if the value of at least one of the arguments is true.

5.4 Comparison Operators

comparison : additive | comparison COP additive
Comparison operators consist of ‘<’ and ‘>’. Tests for equality are not

provided as values should be treated as more or less continuous. Notions of

6

equality raise issues of discretization, and SAMPL guides the programmer
intentionally away from these issues.

Both arguments to a comparison operator must share the same type. This
type may not be boolean. The type of the resulting expression is boolean.

This reference manual does not specify the numerical details of expression
values. The behavior of comparison and many other operators is defined in
terms of properties they must satisfy.

The operators are opposites in that ‘>’ expressions have the same value
as ‘<’ expressions with swapped argument values. ‘>’ is transitive in that,
given a > b and b > c, a > c. Never do both a > b and a < b have true value.
Both a > b and a < b have false value if and only if a has the same value as
b.

Scalar values compare as double values in C.

5.5 Additive Operators

additive : multiplicative | additive AOP multiplicative
Additive operators consist of ‘+’ and ‘−’.
Both arguments to an additive operator must share the same type. This

type may not be boolean or frequency. The resulting expression has the same
type as the arguments.

Excepting rounding errors, addition and subtraction form an abelian
group. This is equivalent to the following conditions: addition is associa-
tive and commutative. The value written 0 UNIT, written here 0, is such
that a + 0 has the same value as a for all expressions a. For all expressions
a, a − a has the same value as the additive identity. a − b is equivalent to
a + (0 − b).

5.6 Multiplicative Operators

multiplicative : functional | multiplicative MOP functional
Multiplicative operators consist of ‘∗’ and ‘/’.
If one argument to ‘∗’ has type scalar, the other argument may be of

any type other than boolean. The resulting expression has this as its type.
Otherwise, one argument must have type frequency and the other time. The
resulting expression has type angle.

Scalars multiply as double do in C. Excepting rounding errors, scalars
multiply with other types as a vector spaces, equivalent to the following

7

conditions. If a and b have scalar type and x has any type other than boolean
and scalar, a ∗ (b ∗ x) has the same value as (a ∗ b) ∗ x. If c has scalar type
and value zero, c ∗ x has the value of the additive identity. Similarly, if c has
value one, c∗x has the same value as x. If c has value negative one, c∗x has
the same value as d− x, where d is the additive identity of the same type as
x. If a is of scalar type and x and y are of the same type, neither boolean
nor scalar, a ∗ (x + y) has the same value as a ∗ x + a ∗ y. Finally, if a ∗ x has
the same value as x ∗ a.

If x has frequency type and y has time type, x ∗ y has the same value as
y ∗ x. Also, if a has scalar type, a ∗ (x ∗ y) has the same value as (a ∗ x) ∗ y
and (a ∗ y) ∗ x. Furthermore, 1 hz ∗ 1 s has the same value as 1 rad.

Expressions which occur as the denominator of a ‘/’ operator may only
have types scalar, time, and frequency. If the denominator is a scalar, the nu-
merator may have any type other than boolean, and the resulting expression
has the same type as the numerator. If the denominator is either time or fre-
quency, the numerator must have type angle, and the resulting expression has
type either frequency or time, whichever is not the type of the denominator.

If the denominator is a scalar, the resulting expression has the same value
as though the numerator were multiplied by the reciprocal (as a double in C)
of the denominator. Otherwise, if the denominator is either of type frequency
or time, the value of the resulting expression is such that, when multiplied
by the denominator, the result would have the same value of the numerator.

5.7 Function Application

functional : atom | functional atom
Functional expressions consist of a function followed by an argument.
The type of the function must be a.b for some types a and b. The argu-

ment must have type a. The resulting expression has type b.
As mentioned in 3.3.1, the value of the function consists of the name of a

free variable and an result expression. The value of the function application
is the value of the result expression when all occurrences of the identifier
named by the free variable have been substituted with the argument.

5.8 Atoms

atom : constant | LPAREN conditional RPAREN

8

LPAREN consists of a single ‘(’ character, while RPAREN consists of a
single ‘)’ character. The and type of a parenthesized atom are the same as
of the enclosed conditional expression.

5.8.1 Constants

constant : true | false | numerical
numerical : NUMBER unit?
unit : lfs | sec | rad | hz

Constants may be true or false, which have boolean type and corre-
spond to the appropriate values, or they may be numerical constants.

Numerical constants are expressions consisting of a number followed by
an optional unit specifier. The type of a constant is determined by its unit
specifier—lfs (linear full-scale) corresponds with intensity, sec with time,
rad with angle, and hz with frequency. Numbers with no type specifier are
scalars.

The value of a scalar constant is simply the value of the double value
indicated by NUMBER. The value of other numerical constants is the same
as the value of the scalar indicated by NUMBER multiplied by the unit value
of appropriate type.

9

