
Physicalc:

A Language for (simple) Scientific Computation

Brian Foo, bwf2101@columia.edu
Changlong Jiang, cj2214@columbia.edu

Ici Li, il2117@columbia.edu
Stuart Sierra, ss2806@columbia.edu

Final Report – December 18, 2007
COMS W4115 Program Languages and Translators

Columbia University, Fall 2007

Contents

1 Introduction 3
1.1 Language Overview . 3
1.2 Prior Art . 3

2 Tutorial 5

3 Language Reference 7
3.1 Conventions in This Chapter . 7
3.2 Program Sources . 7
3.3 Fundamental Types . 8
3.4 Definitions . 9
3.5 Expressions . 11
3.6 Statements . 14
3.7 Built-In Functions . 16

4 Project Plan 18
4.1 Process . 18
4.2 Programming Style . 18
4.3 Project Timeline . 19
4.4 Roles and Responsibilities . 19
4.5 Tools . 19
4.6 Project Log . 20

5 Architectural Design 21

6 Example Programs 23
6.1 Example 1: Calculating Factorials . 23
6.2 Example 2: Factorials and Logical Comparisons . 25
6.3 Example 3: Calculating the Mass of the Sun . 26
6.4 Example 4: Calculating the Radius of the Moon’s Orbit 27

7 Tests 29
7.1 Interactive Testing During Development . 29
7.2 Unit Tests . 29
7.3 Integration Tests . 30

1

8 Lessons Learned 31
8.1 Brian Foo . 31
8.2 Changlong Jiang . 31
8.3 Ici Li . 32
8.4 Stuart Sierra . 32

9 Source Code 34

2

Chapter 1

Introduction

Physicalc is a programming language for scientific computation, designed for students studying
beginning and intermediate-level physics, chemistry, or other sciences.

Computer algebra systems are typically oriented towards higher mathematics, making them
ill-suited to the sorts of calculations done by high-school and undergraduate science students. At
the same time, some basic computer algebra features, such as symbolic computation, could be
helpful to students. Physicalc presents itself initially as an intelligent calculator that understands
physical units like “meters/second.” For more advanced users, it supports real programming in an
imperative style.

Physicalc is intended primarily as an educational tool, but may also be useful for exploratory
data analysis in scientific fields.

1.1 Language Overview

1.1.1 Interpreter

Physicalc is an interpreted programming language. The interpreter is written in Java and executes
a text file containing Physicalc source code.

1.1.2 Syntax

Physicalc syntax is as simple as possible, using mostly English words, more reminiscent of basic
than C. Statements are separated by newlines. Statement blocks are enclosed in “do. . . done”
pairs. Standard imperative-language features such as loops, if/then/else branching, and user-defined
functions are provided. Standard mathematical operators are provided, with the addition of ‘^’ for
exponentiation.

1.2 Prior Art

• Units[16], a command-line program included in early unix systems and gnu/Linux, provides
conversion factors between various units.

3

• Calchemy[1] is software for the Palm OS that combines a scientific calculator with unit con-
version and dimensional analysis. It is based on an earlier Windows program called unicalc.

• The Google Calculator[3] performs arithmetic on numbers including unit conversions.

• JScience[6] is a Java library for scientific computation including units.

4

Chapter 2

Tutorial

Physicalc is a language that is designed as a tool for students to learn physics, chemistry, and other
sciences that involve the use of scientific units. Physicalc not only enables users to quickly convert
between different metric systems, but allows for the automatic simplification of quantities of units
that are multiplied or divided.

As an education tool, Physicalc is quite useful for a student or educator that has a solid grasp
of algebra. Although existing software tools such as Mathematica and matlab[8] have algebraic
functionality, they do not have tools that can handle physical constants and unit conversions. There
are dozens of frameworks out there and most of them have been around much longer than Physicalc.
Why should you care about yet another framework?

Physicalc is a simple language, and as such, requires a simple explanation for its mechanics. In
creating Physicalc, we drew inspiration from the existing syntax for other languages, such as Basic
and Perl. The basic constructs of the programming language are very similar to other languages.
How does Physicalc achieve efficiency?

Part of the answer lies in Java, the language in which Physicalc is written. Java offers a wealth of
resources and is particulary strong in the area of tokenizing and parsing. These tools allow Physicalc
to quickly break down functions, units, and conditional statements very efficiently. Many things
that are very simple to do in Physicalc are not even possible in most other languages. Physicalc
takes full advantage of this. The rest of the answer is in two of Physicalc’s guiding principles: less
software and convention over configuration.

Less software means you write fewer lines of code to implement your physics or chemistry
application. Keeping your code small means faster development and fewer bugs, which makes your
code easier to understand, maintain, and enhance. Very shortly, you will see how Physicalc cuts
your code burden.

Convention over configuration means an end to verbose XML header files or lengthy libraries.
Instead of configuration files, a Physicalc program uses a few simple programming conventions that
allow it to figure out everything through simplicity in the form of unit definitions, and function
calls.

The following program prints “Hello world” followed by a line break. Using the nprint()
command will print the same output without a line break.

print("Hello world")

5

In physicalc, every command is on its own line. The simple set command stores a numeric
value into a variable. In the following example, the value 1 is stored into variables x and y. The
next portion of the code performs operations under the condition that y remains less than or equal
to 10. The product of z and y is stored into the variable z, overwriting the previous value, and
the value of y + 1 is stored into variable y. In the loop, y converges towards 10, so the loop will
not be infinite. The done statement indicates the loop’s endpoint, and must be placed after every
conditional statement and loop.

set y=1
set z=1
while y <= 10 do
set z = z * y
set y = y+1

done

The first line in the following program is a comment. Comments are not read by the computer,
and are used for human reference only. The following program contains a function. A function is
a subroutine that is called by the computer to perform a small task. A function takes in what is
called a parameter. In this case, the parameter that is accepted by function test is the variable
x. After the function is defined, test is called by the program, passing in a value of 6 as the x
parameter. 6 is then fed into test, and is output by function test.

#this is a function
function test(x)
print("x contains ", x)
print(x)

done

print("use function to print x’s contents")
test(6)

Perhaps what Physicalc is most useful for is defining physical units. Anyone who has taken
an introductory Physics or Chemistry course understands the difficulties and complexities that are
associated with units and physical constants. Physicalc allows you to define whatever constants you
need to perform a certain calculation. Each such definition is signified by the unit command prefix.
Starting with the most basic unit definitions first, consecutive unit definitions can add complexities
to physics programs. In the following program, second is defined as a base unit, and a minute is
defined as 60 seconds. When the print() function is called, Physicalc will print the contents of
minute in simplest terms. In this case, print will display 60*second.

define the unit
unit second
unit minute = 60 * second

print(minute)

6

Chapter 3

Language Reference

3.1 Conventions in This Chapter

In this chapter, text in monospace type indicates a keyword or literal syntax. Text in italic type
indicates a placeholder for some other piece of source code.

3.2 Program Sources

3.2.1 Encoding

Physicalc accepts source files encoded in plain 7-bit ascii. High bit characters are not allowed.
Line breaks may be encoded in dos \r\n, unix \n, or Macintosh \r style. Ascii characters with
decimal value less than 9, i.e. the control characters, are not allowed.

3.2.2 Comments

Comments begin with a hash character (#) and continue to the end of the line. Comments may be
placed on the same line as source code. The line break is not considered part of the comment text.

3.2.3 Whitespace

Whitespace characters—spaces, tabs, and form feed characters—may be used to separate tokens in
the input but are discarded during parsing.

3.2.4 Line Breaks and Semicolons

Line breaks are significant in Physicalc syntax. Line breaks serve as statement terminators. In the
syntax rules that follow, all line breaks shown are mandatory.

To put multiple statements on a single line of source code, semicolons may be used in place
of line breaks. Semicolons may be used anywhere a line break would normally be used, including
between the parts of compound statements such as if/elsif/else.

Any number of consecutive line breaks and/or semicolons is read as a single terminator.

7

3.2.5 Identifiers

All identifiers begin with a letter or underscore, followed by zero or more letters, digits, and under-
scores. Identifiers are case-sensitive.

3.2.6 Reserved Words

The following words are reserved as keywords and may not be used as identifiers: alias and break
constant do done else elsif false for from function if in loop next not or return set
step then to true unit while

Additionally, Physicalc defines several built-in functions (Section 3.7) which may not be rede-
fined.

3.3 Fundamental Types

3.3.1 Numbers

All numbers in Physicalc are treated as arbitrary-precision decimals. There is no distinction among
integers, rationals, and reals. All arithmetical calculations are decimal-accurate to a reasonable
degree of precision. Floating-point arithmetic is never used.

Literal numbers may be written in source code as integers or as decimals using C-style floating
point number syntax. A number has three parts:

1. An integer part composed of digits;

2. A decimal part composed of a . (period) character followed by digits;

3. An exponent beginning with the letter e (or E), followed by an optional + or - sign, followed
by digits.

All parts are optional, but either the integer or decimal part must be present.

3.3.2 Strings

Strings are sequences of ascii characters. Literal strings may be written in source code by placing
them between double-quotation (") characters. A literal " character is written in a string as two
consecutive " characters, so the string

The “big” bus

could be written as

"The ""big"" bus"

C-style character escapes (\n, \t, etc.) are not supported. Line breaks are permitted inside strings.

8

3.3.3 Lists

Lists are one-dimensional, variable-length, zero-indexed arrays of objects. Lists are heterogeneous—
they may contain any combination of different object types. Lists are automatically resized.

A list literal may be written in source code by enclosing the entire list in square brackets ([and])
and separating individual elements with commas. Whitespace, but not line breaks, is permitted
between list elements; it is ignored. Nested lists are allowed. The elements in a list literal may be
expressions; those expressions are evaluated and their results are stored in the list.

3.3.4 Booleans

Boolean values are the literal identifiers true and false. These are global built-in constants and
may not be redefined. In statements that use boolean expressions, any value that is not exactly
equal to false is considered true. For example, the empty list and the number zero are both “true”
in a boolean context.

3.4 Definitions

A typical Physicalc program consists primarily of definitions. There are four types of definitions:
units, constants, functions, and aliases.

A definition permanently associates some identifier with an object. All definitions must occur
at the top level of program scope; they may not be nested. Defintions are present in the running
program from the point at which they are defined until the program terminates. Defined identifiers
have global scope, and may not be overridden by local variables with the same name. An identifier,
once defined, may be redefined.

3.4.1 Note on Definitions Using Expressions

Some of the definition types below take the form identifier =expression . In these cases, the = is not
an operator; it is part of the syntax. The expression that follows the = symbol is evaluated once,
at the time the definition is read, and its result is stored in the identifier .

3.4.2 Units

A unit is a concrete standard of measurement for some physical quantity.

Base Units

Base units are units for base quantities. Examples of base units in the SI system are meters for
length, seconds for time, and kilograms for mass.[14] Base units are defined simply by giving them
a name.

Syntax: unit identifier

where identifier is the name of the new unit.

9

Derived Units

Derived units are defined in terms of mathematical relationships to other units. An example of a
derived unit in the SI system is the Coulomb, defined as seconds multiplied by Amperes.[15] Derived
units are defined in Physicalc with expressions involving other units.

Syntax: unit identifier = expression

where expression may only consist of previously defined units, numbers, parentheses, and the
arithmetical operators +, -, *, /, and ^.

A derived unit may also be defined as a conversion factor from another unit. Typically, this
type of derived unit will have a definition expression consisting of a base unit multipied by some
constant number. In this way, conversion factors between different systems of measurement may be
defined. Those conversion factors may be used for automatic unit conversion with the in operator
(Section 3.5.7).

An identifier that has been defined as a base unit may not be subsequently redefined as a derived
unit; to do so is an error.

3.4.3 Constants

Constants are static identifiers that hold any type of value. They have global scope and may not
be changed by assignment. Constants may be changed by redefining them, but this produces a
warning.

Syntax: constant identifier = expression

where expression is any expression.

3.4.4 Functions

Functions are named subroutines which receive input and return output. All function parameters
are passed by value; i.e. a copy of the parameter is made and the function operates on the copy.
Functions cannot modify any objects in their calling environment, nor can they define new global
objects.

The first line of a function definition consists of the keyword function, an identifier, and a
parameter list enclosed in parentheses. The body of the function, a sequence of statements, follows.
The function definition ends with the keyword done.

Syntax: function identifier (parameter list)
statements

done

The indentation of statements is for easier reading and has no significance in the syntax. The
parameter list consists of zero or more identifiers, separated by commas. The parentheses around
the parameter list are mandatory, even if the parameter list is empty. Whitespace, but not line
breaks, is allowed in the parameter list. Functions taking a variable number of parameters are not
supported, but this can be achieved in practice by passing a list as one of the parameters.

Within the body of a function, a return statement (Section 3.6.3) terminates the function and
returns its argument as the value of the function. The body of a function may refer to identifiers

10

Operator Description Associativity
() Grouping N/A

identifier [] List subscript left
identifier () Function call left

[] List Literal N/A
- Unary minus right
^ Exponentiation right

* / Multiplication/Division left
+ - Addition/Subtraction left

> < >= <= Relational Comparison left
= != Equality Comparison left
not Logical NOT right
and Logical AND left
or Logical OR left
in Unit Conversion left
, Comma separating expressions left
Highest precedence is on the top line of the table.

Figure 3.1: Operator Precedence

not yet defined, but those identifiers must be defined before the function is called or an error will
result. See Section 3.5.4 for the syntax of function calls.

3.4.5 Aliases

To allow for multiple names for the same object, aliases may be defined. An alias is an identifier
that may be used in place of another identifier. Aliases are alternate names for an object rather
than true references. Aliases are subject to the same redefinition constraints as other definitions.

Syntax: alias identifier1 for identifier2

defines identifier1 as a new alias for identifier2, a previously-defined identifier. Subsequent uses of
identifier1 will be read as if they were identifier2. It is an error if identifier2 is not already defined.

3.5 Expressions

Expressions consist of operators, function calls, literals, and identifiers. An expression, when eval-
uated, returns a value. Operator precedence is summarized in Figure 3.1. The types of expressions
are described below. Expressions may contain whitespace, which is ignored, but they may not
contain line breaks.

3.5.1 Arithmetical Expressions

Arithmetical expressions consist of the unary negation operator (-), parentheses (), and binary
operators for addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^)

11

Right Operand
Number Unit String List

Left Number + - * / ^ * /
Operand Unit * / ^ * /

String +
List +

Figure 3.2: Permitted Binary Operations by Operand Type

The unary negation operator takes one argument on the right, and returns its opposite. There
is no unary plus operator, because it serves no purpose that the authors can imagine.

Binary operators take one argument on the left and one argument on the right. The caret
operator (^) performs exponentiation, raising its left argument to the value of its right argument.
The unary - has highest precedence, followed by ^, followed by * and /, followed by binary + and
-.

Parentheses are used for grouping expressions and specifying precedence explicitly. An expres-
sion inside parentheses is always evaluated before other expressions. Parentheses may be nested
to any level (within the bounds of computer memory) and the inner-most parenthetical expression
will be evaluated first.

Arithmetic may be performed on numbers and units. All arithmetical operators are supported
when the operands are both numbers. Units may be multiplied and divided with other units
and numbers, but may not be added or subtracted (see Section 3.5.2). Units may be raised to a
numerical exponent. Finally, concatenation is supported for strings and lists using the binary +
operator. Figure 3.2 summarizes the supported binary operations.

3.5.2 Combining Numbers and Units

Mathematically, numbers with units are said to be “multiplied” by a symbol representing the unit.
In Physicalc, this is taken literally. Units are identifiers, and a number with units is simply an
expression of the form “number*identifier ” where identifier has been defined as a unit. Units
are preserved in calculations and results. Limited handling of units as algebraic expressions is
supported, so an expression such as “three meters per second multiplied by ten seconds” could be
written

3 * meter / second * 10 * second

and would return the correct result of thirty meters as 30*meter. Calculations requiring unit
conversions might not always return the desired units in the result; the in operator (Section 3.5.7)
forces conversion to the correct units.

3.5.3 List Member Access

Once a list has been stored in a variable, its elements may be accessed using bracketed indexes.

Syntax: identifier [expression]

12

where expression must evaluate to an integer, which is used as an index into the list stored in
identifier . An attempt to access an index beyond the end of the list produces an error.

Bracketed indexes are only permitted on identifiers, not on literal lists nor on expressions that
return a list. Items in nested lists may be accessed with multiple consecutive bracket expressions,
so if the variable x contained the list

[a, b, [c, d], e]

the element d could be referenced as x[2][1].

3.5.4 Function Calls

Built-in or user-defined functions are called with the name of the function, an opening parenthesis,
an argument list, and a closing parenthesis. The parentheses are mandatory even if the argument
list is empty.

Syntax: identifier (argument list)

The argument list is a sequence of expressions, separated by commas. The number of arguments
in the argument list of the function call must match the number of arguments in the function
definition. Some built-in functions, such as print() (Section 3.7), take any number of arguments,
but user-defined functions always have a fixed number of arguments.

When a function is called, the expressions in the argument list are evaluated. A new local scope
is created, and the values of the arguments are bound to the named parameters from the function
definition.

3.5.5 Relational Operators

Numbers, and only numbers, may be compared with the standard relational operators >, <, >=, and
<=. These operators all return a boolean value.

Any two objects may be compared with the equality operator, =, which returns true if its left
operand is of the same type and has the same value as its right operand, and false otherwise. Two
units are equal only if they are the same unit.

The not-equals operator, !=, returns true if its operands are not equal under the definition of
equality used for =, and false otherwise.

3.5.6 Logical Operators

Logical operators work on boolean values and expresions.

Syntax: not expression

returns true if expression is false and returns false if expression is true.

Syntax: expression1 and expression2

returns true if both expression1 and expression2 are true. This operator “short-circuits”—if expres-
sion1 is false, it returns false without evaluating expression2.

Syntax: expression1 or expression2

returns true if expression1 is true, expression2 is true, or both are true. This operator “short-
circuits”—if expression1 is true, it returns true without evaluating expression2.

13

3.5.7 Unit Conversion

The special binary in operator is used to convert values from one set of units to another.

Syntax: expression1 in expression2

where expression1 is an expression that evaluates to a number with units, and expression2 evaluates
to units. The in operator searches through the set of defined relationships among units and quan-
tities to find the correct conversion factor, applies that conversion, and returns the result number
in the requested units. It is an error if a valid conversion factor between the units of expression1

and the units of expression2 cannot be found.

3.6 Statements

Statements are source code constructs which do not return a value. An expression may be used as
a statement by itself; its return value is discarded.

3.6.1 Loading Source Files

The special load statement reads in additional source files.

Syntax: load "filename"

The filename is interpreted as a path on the local filesystem, relative to the current working directory
of the interpreter process, to a file containing Physicalc source code. That file is read and its contents
are executed as if they had been included in the current program at the point of the load statement.

The loaded file is evaluated in the same global context as the program that called load—any
definitions in the loaded file will become part of the running program. However, top-level variables
created with set statements in the loaded program will not be visible to the main program.

If the file cannot be found or cannot be read, an error results. load is only allowed at the
top-level of a program source file; it may not appear inside functions or other statements.

3.6.2 Assignment

Syntax: set identifier = expression

An assignment statement evaluates expression , then binds its value to the local variable named
identifier . If identifier is currently undefined, a new local variable is created with scope correspond-
ing to the current function body. It is an error if identifier is already defined as a global object,
i.e. a unit, function, or constant.

Assignment statements may be used outside of a function body, but doing so does not create
a global variable. Global variables are not supported, only global constants. The top-level of a
Physicalc program has its own scope for local variables, as if it were in the body of a function.

14

3.6.3 Return

Syntax: return expression

A return statement may only appear inside the body of a function; a return statement found
outside of a function body is an error. When a return statement is executed, expression is evaluated
and its value is returned as the value of the function.

3.6.4 If/Then/Else

An if/then/else block begins with the keyword if, followed by a boolean expression, followed by
the keyword then and a terminator (line break or semicolon). After then comes a sequence of one
or more statements, then any number of elsif blocks, then an optional else block, then finally
the keyword done.

Syntax: if expression1 then
statements1

elsif expression2 then
statements2

. . . additional elsif blocks . . .
else

statements3

done

The indentation of the statement blocks is for easier reading and is not significant in the syntax.
First, expression1 is evaluated. If it returns true, statements1 are executed. After completing
statements1, control passes to the statement following the done keyword.

If expression1 returns false, expression2 is evaluated. If expression2 returns true, statements2 are
executed, then control passes to the statement following the done keyword. Additional elsif blocks
may specify additional test expressions and statements to execute. If all of the test expressions
return false, and if the optional final else block is present, statements3 are executed.

An if/then/else block might not execute any statements at all if there is no else block. An
if/then/else block never executes more than one group of statements. Once the first test expression
returns true, its associated statement block is executed and all other test expressions and statement
blocks are skipped.

3.6.5 While Loops

Syntax: while expression do
statements

done

While loops evaluate a group of statements as long as a given conditional expression remains
true. The conditional expression is evaluated before the statement body on every iteration of the
loop. If it returns true, the statements are executed. The first time expression returns false, control
passes to the statement following the done keyword.

15

3.6.6 For Loops

Syntax: for identifier from expression1 to expression2 step expression3 do
statements

done

At the beginning of a for loop, expression1, expression2, and expression3 are all evaluated
immediately. All three must evaluate to positive numbers, optionally including units; it is an error
if they do not. The result of expression1 is assigned to the local variable identifier . If identifier is
undefined, a new local variable is created with scope corresponding to the current function body. It
is an error if identifier is already defined as a global. The statements are executed, after which the
value of expression3 is added to the value in identifier , and that new value is stored in identifier .
Then the value of identifier is compared to the value of expression2. If identifier is greater than
the value of expression2, control passes to the statement following the done keyword. If identifier is
less than or equal to the value of expression2, statements are executed again. This process repeats
until identifier is greater than the value of expression2 or a break or return statement is executed.

3.6.7 Control Statements Within Loops

Within any loop structure there are two special statements which affect the execution of the loop.
The break statement will immediately terminate the execution of the loop and transfer control to
the statement following the loop’s done keyword.

The next statement will immediately return control to the top of the loop. In the case of while
loops, the loop test is applied as if the loop had reached the end of its statement block. In the case
of for loops, the counter variable is incremented and the test is applied as if the loop had reached
the end of its statement block.

Additionally, a loop used inside of a function body may contain a return statement, which will
immediately break out of the loop and return from the function.

3.7 Built-In Functions

Physicalc provides a some built-in functions, which have the same syntax as normal function calls
but carry out operations which could not be implemented with normal Physicalc code.

3.7.1 print()

The print() function takes any number of arguments, which may be of any types, and print them
to the output stream, followed by a line break. Printing a string prints its contents without the
enclosing " characters. Lists, units, and numbers are automatically converted to strings as with the
toString() function before being printed.

3.7.2 nprint()

The nprint() function acts like print() but does not print a line break.

16

3.7.3 toString()

The toString() function converts its argument, which may be any object, to a string. If the
argument is already a string, it is simply returned. Other types of arguments are converted to a
string that matches their literal syntax.

3.7.4 getNumber()

The getNumber() function takes an argument of a number with units and removes all units, leaving
just the bare number. If a bare unit without any numbers is passed to the function, it returns the
number one.

3.7.5 getUnit()

The getUnit() function takes an argument of a number with units and removes the number, leaving
just the units.

3.7.6 toInt()

The toInt() truncates the decimal part of its argument, leaving an integer.

3.7.7 exit()

The exit() function, which takes no arguments, immediately terminates the Physicalc program.

17

Chapter 4

Project Plan

4.1 Process

Physicalc was developed on a wiki hosted by Google Code, available at
http://code.google.com/p/bcis/.

4.2 Programming Style

In general, Physicalc follows the Java coding standards published by Sun[2]. Details below.

4.2.1 Spacing

• Indents are 4 spaces

• Put a space between keywords (while, for) and parentheses

• No space between method names and parentheses

• Put a blank line between method definitions

4.2.2 Names

• Interface and class names are MixedCase and start with a capital letter

• Methods and variables are mixedCase and start with a lower-case letter

• Constants are UPPER_CASE_WITH_UNDERSCORES

4.2.3 Comments

• Use /* C-style block comments */ for comments longer than one line

• Use // single-line comments to comment-out sections of code

• Use Javadoc[4]

18

4.2.4 Braces

• Open brace { goes on the same line as the declaration

• Closing brace } goes on a line by itself, indented to match the start of the declaration

• Always use braces for if/else statements

4.2.5 ANTLR Grammar Files

For ANTLR source files, use the conventions from class:

• Token names in the Lexer are ALLCAPS

• Nonterminal names in the Parser are lowercase

• Separate “|” branches in productions go on separate lines

4.3 Project Timeline

September 17 Project Selected
September 18 Project Wiki Created
September 25 Proposal Submitted
October 17 Grammar and Parser Completed
October 18 Reference Manual Submitted
December 1 Tree Walker Completed
December 8 Interpreter Completed
December 15 Testing Completed
December 17 Presentation
December 18 Final Report Submitted

4.4 Roles and Responsibilities

Brian Foo Data Classes, Unit System, Function Definitions
Changlong Jiang Lexer, Statement Nodes, Example Programs, Testing
Ici Li Tutorial, Expression Nodes, Built-in Functions
Stuart Sierra Team Leader, Design, Proposal, Reference Manual, Parser, Tree Walker

4.5 Tools

• Sun Java 1.6 Development Kit

• ANTLR 2.7.7

• Subversion, hosted by Google Code

• GNU Make

• JUnit

• bash scripts (for testing)

19

4.6 Project Log

The complete project log, generated from Subversion, is included in the source file listing at the
end of this report as Changelog. This log encompasses changes to both the wiki and the source
code repository. Team members can be identified in the log by their user names as follows:

Brian Foo brianwfoo
Changlong Jiang ChadJiang
Ici Li digitalfobulous
Stuart Sierra the.stuart.sierra or ssierr@law.columbia.edu

20

Chapter 5

Architectural Design

Physicalc is an interpreted programming language. The diagram on page 22 shows the general
structure of the interpreter. The lexer and parser produce an abstract syntax tree, which is trans-
formed by a tree walker into a tree of program nodes. The program nodes are all sub-classes of the
Node class, each node represents a single program structure such as a statement or a function call.
Every node class provides an “eval” method which is responsible for executing the behavior of that
node.

The root of the tree is an instance of the Program class. The interpreter calls “eval” on the
Program, which calls “eval” on its sub-nodes, and so on, recursively, so the node tree executes itself.
The symbol tables are carried through the tree as arguments to “eval.” Because Physicalc does
not support nested scopes, there are never more than two symbol tables, one global and one local,
in effect at any given time. The node structure was designed by Stuart Sierra, and the sub-classes
were implemented by Brian Foo, Changlong Jiang, and Ici Li.

The data objects manipulated by a Physicalc program—numbers, units, lists, and strings—are
all sub-classes of the Datum class. Datum defines virtual methods for all the arithmetical operators,
which are overridden in sub-classes. Calling an operator on two types for which it is not defined,
e.g. addition between two units, results in a exception of class TypeError. Brian Foo implemented
the Datum sub-classes.

21

22

Chapter 6

Example Programs

6.1 Example 1: Calculating Factorials

This program uses for, while, and if statements to calculate factorials.

6.1.1 Program Source

Calculate Factorial
This program is testing Looping function
Test Program written by Changlong Jiang cj2214@columbia.edu
Date 12/15/2007

use For Loops
set y=1
for x from 1 to 10 step 1 do
set y = y*x
done

print("use For Loop")
print(y)

use While Loops
set y=1
set z=1
while y <= 10 do
set z = z * y
set y = y+1
done

print("use While Loop")
print(z)

23

#use IF
print("use While Loop and If")
set y=1
set z=1
while y <= 10 do
set z = z * y
if y>9 then
print("y=",y," ","greater than 9, stop")
return y;

elsif y>6 then
print("y=",y," ","greater than 6, continue")
print("result=",z)

else
print("y=",y," ","less and equal than 6,continue")
print("result=",z)

done
set y = y+1
done

6.1.2 Output

use For Loop
3628800.0

use While Loop
3628800.0

use While Loop and If
y=1.0 less and equal than 6,continue
result=1.0
y=2.0 less and equal than 6,continue
result=2.0
y=3.0 less and equal than 6,continue
result=6.0
y=4.0 less and equal than 6,continue
result=24.0
y=5.0 less and equal than 6,continue
result=120.0
y=6.0 less and equal than 6,continue
result=720.0
y=7.0 greater than 6, continue
result=5040.0
y=8.0 greater than 6, continue
result=40320.0
y=9.0 greater than 6, continue
result=362880.0

24

y=10.0 greater than 9, stop

6.2 Example 2: Factorials and Logical Comparisons

6.2.1 Program Source

Calculate Factorial
This program is testing function and logical operation
Test Program written by Changlong Jiang cj2214@columbia.edu
Date 12/15/2007

#this is function for factorial number
function factorial(x)
print("x=",x)
set y=1
set z=1
while y <= x do
set z = z * y
set y = y+1

done
nprint(x,"!=")
print(z)

done

print("use function to calculate factorial")
factorial(6)

this is function to find the biggest number
function findbiggest(x,y,z)

print("x=",x," ","y=",y," ","z=",z)
if x>=y and y>=z then
print("x is biggest")

done
if x>=y or y>=z then
print("x is not smallest")

done
if not(y>=x) then
print("y is smaller than x")

done
done

set x = [7,5,3]
findbiggest(x[0],x[1],x[2])

25

6.2.2 Output

use function to calculate factorial
x=6.0
6.0!=720.0
x=7.0 y=5.0 z=3.0
x is biggest
x is not smallest
y is smaller than x

6.3 Example 3: Calculating the Mass of the Sun

This physics program was published by the University of Oregon[11]: “Estimate the mass of the
sun given the Earth’s distance from the sun r = 1.50× 1011m. Assume the Earth follows a circular
orbit instead of an elliptical one. G = 6.67× 10−11Nm2/kg2.”

With the solution:

Fg = Fc = mac = mearthrω
2 = Gmearthmsun/r

2

msun = r3ω2/G

365days = 3.15× 107s

1rotation = 2πrad
ω = 2πrad/3.15× 107s = 1.99× 10−7rad/s

msun = (1.50× 1011m)3(1.99× 10−7rad/s)2/6.67× 10−11Nm2/kg2

msun = 2.01× 1030kg

6.3.1 Program Source

This is for Sun Mass Calculation
Estimate the mass of the sun given the Earth’s distance from the sun
r=1.50*10^11 meter
Assume the Earch follows a circular orbit
Universal Gravitational consatant G=6.67*10^(-11)*Newton*meter^2/kilogram^2
source from http://zebu.uoregon.edu/~probs/mech/grav
test program written by Changlong Jiang : cj2214@columbia.edu
Date 12/15/2007

define the unit
unit second
unit minute = 60 * second
unit hour = 60 * minute
unit day = 24 * hour
unit year = 365 * day
unit meter
alias m for meter
unit kilogram

26

unit newton = m * kilogram / second ^ 2

define the variable and calculate
set x = 1 * year
set Pi = 3.1415926
set omiga = 2 * Pi/x
set G = 6.67E-11 * newton * (1*m ^2) / (1 *kilogram ^ 2)
set r = 1.50E11 * m
set mass = (1*r^3) * (1*omiga^2)/G

#print result
print(mass)

6.3.2 Output

2.0086045922465554E30*kilogram

6.4 Example 4: Calculating the Radius of the Moon’s Orbit

This physics problem was published by the Unversity of Oregon[12]: “The orbital period (T) of the
Moon around the Earth is 29.53 days. Calculate the radius of orbit of the Moon assuming the orbit
is circular. You are given the Universal Gravitation Constant, G = 6.67× 10−11Nm2/kg2, and the
mass of the Earth, Me = 5.98× 1024kg.”

The solution is just lengthy enough to make typing it out in LATEX a pain, so take our word (or
the University of Oregon’s) for it that it works out to r = 4.04× 108m = 404, 000km.

6.4.1 Program Source

#This is for Calculate the radius of orbit of the Moon
#Universal Gravitational consatant G=6.67*10^(-11)*Newton*meter^2/kilogram^2
#Earth Mass is 5.98E24 * kilogram
#Source from http://zebu.uoregon.edu/~probs/mech/grav/distmoon
#Test Program written by Changlong Jiang : cj2214@columbia.edu
#Date 12/15/2007

#load the pre-defined unit
load "si.phy"

#set variable
set x = 29.53 * day
nprint("seconds:",x)
print()

#print(x in hour)
set y = 29.53 * 24 * 3600*second
print("Number is:", getNumber(y))

27

print("Unit is:",getUnit(y))
print("hours:",y in hour)

set Pi = 3.1415926
set G = 6.67E-11 * newton * (1*meter ^ 2) /(1*kilogram^2)
set masse = 5.98E24 * kilogram
set r = ((x*(1*G*(1*masse))^(1/2))/(2*Pi))^(2/3)
print(r)
print("Number is:", getNumber(r))
print("Unit is:",getUnit(r)))

6.4.2 Output

seconds:2551392.0*second
Number is:2551392.0
Unit is:second
hours:708.72*hour
4.036521081066972E8*meter^1.0
Number is:4.036521081066972E8
Unit is:meter^1.0

28

Chapter 7

Tests

The Physicalc test suite consists of three parts: 1) interactive programs used during development;
2) unit tests implemented with JUnit; and 3) integration tests that test the whole interpreter,
implemented with Bash shell scripts.

7.1 Interactive Testing During Development

Several executable Java programs assisted in developing and debugging the interpreter. These files
remain in the source tree as src/Try*.java.

TryLexer runs the Physicalc lexer on a string, given as a command line argument, and prints
out the tokens, one per line.

TryParser runs the lexer and parser on a string, given as a command line argument, and prints
out the abstract syntax tree in a Lisp-like syntax.

ParseFile acts like TryParser, but takes a file name as an argument and parses the file.
TryDatum executes various arithmetical operations on the Datum sub-classes and prints the

results.
TryDatum was written by Brian Foo; TryLexer, TryParser, and ParseFile were written by Stuart

Sierra.

7.2 Unit Tests

To test the operation of simple expressions in the interpreter, tests defined using JUnit[7] are
defined in test/InterpreterTest.java. This class defines an “assertPrints” method which calls
the interpreter on a string of source code and checks that it produces a certain output. Due to
Java’s lack of support for multi-line strings in source code, this mode of testing is awkward for
longer programs. The Makefile target test compiles the interpreter and runs the unit tests. The
unit tests framework was written by Stuart Sierra and tests were added by Changlong Jiang.

29

7.3 Integration Tests

Tests of the complete behavior of the interpreter are implemented with the runexamples shell
script. This script looks for files named *.in and *.out in the directory test/examples. The
“in” files are Physicalc source code containing one or more “print” statements. The corresponding
“out” files contain the text that the program should print. The runexamples script runs the
interpreter on each “in” file and compares its output with its “out” file, reporting how they differ.
The runexamples script was written by Stuart Sierra; test programs were contributed by all team
members. The example files are included in the source code section at the end of this report.

30

Chapter 8

Lessons Learned

8.1 Brian Foo

The lessons learned from this project were things you can’t really learn enough of—clear commu-
nication with team members, project management, and work flow. More specifically, I learned
the importance of setting clear goals and responsibilities of each team member in order to reach
a common end. On a more technical note, I learned the importance of taking my time to solve a
design problem before diving into it head-first. This would be exponentially rewarded in the future
when you are too deep into the project to go back.

8.2 Changlong Jiang

1. For the lexer part: I should fully understand the language grammar. The good easy-to-
understand, easy-to-use grammar is the important thing for the language design. During the
project, we modified our grammar several times to make the whole language concise and easy
to use.

2. For the node implementation: I am not good at the Java languagae. I only finished several
simple classes. I should improve my skills in Java.

3. For testing: I spent a lot of time in testing, but still some scopes I did not test. Since the
relationship between each node is more complex, I should leave more time to do testing. For
every bug found in each test I always gave out the detailed informaton and notified other
team members. If I can understand other members’ work, I will be able to fix them during
my testing, which will save the whole team’s time.

4. Need to add detailed comments in every source file, which will be easier for others to under-
stand.

31

8.3 Ici Li

Having a very strong team is an integral part of every large software project. In particular, it is
absolutely essential to have a capable team leader. Stuart Sierra has been an extraordinary team
leader for this project, and I really enjoyed working with him, as well as the rest of my teammates
this semester. This was a very humbling experience, as I realized how much I did not know coming
into the class. It was interesting seeing how concepts that were taught in class were applicable to
a real-world situation. Problems such as scoping and Normal vs Applicative order became very
real to me as I slowly began to understand the intricacies of parsing and enabling the compiler to
understand input. Overall, I had a rewarding experience, and enjoyed this course.

8.4 Stuart Sierra

Managing coders is much harder than writing code. It’s a challenge trying to figure out what people’s
strengths are and how to use them effectively. On the other hand, having to explain my design so
that others could implement it forced me to think more carefully about the implementation ahead
of time, and probably resulted in a better design than I would have come up with had I just started
banging out code on my own. Perhaps I should have enforced coding standards and unit testing
more aggressively—this might have left us with fewer bugs to fix—but I was reluctant to play a
dictator, even a benevolent one, with a group I had just met. I understand now why “successful”
programming languages usually have one stubborn individual or large coporation calling the shots.

I discovered why so few languages use significant whitespace—it’s really annoying to implement.
Even though our language only used line breaks, not spaces or tabs, as significant characters, it
was still tricky to get all the parser rules to work correctly. I had to punt on the issue of multi-line
expressions by forbidding them altogether.

I made a choice early on that Physicalc would perform decimal-accurate arithmetic, without
considering the implications. Java’s BigDecimal class does the job, but the results were not always
what I intended. Decimal-accurate arithmetic is a nice idea, but it requires decisions about how to
handle precision, rounding, and exponents. We never had a clear plan for dealing with these issues,
so the final implementation represents a series of compromises rather than any sound mathematical
theory.

32

Bibliography

[1] Calchemy, http://www.calchemy.com/

[2] Code Conventions for the Java Programming Language, Sun Developer Network, http://
java.sun.com/docs/codeconv/

[3] Google Calculator, http://www.google.com/help/calculator.html

[4] How to Write Doc Comments for the Javadoc Tool, Sun Developer Network, http://java.
sun.com/j2se/javadoc/writingdoccomments

[5] “International System of Units.” Wikipedia, http://en.wikipedia.org/wiki/Si_units

[6] JScience, http://jscience.org/

[7] JUnit, http://www.junit.org/

[8] MATLAB, http://www.mathworks.com/products/matlab/

[9] Mathematica, http://www.wolfram.com/products/mathematica/

[10] Maxima, http://maxima.sourceforge.net/

[11] Physics Problem: Calculating the Mass of the Sun. University of Oregon, http://zebu.
uoregon.edu/~probs/mech/grav/Gravity2/Gravity2.html

[12] Physics Problem: Calculating the Radius of the Moon’s Orbit. University of Oregon, http:
//zebu.uoregon.edu/~probs/mech/grav/distmoon/distmoon.html

[13] “Rounding numbers.” Wikipedia, http://en.wikipedia.org/wiki/Rounding_numbers

[14] “SI base unit.” Wikipedia, http://en.wikipedia.org/wiki/SI_base_unit

[15] “SI derived unit.” Wikipedia, http://en.wikipedia.org/wiki/SI_derived_unit

[16] Units, GNU Project, http://www.gnu.org/software/units/units.html

33

Chapter 9

Source Code

Copies of all the source files are attached to this report.

34

−−
r349 | the.stuart.sierra | 2007−12−18 20:17:36 −0500 (Tue, 18 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/report/bibliography.tex
 M /trunk/report/plan.tex
 M /trunk/report/tests.tex
 M /trunk/report/tutorial.tex
 M /trunk/runexamples
 M /trunk/si.phy
 M /trunk/src/ParseFile.java
 M /trunk/src/TryLexer.java
 M /trunk/src/TryParser.java
 M /trunk/src/physicalc/Access.java
 M /trunk/src/physicalc/AliasDef.java
 M /trunk/src/physicalc/And.java
 M /trunk/src/physicalc/Block.java
 M /trunk/src/physicalc/BoundsError.java
 M /trunk/src/physicalc/Break.java
 M /trunk/src/physicalc/BreakSignal.java
 M /trunk/src/physicalc/Constant.java
 M /trunk/src/physicalc/ConstantDef.java
 M /trunk/src/physicalc/ControlSignal.java
 M /trunk/src/physicalc/Datum.java
 M /trunk/src/physicalc/Def.java
 M /trunk/src/physicalc/ExitFunction.java
 M /trunk/src/physicalc/Expr.java
 M /trunk/src/physicalc/ExprList.java
 M /trunk/src/physicalc/FunCall.java
 M /trunk/src/physicalc/Function.java
 M /trunk/src/physicalc/FunctionDef.java
 M /trunk/src/physicalc/GetNumberFunction.java
 M /trunk/src/physicalc/GetUnitFunction.java
 M /trunk/src/physicalc/Id.java
 M /trunk/src/physicalc/In.java
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/src/physicalc/InterpreterError.java
 M /trunk/src/physicalc/LValue.java
 M /trunk/src/physicalc/Literal.java
 M /trunk/src/physicalc/Load.java
 M /trunk/src/physicalc/Logical.java
 M /trunk/src/physicalc/Main.java
 M /trunk/src/physicalc/NPrintFunction.java
 M /trunk/src/physicalc/Next.java
 M /trunk/src/physicalc/NextSignal.java
 M /trunk/src/physicalc/Node.java
 M /trunk/src/physicalc/Op.java
 M /trunk/src/physicalc/Or.java
 M /trunk/src/physicalc/PBoolean.java
 M /trunk/src/physicalc/PList.java
 M /trunk/src/physicalc/PNumber.java
 M /trunk/src/physicalc/PString.java
 M /trunk/src/physicalc/PUnit.java
 M /trunk/src/physicalc/PUnitPair.java
 M /trunk/src/physicalc/ParamList.java
 M /trunk/src/physicalc/PrintFunction.java
 M /trunk/src/physicalc/Program.java
 M /trunk/src/physicalc/Rel.java
 M /trunk/src/physicalc/Return.java
 M /trunk/src/physicalc/ReturnSignal.java
 M /trunk/src/physicalc/RuntimeObject.java

Dec 18, 07 20:18 Page 1/45Changelog
 M /trunk/src/physicalc/Set.java
 M /trunk/src/physicalc/Stmt.java
 M /trunk/src/physicalc/SymbolTable.java
 M /trunk/src/physicalc/ToIntFunction.java
 M /trunk/src/physicalc/ToStringFunction.java
 M /trunk/src/physicalc/TypeError.java
 M /trunk/src/physicalc/Unary.java
 M /trunk/src/physicalc/UndefinedError.java
 M /trunk/src/physicalc/Unit.java
 M /trunk/src/physicalc/UnitDef.java
 M /trunk/src/physicalc/Variable.java

* Added author names to source files.
* Updated final report.

−−
r348 | the.stuart.sierra | 2007−12−17 21:48:15 −0500 (Mon, 17 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/report/lessons.tex

Added "lessons learned" from Ici.

−−
r347 | ChadJiang | 2007−12−16 22:43:11 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 M /trunk/rundemocode

modify rundemocode
−−
r346 | the.stuart.sierra | 2007−12−16 21:54:34 −0500 (Sun, 16 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/test/examples/UnitTime.in
 M /trunk/test/examples/UnitTime.out
 M /trunk/test/examples/alias.out
 M /trunk/test/examples/const1.out
 M /trunk/test/examples/exit.out
 M /trunk/test/examples/for1.out
 M /trunk/test/examples/for2.out
 M /trunk/test/examples/funcTest.out
 M /trunk/test/examples/getNumber.out
 M /trunk/test/examples/in.out
 M /trunk/test/examples/mathexample1.out
 M /trunk/test/examples/phy1.out
 M /trunk/test/examples/phy2.out
 M /trunk/test/examples/phy3.out
 M /trunk/test/examples/phy4.out
 M /trunk/test/examples/set1.out
 M /trunk/test/examples/toInt.out
 M /trunk/test/examples/toString.out
 M /trunk/test/examples/unary.out
 M /trunk/test/examples/unit1.out
 M /trunk/test/examples/unit2.out
 M /trunk/test/examples/unit3.out
 M /trunk/test/examples/unit7.out
 M /trunk/test/examples/while2.out
 M /trunk/test/examples/while3.out
 M /trunk/test/examples/while4.out

Modified test output files to reflect change to printing all
numbers as doubles.

Dec 18, 07 20:18 Page 2/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 1/119Changelog

−−
r345 | the.stuart.sierra | 2007−12−16 15:59:52 −0500 (Sun, 16 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/report/bibliography.tex
 M /trunk/report/design.tex
 A /trunk/report/examples.tex
 M /trunk/report/finalreport.tex
 M /trunk/report/intro.tex
 M /trunk/report/lessons.tex
 M /trunk/report/plan.tex
 M /trunk/report/refman.tex

Updated final report files for draft 3.

−−
r344 | ChadJiang | 2007−12−16 12:31:05 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy1.in
 M /trunk/test/examples/phy2.in
 M /trunk/test/examples/phy4.in

update some typo
−−
r343 | brianwfoo | 2007−12−16 11:27:27 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetUnitFunction.java

Added a file remotely
−−
r342 | brianwfoo | 2007−12−16 11:27:09 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/GetUnitFunction.java

Removed file/folder
−−
r341 | brianwfoo | 2007−12−16 11:26:54 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r340 | brianwfoo | 2007−12−16 11:26:33 −0500 (Sun, 16 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r339 | ChadJiang | 2007−12−15 23:53:43 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy2.in

add functioncall
−−
r338 | ChadJiang | 2007−12−15 23:40:07 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy2.in
 M /trunk/test/examples/phy2.out

add functioncall
−−

Dec 18, 07 20:18 Page 3/45Changelog
r337 | the.stuart.sierra | 2007−12−15 22:54:47 −0500 (Sat, 15 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/report/bibliography.tex
 A /trunk/report/design.tex
 M /trunk/report/finalreport.tex
 A /trunk/report/lessons.tex
 A /trunk/report/plan.tex
 M /trunk/report/refman.tex
 A /trunk/report/source.tex
 A /trunk/report/structure.svg
 A /trunk/report/tests.tex
 A /trunk/report/tutorial.tex

* Committed all files for draft 2 of the final report.
* Added Makefile rules to generate final report.

−−
r336 | ChadJiang | 2007−12−15 22:34:26 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy4.in

add in function
−−
r335 | ChadJiang | 2007−12−15 22:31:04 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy4.in

add in function
−−
r334 | ChadJiang | 2007−12−15 22:05:05 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy3.in
 M /trunk/test/examples/phy4.in

add alias,nprint, getNumber, getUnit
−−
r333 | the.stuart.sierra | 2007−12−15 17:01:57 −0500 (Sat, 15 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/src/physicalc/ControlSignal.java

* Reinstated ControlSignal.java

−−
r332 | ChadJiang | 2007−12−15 15:38:08 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/rundemocode

only run examples/phy*.in
−−
r331 | ChadJiang | 2007−12−15 15:00:09 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 R /trunk/test/examples/phy1.in
 R /trunk/test/examples/phy1.out

factorial loop test
−−
r330 | ChadJiang | 2007−12−15 14:59:24 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy1.out

Dec 18, 07 20:18 Page 4/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 2/119Changelog

factorial loop test
−−
r329 | ChadJiang | 2007−12−15 13:55:31 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/phy3.in
 A /trunk/test/examples/phy3.out

replace phy1
−−
r328 | ChadJiang | 2007−12−15 12:53:22 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 R /trunk/test/examples/phy1.in
 R /trunk/test/examples/phy4.in

Unit test program
−−
r327 | ChadJiang | 2007−12−15 12:44:47 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/si.phy

change some unit to make sure program can run
−−
r326 | brianwfoo | 2007−12−15 12:03:57 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r325 | brianwfoo | 2007−12−15 12:03:29 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r324 | brianwfoo | 2007−12−15 12:02:53 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/ControlSignal.java
 D /trunk/src/physicalc/PNumber.java
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r323 | brianwfoo | 2007−12−15 11:36:21 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r322 | brianwfoo | 2007−12−15 11:35:59 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PNumber.java

Removed file/folder
−−
r321 | ChadJiang | 2007−12−15 11:34:38 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy1.in

Pi / x and Pi * x^−1
−−
r320 | ChadJiang | 2007−12−15 11:22:55 −0500 (Sat, 15 Dec 2007) | 1 line

Dec 18, 07 20:18 Page 5/45Changelog
Changed paths:
 R /trunk/test/examples/phy4.in

G use multiply
−−
r319 | brianwfoo | 2007−12−15 11:11:36 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r318 | brianwfoo | 2007−12−15 11:11:14 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r317 | ChadJiang | 2007−12−15 10:27:36 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/phy2.in
 A /trunk/test/examples/phy2.out

for unit ^ test
−−
r316 | brianwfoo | 2007−12−15 09:25:13 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/In.java

Added a file remotely
−−
r315 | brianwfoo | 2007−12−15 09:24:56 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r314 | brianwfoo | 2007−12−15 09:24:36 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r313 | brianwfoo | 2007−12−15 09:24:12 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r312 | brianwfoo | 2007−12−15 09:23:45 −0500 (Sat, 15 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/In.java
 D /trunk/src/physicalc/PNumber.java
 D /trunk/src/physicalc/PUnit.java
 D /trunk/src/physicalc/PUnitPair.java

Removed file/folder
−−
r311 | ChadJiang | 2007−12−14 23:04:10 −0500 (Fri, 14 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/phy4.in
 A /trunk/test/examples/phy4.out

Dec 18, 07 20:18 Page 6/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 3/119Changelog

caret ^ not support for complex unit
−−
r310 | ChadJiang | 2007−12−14 17:37:54 −0500 (Fri, 14 Dec 2007) | 1 line
Changed paths:
 M /trunk/test/examples/phy1.in

Sun mass caculation Sample
−−
r309 | the.stuart.sierra | 2007−12−14 01:11:03 −0500 (Fri, 14 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile

Added more Makefile rules for generating final report,
including using a2ps for source files.

−−
r308 | ChadJiang | 2007−12−13 00:26:39 −0500 (Thu, 13 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/phy1.in
 A /trunk/test/examples/phy1.out

 sample program1
−−
r307 | ChadJiang | 2007−12−13 00:02:15 −0500 (Thu, 13 Dec 2007) | 1 line
Changed paths:
 R /trunk/test/examples/unit7.in

 unit test
−−
r306 | ChadJiang | 2007−12−12 23:52:34 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/unit7.in
 A /trunk/test/examples/unit7.out

 unit test
−−
r305 | ChadJiang | 2007−12−12 22:44:18 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/Arith.java
 M /trunk/src/physicalc/For.java
 M /trunk/src/physicalc/If.java
 M /trunk/src/physicalc/Not.java
 M /trunk/src/physicalc/While.java

add author
−−
r304 | the.stuart.sierra | 2007−12−12 21:00:33 −0500 (Wed, 12 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/test/examples/unit6.in
 A /trunk/test/examples/unit6.out

Added example test using units.

−−
r303 | brianwfoo | 2007−12−12 19:29:02 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−

Dec 18, 07 20:18 Page 7/45Changelog
r302 | brianwfoo | 2007−12−12 19:28:35 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r301 | brianwfoo | 2007−12−12 19:21:14 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r300 | brianwfoo | 2007−12−12 19:20:50 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r299 | brianwfoo | 2007−12−12 19:20:03 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r298 | brianwfoo | 2007−12−12 19:19:39 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r297 | brianwfoo | 2007−12−12 19:08:34 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r296 | brianwfoo | 2007−12−12 19:08:15 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r295 | brianwfoo | 2007−12−12 19:07:53 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PNumber.java
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r294 | ChadJiang | 2007−12−12 14:12:18 −0500 (Wed, 12 Dec 2007) | 1 line
Changed paths:
 M /trunk/Makefile

 add Exitfunction
−−
r293 | ChadJiang | 2007−12−11 15:08:51 −0500 (Tue, 11 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/UnitTime.in
 A /trunk/test/examples/UnitTime.out

simple test unit multiply unit
−−

Dec 18, 07 20:18 Page 8/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 4/119Changelog

r292 | ChadJiang | 2007−12−11 15:07:31 −0500 (Tue, 11 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/mathexample1.in
 A /trunk/test/examples/mathexample1.out

example in usermanual
−−
r291 | the.stuart.sierra | 2007−12−10 22:06:36 −0500 (Mon, 10 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/Makefile

Added Makefile rules for running pdflatex on final report.

−−
r290 | the.stuart.sierra | 2007−12−10 21:56:33 −0500 (Mon, 10 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/report
 A /trunk/report/bibliography.tex
 A /trunk/report/finalreport.tex
 A /trunk/report/functions.tex
 A /trunk/report/intro.tex
 A /trunk/report/refman.tex

Added beginning of the final report, in LaTeX.

−−
r289 | the.stuart.sierra | 2007−12−09 17:32:28 −0500 (Sun, 09 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/test/examples/unit5.in
 A /trunk/test/examples/unit5.out

Added test for units like meter/second^2

−−
r288 | brianwfoo | 2007−12−08 16:23:37 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/In.java

Added a file remotely
−−
r287 | brianwfoo | 2007−12−08 16:23:11 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/UnitDef.java

Added a file remotely
−−
r286 | brianwfoo | 2007−12−08 16:22:53 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Unit.java

Added a file remotely
−−
r285 | brianwfoo | 2007−12−08 16:22:29 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/In.java
 D /trunk/src/physicalc/Unit.java
 D /trunk/src/physicalc/UnitDef.java

Removed file/folder

Dec 18, 07 20:18 Page 9/45Changelog
−−
r284 | ChadJiang | 2007−12−08 15:26:52 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/ExitFunction.java

fix bug
−−
r283 | the.stuart.sierra | 2007−12−08 15:07:02 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/test/examples/unit3.in
 A /trunk/test/examples/unit3.out
 A /trunk/test/examples/unit4.in
 A /trunk/test/examples/unit4.out

More unit tests.

−−
r282 | brianwfoo | 2007−12−08 15:01:24 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/In.java

Added a file remotely
−−
r281 | brianwfoo | 2007−12−08 15:01:07 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/In.java

Removed file/folder
−−
r280 | the.stuart.sierra | 2007−12−08 14:38:52 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Access.java
 M /trunk/src/physicalc/Block.java
 M /trunk/src/physicalc/Datum.java
 M /trunk/src/physicalc/ExitFunction.java
 M /trunk/src/physicalc/ExprList.java
 M /trunk/src/physicalc/FunCall.java
 M /trunk/src/physicalc/GetNumberFunction.java
 M /trunk/src/physicalc/GetUnitFunction.java
 M /trunk/src/physicalc/Id.java
 M /trunk/src/physicalc/If.java
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/src/physicalc/Literal.java
 M /trunk/src/physicalc/Load.java
 M /trunk/src/physicalc/Main.java
 M /trunk/src/physicalc/NPrintFunction.java
 M /trunk/src/physicalc/PList.java
 M /trunk/src/physicalc/ParamList.java
 M /trunk/src/physicalc/PrintFunction.java
 M /trunk/src/physicalc/Program.java
 M /trunk/src/physicalc/Unit.java
 M /trunk/src/physicalc/UnitDef.java

Commented out debugging System.err.println lines in all sources.

−−
r279 | the.stuart.sierra | 2007−12−08 14:36:03 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/otherunits.phy

Dec 18, 07 20:18 Page 10/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 5/119Changelog

Added other units from Ici.

−−
r278 | the.stuart.sierra | 2007−12−08 14:20:07 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/si.phy

Added lots more SI units, generated from a script.

−−
r277 | digitalfobulous | 2007−12−08 14:01:30 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/funcTest.in
 A /trunk/test/examples/funcTest.out

test
−−
r276 | ChadJiang | 2007−12−08 13:53:57 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/test/examples/exit.in
 A /trunk/test/examples/exit.out

exit function test
−−
r275 | ChadJiang | 2007−12−08 13:52:29 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/ExitFunction.java

exit function
−−
r274 | brianwfoo | 2007−12−08 13:47:29 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r273 | the.stuart.sierra | 2007−12−08 13:47:21 −0500 (Sat, 08 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/src/physicalc/AliasDef.java
 M /trunk/src/physicalc/Id.java
 M /trunk/src/physicalc/UnitDef.java
 A /trunk/test/examples/alias.in
 A /trunk/test/examples/alias.out

* Added test for aliases.
* Fixed UnitDef, AliasDef, Id

−−
r272 | brianwfoo | 2007−12−08 13:47:10 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnitPair.java

Removed file/folder
−−
r271 | digitalfobulous | 2007−12−08 13:38:45 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/AliasDef.java
 M /trunk/src/physicalc/ConstantDef.java

Dec 18, 07 20:18 Page 11/45Changelog
variable and constant
−−
r270 | brianwfoo | 2007−12−08 13:28:55 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r269 | brianwfoo | 2007−12−08 13:28:32 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r268 | digitalfobulous | 2007−12−08 13:25:26 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/AliasDef.java

variable and constant
−−
r267 | the.stuart.sierra | 2007−12−08 13:17:33 −0500 (Sat, 08 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/src/physicalc/Load.java
 A /trunk/test/examples/const1.in
 A /trunk/test/examples/const1.out

Tests for Constant.
Load.java implemented.

−−
r266 | brianwfoo | 2007−12−08 13:16:37 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetUnitFunction.java

Added a file remotely
−−
r265 | brianwfoo | 2007−12−08 13:16:19 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/GetUnitFunction.java

Removed file/folder
−−
r264 | brianwfoo | 2007−12−08 13:15:58 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetNumberFunction.java

Added a file remotely
−−
r263 | brianwfoo | 2007−12−08 13:15:39 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/GetNumberFunction.java

Removed file/folder
−−
r262 | brianwfoo | 2007−12−08 13:02:05 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetUnitFunction.java

Added a file remotely
−−
r261 | brianwfoo | 2007−12−08 13:01:48 −0500 (Sat, 08 Dec 2007) | 1 line

Dec 18, 07 20:18 Page 12/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 6/119Changelog

Changed paths:
 A /trunk/src/physicalc/GetNumberFunction.java

Added a file remotely
−−
r260 | brianwfoo | 2007−12−08 13:01:29 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/GetNumberFunction.java
 D /trunk/src/physicalc/GetUnitFunction.java

Removed file/folder
−−
r259 | the.stuart.sierra | 2007−12−08 12:50:23 −0500 (Sat, 08 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/src/physicalc/Interpreter.java
 A /trunk/test/examples/for2.in
 A /trunk/test/examples/for2.out
 A /trunk/test/examples/getNumber.in
 A /trunk/test/examples/getNumber.out
 A /trunk/test/examples/getUnit.in
 A /trunk/test/examples/getUnit.out

Tests for for, getNumber, getUnit.
Updated builtin symbols in Interpreter.

−−
r258 | brianwfoo | 2007−12−08 12:42:40 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/UnitDef.java

Added a file remotely
−−
r257 | brianwfoo | 2007−12−08 12:42:23 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Unit.java

Added a file remotely
−−
r256 | brianwfoo | 2007−12−08 12:41:43 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/Unit.java
 D /trunk/src/physicalc/UnitDef.java

Removed file/folder
−−
r255 | the.stuart.sierra | 2007−12−08 12:41:07 −0500 (Sat, 08 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/src/physicalc/For.java
 A /trunk/test/examples/for1.in
 A /trunk/test/examples/for1.out
 A /trunk/test/examples/in.in
 A /trunk/test/examples/in.out

* More example tests.
* Fixed For.java so it compiles.

−−
r254 | ChadJiang | 2007−12−08 12:36:45 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/For.java

Dec 18, 07 20:18 Page 13/45Changelog

For class
−−
r253 | the.stuart.sierra | 2007−12−08 12:35:40 −0500 (Sat, 08 Dec 2007) | 4 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/src/physicalc/ToStringFunction.java
 A /trunk/test/examples/nprint.in
 A /trunk/test/examples/nprint.out
 A /trunk/test/examples/toString.in
 A /trunk/test/examples/toString.out
 A /trunk/test/examples/unary.in
 A /trunk/test/examples/unary.out
 A /trunk/test/examples/unit2.in
 A /trunk/test/examples/unit2.out

* More example tests
* Fixed ToStringFunction
* Updated Makefile

−−
r252 | digitalfobulous | 2007−12−08 12:21:54 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/NPrintFunction.java

variable and constant
−−
r251 | digitalfobulous | 2007−12−08 12:05:16 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/ToStringFunction.java

variable and constant
−−
r250 | the.stuart.sierra | 2007−12−08 12:04:04 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/src/physicalc/ToIntFunction.java
 A /trunk/test/examples/set1.in
 A /trunk/test/examples/set1.out
 A /trunk/test/examples/toInt.in
 A /trunk/test/examples/toInt.out
 A /trunk/test/examples/while2.in
 A /trunk/test/examples/while2.out
 A /trunk/test/examples/while3.in
 A /trunk/test/examples/while3.out
 A /trunk/test/examples/while4.in
 A /trunk/test/examples/while4.out

More example tests; fixed ToIntFunction.java

−−
r249 | digitalfobulous | 2007−12−08 12:03:09 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/ToStringFunction.java

variable and constant
−−
r248 | digitalfobulous | 2007−12−08 11:40:21 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 14/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 7/119Changelog

 M /trunk/src/physicalc/Constant.java
 M /trunk/src/physicalc/Variable.java

variable and constant
−−
r247 | the.stuart.sierra | 2007−12−08 11:38:58 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/Makefile

Added Makefile line to delete exampes/*.actual on ’make clean’

−−
r246 | the.stuart.sierra | 2007−12−08 11:37:06 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Set.java

Implemented Set.java.

−−
r245 | the.stuart.sierra | 2007−12−08 11:36:37 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Id.java

Fixed Id.java so it compiles.

−−
r244 | digitalfobulous | 2007−12−08 11:24:38 −0500 (Sat, 08 Dec 2007) | 5 lines
Changed paths:
 M /trunk/src/physicalc/Id.java

dssfgghhf−This line, and those below, will be ignored−−

M physicalc/Id.java

−−
r243 | the.stuart.sierra | 2007−12−08 10:49:50 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/test/examples/while1.in
 A /trunk/test/examples/while1.out

Added simple while1 example test for while loop with a break.

−−
r242 | the.stuart.sierra | 2007−12−08 10:47:31 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/Makefile

Added Constant.java to Makefile.

−−
r241 | the.stuart.sierra | 2007−12−08 10:39:26 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/runexample

Added runexample script to run a single example test file.

Dec 18, 07 20:18 Page 15/45Changelog

−−
r240 | the.stuart.sierra | 2007−12−08 10:31:40 −0500 (Sat, 08 Dec 2007) | 2 line
s
Changed paths:
 A /trunk/test/examples/unit1.in
 A /trunk/test/examples/unit1.out

Added test for defining and printing base unit.

−−
r239 | brianwfoo | 2007−12−08 08:43:50 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/UnitDef.java

Added a file remotely
−−
r238 | brianwfoo | 2007−12−08 08:43:33 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Unit.java

Added a file remotely
−−
r237 | brianwfoo | 2007−12−08 08:43:18 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r236 | brianwfoo | 2007−12−08 08:42:56 −0500 (Sat, 08 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnitPair.java
 D /trunk/src/physicalc/Unit.java
 D /trunk/src/physicalc/UnitDef.java

Removed file/folder
−−
r235 | ChadJiang | 2007−12−04 22:48:26 −0500 (Tue, 04 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/While.java

new version
−−
r234 | the.stuart.sierra | 2007−12−04 21:37:18 −0500 (Tue, 04 Dec 2007) | 4 line
s
Changed paths:
 A /trunk/runexamples
 A /trunk/test/examples
 A /trunk/test/examples/print1.in
 A /trunk/test/examples/print1.out

Added test/examples.
Added test/examples/print1.in and print1.out.
Added runexamples script.

−−
r233 | the.stuart.sierra | 2007−12−04 20:55:19 −0500 (Tue, 04 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/test/InterpreterTest.java

Added tests for While, based on meeting w/ Chad 2007−12−04.

Dec 18, 07 20:18 Page 16/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 8/119Changelog

Need Set implementation to finish testing While.

−−
r232 | ChadJiang | 2007−12−04 11:22:43 −0500 (Tue, 04 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/While.java

it can pass compile, but not sure for testing
−−
r231 | the.stuart.sierra | 2007−12−03 09:03:00 −0500 (Mon, 03 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/src/grammar.g
 M /trunk/src/physicalc/UnitDef.java

* Fixed parser & tree walker to support base & derived units.
* Added constructor to UnitDef for base units.

−−
r230 | the.stuart.sierra | 2007−12−03 09:02:06 −0500 (Mon, 03 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/test/InterpreterTest.java

* Committed tests on Unary minus operator.

−−
r229 | the.stuart.sierra | 2007−12−03 08:42:08 −0500 (Mon, 03 Dec 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Unary.java

Added Unary.java from Ici, corrected one line.

−−
r228 | brianwfoo | 2007−12−03 03:40:50 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/UnitDef.java

Added a file remotely
−−
r227 | brianwfoo | 2007−12−03 03:40:26 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Unit.java

Added a file remotely
−−
r226 | brianwfoo | 2007−12−03 03:39:53 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/Unit.java
 D /trunk/src/physicalc/UnitDef.java

Removed file/folder
−−
r225 | ChadJiang | 2007−12−03 03:23:08 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/While.java

not sure correct
−−
r224 | brianwfoo | 2007−12−03 03:21:44 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 17/45Changelog
 A /trunk/src/physicalc/In.java

Added a file remotely
−−
r223 | brianwfoo | 2007−12−03 03:21:22 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r222 | brianwfoo | 2007−12−03 03:20:52 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/In.java
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r221 | brianwfoo | 2007−12−03 01:24:03 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetUnitFunction.java

Added a file remotely
−−
r220 | brianwfoo | 2007−12−03 01:23:41 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/GetNumberFunction.java

Added a file remotely
−−
r219 | brianwfoo | 2007−12−03 01:23:22 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/ToIntFunction.java

Added a file remotely
−−
r218 | brianwfoo | 2007−12−03 01:22:59 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Unit.java

Added a file remotely
−−
r217 | brianwfoo | 2007−12−03 01:19:26 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 A /trunk/Makefile

Added a file remotely
−−
r216 | brianwfoo | 2007−12−03 01:19:08 −0500 (Mon, 03 Dec 2007) | 1 line
Changed paths:
 D /trunk/Makefile

Removed file/folder
−−
r215 | the.stuart.sierra | 2007−12−01 20:58:13 −0500 (Sat, 01 Dec 2007) | 8 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g
 A /trunk/src/physicalc/Access.java
 A /trunk/src/physicalc/Constant.java
 M /trunk/src/physicalc/Id.java
 A /trunk/src/physicalc/LValue.java

Dec 18, 07 20:18 Page 18/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 9/119Changelog

 M /trunk/src/physicalc/PList.java
 M /trunk/src/physicalc/PNumber.java
 M /trunk/src/physicalc/Set.java
 A /trunk/src/physicalc/Unary.java
 M /trunk/test/InterpreterTest.java

* Implemented Access completely.
* Implmeneted Id as it relates to Set.
* Modified PList and PNumber to support Access.
* Templated Set, Constant, Id, and Unary.
* Finished tree walker.
* Added a bunch of interpreter tests.
* Updated Makefile

−−
r214 | the.stuart.sierra | 2007−12−01 10:10:59 −0500 (Sat, 01 Dec 2007) | 3 line
s
Changed paths:
 M /trunk/test/InterpreterTest.java

Added tests for simple arithmetic, relational operators, and
the "if" statement.

−−
r213 | brianwfoo | 2007−11−30 18:21:38 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/FunctionDef.java

Added a file remotely
−−
r212 | brianwfoo | 2007−11−30 18:21:17 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/FunctionDef.java

Removed file/folder
−−
r211 | brianwfoo | 2007−11−30 18:13:43 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Return.java

Added a file remotely
−−
r210 | brianwfoo | 2007−11−30 18:13:21 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Function.java

Added a file remotely
−−
r209 | brianwfoo | 2007−11−30 18:13:03 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/FunCall.java

Added a file remotely
−−
r208 | brianwfoo | 2007−11−30 18:12:37 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/FunCall.java
 D /trunk/src/physicalc/Function.java
 D /trunk/src/physicalc/Return.java

Removed file/folder
−−

Dec 18, 07 20:18 Page 19/45Changelog
r207 | the.stuart.sierra | 2007−11−30 18:03:37 −0500 (Fri, 30 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/test/InterpreterTest.java

Enabled "Hello, World!" test in InterpreterTest.

−−
r206 | the.stuart.sierra | 2007−11−30 17:36:02 −0500 (Fri, 30 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/src/grammar.g
 M /trunk/src/physicalc/Block.java
 M /trunk/src/physicalc/FunCall.java
 M /trunk/src/physicalc/If.java
 M /trunk/src/physicalc/Literal.java
 M /trunk/src/physicalc/PrintFunction.java

grammar.g: fixed bug in how tree walker handles nodes inside a BLOCK
Added debugging statements to various eval() methods.

−−
r205 | the.stuart.sierra | 2007−11−30 17:21:26 −0500 (Fri, 30 Nov 2007) | 5 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/physicalc/Function.java
 M /trunk/src/physicalc/Interpreter.java
 A /trunk/src/physicalc/PrintFunction.java

* Added PrintFunction to implement built−in "print()"
* Added protected constructor to Function for base classes.
* Added builtin "print()" to Interpreter global symbol table.
* Updated Makefile.

−−
r204 | the.stuart.sierra | 2007−11−30 17:06:58 −0500 (Fri, 30 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/src/physicalc/FunCall.java
 M /trunk/src/physicalc/Function.java

Fixed FunCall and Function to use current local symbol table
when evaluating arguments.

−−
r203 | the.stuart.sierra | 2007−11−30 16:52:33 −0500 (Fri, 30 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/ReturnSignal.java

Added documentation to ReturnSignal.java

−−
r202 | brianwfoo | 2007−11−30 02:04:44 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Return.java

Added a file remotely
−−
r201 | brianwfoo | 2007−11−30 02:04:10 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 20/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 10/119Changelog

 D /trunk/src/physicalc/Return.java

Removed file/folder
−−
r200 | brianwfoo | 2007−11−30 02:03:43 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Function.java

Added a file remotely
−−
r199 | brianwfoo | 2007−11−30 02:03:10 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/FunCall.java

Added a file remotely
−−
r198 | brianwfoo | 2007−11−30 02:02:41 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/Function.java

Removed file/folder
−−
r197 | brianwfoo | 2007−11−30 02:02:30 −0500 (Fri, 30 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/FunCall.java

Removed file/folder
−−
r196 | the.stuart.sierra | 2007−11−29 20:12:57 −0500 (Thu, 29 Nov 2007) | 4 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/test/InterpreterTest.java

* Updated InterpreterTest and Interpreter to correctly
 redirect standard output.
* Updated Makefile to compile tests correctly.

−−
r195 | the.stuart.sierra | 2007−11−29 19:13:53 −0500 (Thu, 29 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g
 A /trunk/src/physicalc/In.java

* Added skeleton In class for "in" operator.
* Updated grammar and Makefile.

−−
r194 | the.stuart.sierra | 2007−11−29 19:05:01 −0500 (Thu, 29 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Break.java
 M /trunk/src/physicalc/Next.java

Implemented Next and Break statements.

−−
r193 | ChadJiang | 2007−11−29 09:39:11 −0500 (Thu, 29 Nov 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 21/45Changelog
 M /trunk/src/physicalc/While.java

While class
−−
r192 | the.stuart.sierra | 2007−11−26 19:35:26 −0500 (Mon, 26 Nov 2007) | 4 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g
 A /trunk/src/physicalc/AliasDef.java
 A /trunk/src/physicalc/ConstantDef.java
 A /trunk/src/physicalc/FunctionDef.java
 M /trunk/src/physicalc/ParamList.java
 A /trunk/src/physicalc/UnitDef.java

* Added skeleton classes for all definitions.
* Added definitions to tree walker.
* Updated Makefile.

−−
r191 | the.stuart.sierra | 2007−11−26 19:02:58 −0500 (Mon, 26 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g

* Modifications to grammar.g for correct handling of if/elsif/else.
* Put TryParser and ParseFile back in Makefile.

−−
r190 | the.stuart.sierra | 2007−11−26 18:32:30 −0500 (Mon, 26 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/If.java

* Fixed missing brace in If.java

−−
r189 | ChadJiang | 2007−11−25 22:52:33 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 M /trunk/src/physicalc/If.java

modify If.java
−−
r188 | the.stuart.sierra | 2007−11−25 22:14:26 −0500 (Sun, 25 Nov 2007) | 4 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/BreakSignal.java
 A /trunk/src/physicalc/ControlSignal.java
 A /trunk/src/physicalc/NextSignal.java
 D /trunk/src/physicalc/PVector.java
 A /trunk/src/physicalc/ReturnSignal.java

* Created skeleton ControlSignal classes.
* Removed PVector.
* Updated Makefile.

−−
r187 | the.stuart.sierra | 2007−11−25 21:22:55 −0500 (Sun, 25 Nov 2007) | 4 line
s
Changed paths:

Dec 18, 07 20:18 Page 22/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 11/119Changelog

 M /trunk/Makefile
 M /trunk/src/grammar.g
 A /trunk/src/physicalc/Break.java
 A /trunk/src/physicalc/For.java
 A /trunk/src/physicalc/If.java
 M /trunk/src/physicalc/Interpreter.java
 A /trunk/src/physicalc/Load.java
 A /trunk/src/physicalc/Next.java
 A /trunk/src/physicalc/Return.java
 A /trunk/src/physicalc/Set.java
 A /trunk/src/physicalc/While.java

* Added skeleton classes for all statement nodes.
* Adjusted interpreter to print "null" on null pointer returned.
* Updated Makefile.

−−
r186 | the.stuart.sierra | 2007−11−25 19:11:55 −0500 (Sun, 25 Nov 2007) | 5 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g
 M /trunk/src/physicalc/Interpreter.java
 A /trunk/src/physicalc/Program.java

* Added Program class; changed Interpreter to use it.
* Added program rule to grammar.g, paving the way for
 definitions and statements.
* Updated Makefile.

−−
r185 | the.stuart.sierra | 2007−11−25 18:57:45 −0500 (Sun, 25 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/SymbolTable.java

SymbolTable.java: added documentation.

−−
r184 | the.stuart.sierra | 2007−11−25 18:44:46 −0500 (Sun, 25 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/PList.java

PList.java: line 23: added type cast to make it compile.

−−
r183 | brianwfoo | 2007−11−25 17:06:50 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/TypeError.java

Added a file remotely
−−
r182 | brianwfoo | 2007−11−25 17:06:33 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r181 | brianwfoo | 2007−11−25 17:06:17 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Dec 18, 07 20:18 Page 23/45Changelog

Added a file remotely
−−
r180 | brianwfoo | 2007−11−25 17:05:56 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/TypeError.java

Removed file/folder
−−
r179 | brianwfoo | 2007−11−25 17:05:42 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnitPair.java

Removed file/folder
−−
r178 | brianwfoo | 2007−11−25 17:05:31 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r177 | brianwfoo | 2007−11−25 17:05:13 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PString.java

Added a file remotely
−−
r176 | brianwfoo | 2007−11−25 17:04:54 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r175 | brianwfoo | 2007−11−25 17:04:37 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PList.java

Added a file remotely
−−
r174 | brianwfoo | 2007−11−25 17:04:17 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PString.java

Removed file/folder
−−
r173 | brianwfoo | 2007−11−25 17:04:01 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PNumber.java

Removed file/folder
−−
r172 | brianwfoo | 2007−11−25 17:03:47 −0500 (Sun, 25 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PList.java

Removed file/folder
−−
r171 | the.stuart.sierra | 2007−11−25 12:33:39 −0500 (Sun, 25 Nov 2007) | 5 line
s
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g

Dec 18, 07 20:18 Page 24/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 12/119Changelog

 A /trunk/src/physicalc/Block.java
 M /trunk/src/physicalc/Datum.java
 M /trunk/src/physicalc/ExprList.java
 A /trunk/src/physicalc/FunCall.java
 M /trunk/src/physicalc/Id.java
 M /trunk/src/physicalc/Variable.java

* More skeleton classes for FunCall, Variable, Block, and Id.
* More rules in tree walker (most expressions implemented).
* Makefile updated.
* Using System.err for all debugging output.

−−
r170 | the.stuart.sierra | 2007−11−24 18:24:10 −0500 (Sat, 24 Nov 2007) | 2 line
s
Changed paths:
 A /trunk/src/physicalc/Not.java

Added Not node class (from Ici).

−−
r169 | the.stuart.sierra | 2007−11−24 11:33:54 −0500 (Sat, 24 Nov 2007) | 2 line
s
Changed paths:
 A /trunk/src/physicalc/ExprList.java
 A /trunk/src/physicalc/Function.java
 A /trunk/src/physicalc/Id.java
 A /trunk/src/physicalc/ParamList.java
 A /trunk/src/physicalc/Variable.java

Added templates for Id, Function, and Variable.

−−
r168 | the.stuart.sierra | 2007−11−23 22:46:45 −0500 (Fri, 23 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/Or.java

Added Or.java (from Ici) and adjusted Makefile.

−−
r167 | brianwfoo | 2007−11−22 01:50:36 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r166 | brianwfoo | 2007−11−22 01:50:15 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnitPair.java

Removed file/folder
−−
r165 | brianwfoo | 2007−11−22 01:50:02 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r164 | brianwfoo | 2007−11−22 01:49:46 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 25/45Changelog
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−
r163 | brianwfoo | 2007−11−22 01:49:30 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PString.java

Added a file remotely
−−
r162 | brianwfoo | 2007−11−22 01:49:10 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PString.java

Removed file/folder
−−
r161 | brianwfoo | 2007−11−22 01:48:55 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r160 | brianwfoo | 2007−11−22 01:48:38 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PNumber.java

Removed file/folder
−−
r159 | brianwfoo | 2007−11−22 01:47:10 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/TryDatum.java

Added a file remotely
−−
r158 | brianwfoo | 2007−11−22 01:46:52 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/TryDatum.java

Removed file/folder
−−
r157 | brianwfoo | 2007−11−22 01:46:27 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 A /trunk/Makefile

Added a file remotely
−−
r156 | brianwfoo | 2007−11−22 01:46:10 −0500 (Thu, 22 Nov 2007) | 1 line
Changed paths:
 D /trunk/Makefile

Removed file/folder
−−
r155 | the.stuart.sierra | 2007−11−19 23:17:23 −0500 (Mon, 19 Nov 2007) | 4 line
s
Changed paths:
 M /trunk/src/grammar.g
 M /trunk/src/physicalc/Datum.java
 M /trunk/src/physicalc/Interpreter.java
 M /trunk/src/physicalc/Main.java
 M /trunk/src/physicalc/PNumber.java

* Rough working Interpreter and Main classes.

Dec 18, 07 20:18 Page 26/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 13/119Changelog

* PNumber#add() modified as example.
* Early tree walker in grammar.g.

−−
r154 | the.stuart.sierra | 2007−11−19 22:35:40 −0500 (Mon, 19 Nov 2007) | 2 line
s
Changed paths:
 A /trunk/src/physicalc/Arith.java

Added Arith class, from Chad.

−−
r153 | the.stuart.sierra | 2007−11−19 22:08:10 −0500 (Mon, 19 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile

Added Chad’s Arith class (slightly corrected) and
updated Makefile.

−−
r152 | the.stuart.sierra | 2007−11−19 22:04:16 −0500 (Mon, 19 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/Rel.java

Corrected string comparisons to use "equals" instead of "==".

−−
r151 | the.stuart.sierra | 2007−11−19 21:55:05 −0500 (Mon, 19 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/Literal.java

Added Literal node class and updated Makefile.

−−
r150 | brianwfoo | 2007−11−19 19:45:15 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r149 | brianwfoo | 2007−11−19 19:44:53 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnitPair.java

Removed file/folder
−−
r148 | brianwfoo | 2007−11−19 19:44:34 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r147 | brianwfoo | 2007−11−19 19:44:14 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PUnit.java

Removed file/folder
−−

Dec 18, 07 20:18 Page 27/45Changelog
r146 | brianwfoo | 2007−11−19 19:43:57 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PString.java

Added a file remotely
−−
r145 | brianwfoo | 2007−11−19 19:43:32 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PString.java

Removed file/folder
−−
r144 | brianwfoo | 2007−11−19 19:43:15 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r143 | brianwfoo | 2007−11−19 19:42:56 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PNumber.java

Removed file/folder
−−
r142 | brianwfoo | 2007−11−19 19:42:43 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PList.java

Added a file remotely
−−
r141 | brianwfoo | 2007−11−19 19:42:21 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PList.java

Removed file/folder
−−
r140 | brianwfoo | 2007−11−19 19:42:06 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PBoolean.java

Added a file remotely
−−
r139 | brianwfoo | 2007−11−19 19:41:41 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PBoolean.java

Removed file/folder
−−
r138 | brianwfoo | 2007−11−19 19:41:17 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Datum.java

Added a file remotely
−−
r137 | brianwfoo | 2007−11−19 19:40:56 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/Datum.java

Removed file/folder
−−
r136 | brianwfoo | 2007−11−19 19:31:55 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 28/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 14/119Changelog

 A /trunk/src/TryDatum.java

Added a file remotely
−−
r135 | brianwfoo | 2007−11−19 19:31:32 −0500 (Mon, 19 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/TryDatum.java

Removed file/folder
−−
r134 | the.stuart.sierra | 2007−11−18 21:36:59 −0500 (Sun, 18 Nov 2007) | 1 line
Changed paths:
 M /wiki/ClassList.wiki

Added ExprList.
−−
r133 | the.stuart.sierra | 2007−11−18 21:14:14 −0500 (Sun, 18 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/Rel.java

* Added Rel class for relational operator nodes.
* Updated Makefile with new class.

−−
r132 | the.stuart.sierra | 2007−11−18 20:38:32 −0500 (Sun, 18 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/physicalc/And.java

Fixed And.java: should not be an abstract class.

−−
r131 | the.stuart.sierra | 2007−11−18 20:18:41 −0500 (Sun, 18 Nov 2007) | 2 line
s
Changed paths:
 M /trunk/src/grammar.g

Parser fix: moved "not" to higher precedence.

−−
r130 | the.stuart.sierra | 2007−11−17 14:10:02 −0500 (Sat, 17 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/And.java
 A /trunk/src/physicalc/Logical.java
 A /trunk/src/physicalc/Op.java

Added Logical and Op base classes, and "And" example class.
Updated Makefile.

−−
r129 | the.stuart.sierra | 2007−11−16 09:56:31 −0500 (Fri, 16 Nov 2007) | 3 line
s
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/Def.java
 A /trunk/src/physicalc/Expr.java
 M /trunk/src/physicalc/InterpreterError.java
 A /trunk/src/physicalc/Node.java

Dec 18, 07 20:18 Page 29/45Changelog
 A /trunk/src/physicalc/Stmt.java

* Wrote base Node classes.
* Fixed some small Makefile bugs.

−−
r128 | brianwfoo | 2007−11−15 16:19:09 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/Makefile

Added a file remotely
−−
r127 | brianwfoo | 2007−11−15 16:18:49 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 D /trunk/Makefile

Removed file/folder
−−
r126 | brianwfoo | 2007−11−15 16:14:02 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/TypeError.java

Added a file remotely
−−
r125 | brianwfoo | 2007−11−15 16:13:13 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/TypeError.java

Removed file/folder
−−
r124 | brianwfoo | 2007−11−15 16:13:00 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/Datum.java

Added a file remotely
−−
r123 | brianwfoo | 2007−11−15 16:12:31 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/Datum.java

Removed file/folder
−−
r122 | brianwfoo | 2007−11−15 16:12:09 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PVector.java

Added a file remotely
−−
r121 | brianwfoo | 2007−11−15 16:11:09 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnitPair.java

Added a file remotely
−−
r120 | brianwfoo | 2007−11−15 16:10:48 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PString.java

Added a file remotely
−−
r119 | brianwfoo | 2007−11−15 16:10:26 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 30/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 15/119Changelog

 A /trunk/src/physicalc/PList.java

Added a file remotely
−−
r118 | brianwfoo | 2007−11−15 16:10:00 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PBoolean.java

Added a file remotely
−−
r117 | brianwfoo | 2007−11−15 16:09:42 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 D /trunk/src/physicalc/PBoolean.java

Removed file/folder
−−
r116 | brianwfoo | 2007−11−15 16:08:46 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PUnit.java

Added a file remotely
−−
r115 | brianwfoo | 2007−11−15 16:08:05 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/physicalc/PNumber.java

Added a file remotely
−−
r114 | brianwfoo | 2007−11−15 16:07:18 −0500 (Thu, 15 Nov 2007) | 1 line
Changed paths:
 A /trunk/src/TryDatum.java

Added a file remotely
−−
r113 | the.stuart.sierra | 2007−11−11 10:59:53 −0500 (Sun, 11 Nov 2007) | 1 line
Changed paths:
 M /wiki/ClassList.wiki

Rewrote with program node tree from meeting 11/9/2007.
−−
r112 | ssierr@law.columbia.edu | 2007−11−10 15:07:25 −0500 (Sat, 10 Nov 2007) |
2 lines
Changed paths:
 A /trunk/src/physicalc/RuntimeObject.java
 A /trunk/src/physicalc/SymbolTable.java
 A /trunk/src/physicalc/UndefinedError.java

Added SymbolTable and associated classes.

−−
r111 | ssierr@law.columbia.edu | 2007−11−09 16:06:43 −0500 (Fri, 09 Nov 2007) |
2 lines
Changed paths:
 A /trunk/test/UnitTest.java

* UnitTest.java: added test file for Units

−−
r110 | ssierr@law.columbia.edu | 2007−11−07 12:53:49 −0500 (Wed, 07 Nov 2007) |
2 lines
Changed paths:
 D /trunk/ bcis −−username ChadJiang

Dec 18, 07 20:18 Page 31/45Changelog

* Removed extraneous directory.

−−
r109 | ChadJiang | 2007−11−07 01:32:59 −0500 (Wed, 07 Nov 2007) | 1 line
Changed paths:
 A /trunk/ bcis −−username ChadJiang

−−
r108 | ssierr@law.columbia.edu | 2007−11−06 23:19:51 −0500 (Tue, 06 Nov 2007) |
2 lines
Changed paths:
 M /trunk/profile.sh

* added −sourcepath to "compile" alias

−−
r107 | ssierr@law.columbia.edu | 2007−11−04 17:37:32 −0500 (Sun, 04 Nov 2007) |
4 lines
Changed paths:
 A /trunk/test/NumberTest.java

* Added NumberTest for testing integer & decimal arithmetic.
 This is NOT yet included in the Makefile, because the
 Number class is not in place.

−−
r106 | ssierr@law.columbia.edu | 2007−11−04 17:24:50 −0500 (Sun, 04 Nov 2007) |
5 lines
Changed paths:
 M /trunk/profile.sh

Added two new aliases:
1. "test" for running a single JUnit test class on the command line.
2. "compile" for compiling a single source file with the same
 options as would be used in the Makefile.

−−
r105 | ssierr@law.columbia.edu | 2007−11−03 13:38:55 −0400 (Sat, 03 Nov 2007) |
3 lines
Changed paths:
 M /trunk/Makefile
 M /trunk/src/grammar.g

* Added PhysiWalker (tree walker) to the end of grammar.g.
* Added Makefile rules to generate & compile the tree walker.

−−
r104 | ssierr@law.columbia.edu | 2007−11−02 19:29:13 −0400 (Fri, 02 Nov 2007) |
10 lines
Changed paths:
 M /trunk/Makefile
 M /trunk/profile.sh
 M /trunk/si.phy
 M /trunk/src/grammar.g
 A /trunk/src/physicalc/BoundsError.java
 A /trunk/src/physicalc/Datum.java
 A /trunk/src/physicalc/InterpreterError.java
 A /trunk/src/physicalc/PBoolean.java
 A /trunk/src/physicalc/TypeError.java

Dec 18, 07 20:18 Page 32/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 16/119Changelog

* Added abstract base class Datum.
* Added skeleton error classes InterpreterError, TypeError,
 and BoundsError.
* Removed Quantities from the grammar.
* Updated the Makefile for new classes; added −sourcepath so
 javac can find all the classes.
* Removed quantities from the library file si.phy.
* Added current directory to CLASSPATH in profile.sh for
 convenience.

−−
r103 | ssierr@law.columbia.edu | 2007−11−01 21:47:40 −0400 (Thu, 01 Nov 2007) |
2 lines
Changed paths:
 A /trunk/si.phy

* si.phy: added first draft of standard library

−−
r102 | ssierr@law.columbia.edu | 2007−11−01 21:47:20 −0400 (Thu, 01 Nov 2007) |
3 lines
Changed paths:
 M /trunk/Makefile
 A /trunk/src/ParseFile.java

* src/ParseFile.java: added new testing program
* Makefile: added rules for ParseFile

−−
r101 | ssierr@law.columbia.edu | 2007−11−01 21:45:58 −0400 (Thu, 01 Nov 2007) |
4 lines
Changed paths:
 M /trunk/src/grammar.g

grammar.g:
* added ’!’ to TERMINATOR in statements
* added rule to allow empty statements, to make comments work

−−
r100 | ssierr@law.columbia.edu | 2007−10−26 22:29:26 −0400 (Fri, 26 Oct 2007) |
2 lines
Changed paths:
 A /trunk/profile.sh

* added profile.sh, to set up CLASSPATH and other env vars.

−−
r99 | ssierr@law.columbia.edu | 2007−10−25 16:55:44 −0400 (Thu, 25 Oct 2007) | 2
 lines
Changed paths:
 M /trunk/src/grammar.g

* Added ’lvalue’ for assigning to list elements.

−−
r98 | ssierr@law.columbia.edu | 2007−10−20 23:45:09 −0400 (Sat, 20 Oct 2007) | 6
 lines
Changed paths:
 M /trunk/Makefile
 A /trunk/src/physicalc/Interpreter.java
 A /trunk/test
 A /trunk/test/InterpreterTest.java

Dec 18, 07 20:18 Page 33/45Changelog
 A /trunk/test/PhysicalcSuite.java

* Added skeleton Interpreter class with I/O streams.
* Added test directory.
* Added InterpreterTest class with a "Hello, world!" test.
* Added PhysicalcSuite class to hold all test classes.
* Added ’test’ target to Makefile which runs the suite.

−−
r97 | ssierr@law.columbia.edu | 2007−10−17 17:41:42 −0400 (Wed, 17 Oct 2007) | 2
 lines
Changed paths:
 M /trunk/src/grammar.g

* Complete grammar, including definitions and statements.

−−
r96 | ssierr@law.columbia.edu | 2007−10−17 13:40:56 −0400 (Wed, 17 Oct 2007) | 2
 lines
Changed paths:
 M /trunk/src/grammar.g

* Small corrections discovered while writing Reference Manual draft 4.

−−
r95 | ssierr@law.columbia.edu | 2007−10−17 00:13:32 −0400 (Wed, 17 Oct 2007) | 2
 lines
Changed paths:
 M /trunk/src/grammar.g

* Small corrections to grammar.

−−
r94 | ssierr@law.columbia.edu | 2007−10−16 22:42:36 −0400 (Tue, 16 Oct 2007) | 8
 lines
Changed paths:
 M /trunk/src/grammar.g

* Small corrections to expression grammar.
* Added function calls.
* Added not−equals expressions.
* Added AST node for unary minus.
* Added placeholder rules for definitions and statements.
* Renamed SEPARATOR token to TERMINATOR.
* Reordered rules.

−−
r93 | ssierr@law.columbia.edu | 2007−10−15 22:05:09 −0400 (Mon, 15 Oct 2007) | 4
 lines
Changed paths:
 M /trunk/src/TryParser.java
 M /trunk/src/grammar.g

* Wrote most of the grammar for expressions.
* Altered TryParser to use "program" as the starting rule
 when parsing.

−−
r92 | the.stuart.sierra | 2007−10−11 08:26:50 −0400 (Thu, 11 Oct 2007) | 1 line
Changed paths:
 A /wiki/BuiltinFunctions.wiki

Dec 18, 07 20:18 Page 34/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 17/119Changelog

Created page with ’print’ and ’read’.
−−
r91 | the.stuart.sierra | 2007−10−11 08:22:57 −0400 (Thu, 11 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Added BuiltinFunctions.
−−
r90 | the.stuart.sierra | 2007−10−11 08:22:27 −0400 (Thu, 11 Oct 2007) | 1 line
Changed paths:
 M /wiki/ReservedWords.wiki

Edited wiki page through web user interface.
−−
r89 | the.stuart.sierra | 2007−10−11 08:21:57 −0400 (Thu, 11 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Changed to allow expressions as statements; removed "print".
−−
r88 | the.stuart.sierra | 2007−10−10 17:18:27 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 A /wiki/FundamentalTypes.wiki

Created page with basic first− and second−class types.
−−
r87 | the.stuart.sierra | 2007−10−10 17:13:11 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Added semantic section and FundamentalTypes link.
−−
r86 | the.stuart.sierra | 2007−10−10 17:12:03 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxLiterals.wiki

Added ’true’ and ’false’.
−−
r85 | the.stuart.sierra | 2007−10−10 17:11:03 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/ReservedWords.wiki

Added ’true’ and ’false’.
−−
r84 | the.stuart.sierra | 2007−10−10 17:05:20 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxExpressions.wiki

Added explanations about ’in’ operator and roots.
−−
r83 | the.stuart.sierra | 2007−10−10 17:03:16 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxExpressions.wiki

Crossed out find...given operator.
−−
r82 | the.stuart.sierra | 2007−10−10 17:02:28 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Added link to ReservedWords.
−−

Dec 18, 07 20:18 Page 35/45Changelog
r81 | the.stuart.sierra | 2007−10−10 17:01:57 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxIdentifiers.wiki

Added link to ReservedWords.
−−
r80 | the.stuart.sierra | 2007−10−10 17:01:28 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 A /wiki/ReservedWords.wiki

Created initial list in alphabetical order.
−−
r79 | the.stuart.sierra | 2007−10−10 16:55:58 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Added sentence about expressions and statements.
−−
r78 | the.stuart.sierra | 2007−10−10 16:54:45 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Fixed wiki formatting of Assignment.
−−
r77 | the.stuart.sierra | 2007−10−10 16:54:18 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Clarified definition of for loop, reformatted "print".
−−
r76 | the.stuart.sierra | 2007−10−10 16:48:19 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Removed "read" (which can be a builtin function).
−−
r75 | the.stuart.sierra | 2007−10−10 16:47:11 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Minor edits & clarifications.
−−
r74 | the.stuart.sierra | 2007−10−10 16:46:30 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Minor edits.
−−
r73 | the.stuart.sierra | 2007−10−10 16:44:16 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Added sentence about creating local variables.
−−
r72 | the.stuart.sierra | 2007−10−10 16:43:11 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxDefinitions.wiki

Replaced "check" with "assert".
−−
r71 | the.stuart.sierra | 2007−10−10 16:41:53 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:

Dec 18, 07 20:18 Page 36/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 18/119Changelog

 M /wiki/SyntaxDefinitions.wiki

Fixed wiki rendering of ‘*‘ operator.
−−
r70 | the.stuart.sierra | 2007−10−10 16:37:25 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxLiterals.wiki

Added Vectors and Lists.
−−
r69 | the.stuart.sierra | 2007−10−10 15:29:10 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/ClassList.wiki

Renamed "ClassList" link to "ClassForList" to avoid clash with this page.
−−
r68 | the.stuart.sierra | 2007−10−10 15:28:27 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/ClassList.wiki

Reordered and renamed some classes, added "ClassInterpreter"
−−
r67 | the.stuart.sierra | 2007−10−10 15:23:28 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxLiterals.wiki

Added sentence about units with numbers.
−−
r66 | the.stuart.sierra | 2007−10−10 15:21:53 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 D /wiki/Research.wiki

Deleting wiki page Research.
−−
r65 | the.stuart.sierra | 2007−10−10 15:21:41 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/UsefulLinks.wiki

Moved links from "Research" page.
−−
r64 | the.stuart.sierra | 2007−10−10 15:19:12 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/UsefulLinks.wiki

Removed "Inflector" link.
−−
r63 | the.stuart.sierra | 2007−10−10 15:18:35 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/Research.wiki

Removed all but "Physics" and "Computer Algebra"
−−
r62 | the.stuart.sierra | 2007−10−10 14:11:58 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 A /wiki/SyntaxLiterals.wiki

Created page with strings and numbers.
−−
r61 | the.stuart.sierra | 2007−10−10 13:58:44 −0400 (Wed, 10 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Dec 18, 07 20:18 Page 37/45Changelog
Added link to SyntaxLiterals.
−−
r60 | the.stuart.sierra | 2007−10−09 18:03:05 −0400 (Tue, 09 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxDefinitions.wiki

Added Constants and Functions.
−−
r59 | the.stuart.sierra | 2007−10−09 17:56:36 −0400 (Tue, 09 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Removed ’$’ from variable names.
−−
r58 | the.stuart.sierra | 2007−10−07 17:30:23 −0400 (Sun, 07 Oct 2007) | 1 line
Changed paths:
 A /wiki/SyntaxDefinitions.wiki

Created page with quantity and unit definitions.
−−
r57 | ssierr@law.columbia.edu | 2007−10−06 19:09:27 −0400 (Sat, 06 Oct 2007) | 4
 lines
Changed paths:
 M /trunk/Makefile
 A /trunk/src/TryLexer.java
 A /trunk/src/TryParser.java
 M /trunk/src/grammar.g

1. Started Lexer rules with whitespace, comments, and numbers.
2. Added TryParser and TryLexer classes for testing parser/lexer.
3. Added ’clean’ and ’doc’ (for JavaDoc) rules to the Makefile.

−−
r56 | the.stuart.sierra | 2007−10−04 16:25:15 −0400 (Thu, 04 Oct 2007) | 1 line
Changed paths:
 M /wiki/ClassList.wiki

Removed ’Featured’ tag.
−−
r55 | the.stuart.sierra | 2007−10−04 16:24:06 −0400 (Thu, 04 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Added sentence about line break / semicolon.
−−
r54 | the.stuart.sierra | 2007−10−04 10:42:39 −0400 (Thu, 04 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxExpressions.wiki

Added note about removing Inferred Calculation.
−−
r53 | the.stuart.sierra | 2007−10−04 10:41:43 −0400 (Thu, 04 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Replaced if/do with more conventional if/then.
−−
r52 | the.stuart.sierra | 2007−10−04 10:41:09 −0400 (Thu, 04 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxIdentifiers.wiki

Replaced global/local separation with single C−like description.

Dec 18, 07 20:18 Page 38/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 19/119Changelog

−−
r51 | the.stuart.sierra | 2007−10−03 12:26:12 −0400 (Wed, 03 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxIdentifiers.wiki

Rewrote as local and global identifiers.
−−
r50 | the.stuart.sierra | 2007−10−03 12:21:43 −0400 (Wed, 03 Oct 2007) | 1 line
Changed paths:
 M /wiki/SyntaxExpressions.wiki

Rewrote page with operator list.
−−
r49 | ssierr@law.columbia.edu | 2007−10−01 12:07:26 −0400 (Mon, 01 Oct 2007) | 3
 lines
Changed paths:
 A /trunk/Makefile

Added beginning Makefile with rules for ANTLR and compilation.
This Makefile requires adding a new rule for each new class.

−−
r48 | ssierr@law.columbia.edu | 2007−10−01 12:06:49 −0400 (Mon, 01 Oct 2007) | 3
 lines
Changed paths:
 A /trunk/src/physicalc
 A /trunk/src/physicalc/Main.java

Added directory for .java source files in the ’physicalc’ package
and a skeleton Main.java class.

−−
r47 | ssierr@law.columbia.edu | 2007−10−01 12:05:47 −0400 (Mon, 01 Oct 2007) | 2
 lines
Changed paths:
 A /trunk/src/grammar.g

Added skeleton grammar file for ANTLR.

−−
r46 | ssierr@law.columbia.edu | 2007−10−01 12:05:02 −0400 (Mon, 01 Oct 2007) | 2
 lines
Changed paths:
 M /trunk/class/physicalc

Set svn:ignore for *.class files in class/physicalc.

−−
r45 | ssierr@law.columbia.edu | 2007−10−01 12:01:56 −0400 (Mon, 01 Oct 2007) | 2
 lines
Changed paths:
 A /trunk/lib/junit−4.4.jar

Added lib/junit−4.4.jar, needed to run JUnit tests.

−−
r44 | ssierr@law.columbia.edu | 2007−10−01 12:01:18 −0400 (Mon, 01 Oct 2007) | 2
 lines
Changed paths:
 A /trunk/class
 A /trunk/class/physicalc

Dec 18, 07 20:18 Page 39/45Changelog
Added class/physicalc dir for compiled java .class files.

−−
r43 | ssierr@law.columbia.edu | 2007−10−01 11:39:13 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 M /wiki/SyntaxStatements.wiki

Added assignment.
−−
r42 | ssierr@law.columbia.edu | 2007−10−01 11:37:17 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 A /wiki/SyntaxExpressions.wiki

Created page with basic list of expressions.
−−
r41 | ssierr@law.columbia.edu | 2007−10−01 11:33:09 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 A /wiki/SyntaxStatements.wiki

Created basic I/O, if/then/else, for/while loops.
−−
r40 | ssierr@law.columbia.edu | 2007−10−01 10:48:08 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 A /wiki/ExampleSunMass.wiki

Created incomplete code example.
−−
r39 | ssierr@law.columbia.edu | 2007−10−01 10:44:24 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 A /wiki/ExamplePrograms.wiki

Created page with link to first example.
−−
r38 | ssierr@law.columbia.edu | 2007−10−01 10:36:47 −0400 (Mon, 01 Oct 2007) | 1
 line
Changed paths:
 M /wiki/CodingStyle.wiki

Added ANTLR code style.
−−
r37 | ssierr@law.columbia.edu | 2007−09−29 19:36:12 −0400 (Sat, 29 Sep 2007) | 2
 lines
Changed paths:
 A /trunk/lib/antlr.jar

lib/antlr.jar: Added ANTLR .jar file version 2.7.7

−−
r36 | ssierr@law.columbia.edu | 2007−09−29 19:32:00 −0400 (Sat, 29 Sep 2007) | 2
 lines
Changed paths:
 A /trunk/doc
 A /trunk/lib
 A /trunk/src

Added skeleton src/lib/doc dirs.

Dec 18, 07 20:18 Page 40/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 20/119Changelog

−−
r35 | ssierr@law.columbia.edu | 2007−09−29 09:49:48 −0400 (Sat, 29 Sep 2007) | 1
 line
Changed paths:
 A /wiki/CodingStyle.wiki

Created wiki page with summary of Sun coding standards.
−−
r34 | ssierr@law.columbia.edu | 2007−09−26 21:25:56 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 A /wiki/SyntaxIdentifiers.wiki

Created page based on meeting of 9/26/2007.
−−
r33 | ssierr@law.columbia.edu | 2007−09−26 21:19:38 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Removed original content, replace with list of links to sub−pages.
−−
r32 | ssierr@law.columbia.edu | 2007−09−26 17:24:09 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 M /wiki/SyntaxReference.wiki

Added ’Featured’ tag.
−−
r31 | ssierr@law.columbia.edu | 2007−09−26 17:20:13 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 A /wiki/SyntaxReference.wiki

Created early draft page.
−−
r30 | ssierr@law.columbia.edu | 2007−09−26 17:11:55 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 A /wiki/ClassList.wiki

Created initial class list.
−−
r29 | ssierr@law.columbia.edu | 2007−09−26 16:24:35 −0400 (Wed, 26 Sep 2007) | 1
 line
Changed paths:
 M /wiki/Proposal.wiki

Deleted draft Proposal page.
−−
r28 | ssierr@law.columbia.edu | 2007−09−21 16:57:30 −0400 (Fri, 21 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

Added paragraph about JScience.

−−
r27 | ssierr@law.columbia.edu | 2007−09−21 09:42:38 −0400 (Fri, 21 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/UsefulLinks.wiki

Dec 18, 07 20:18 Page 41/45Changelog

Added eclipse/ANTLR link

−−
r26 | ssierr@law.columbia.edu | 2007−09−20 17:17:47 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Research.wiki

Added link to JAS.

−−
r25 | ssierr@law.columbia.edu | 2007−09−20 17:08:28 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Research.wiki

Added link to JScience.

−−
r24 | ssierr@law.columbia.edu | 2007−09−20 16:30:49 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

Fixed some wiki formatting.

−−
r23 | ssierr@law.columbia.edu | 2007−09−20 16:28:53 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

Said it’s ’much much simpler’ than CAS systems.

−−
r22 | ssierr@law.columbia.edu | 2007−09−20 14:11:22 −0400 (Thu, 20 Sep 2007) | 1
 line
Changed paths:
 M /wiki/Research.wiki

Added link to unit calculation in CAS page.
−−
r21 | ssierr@law.columbia.edu | 2007−09−20 14:08:25 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Research.wiki

Added sympy link

−−
r20 | ssierr@law.columbia.edu | 2007−09−20 13:53:06 −0400 (Thu, 20 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

Proposal rewritten with more features, no examples.

−−
r19 | ssierr@law.columbia.edu | 2007−09−20 13:22:11 −0400 (Thu, 20 Sep 2007) | 1
 line
Changed paths:

Dec 18, 07 20:18 Page 42/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 21/119Changelog

 M /wiki/Research.wiki

added apfloat link
−−
r18 | ssierr@law.columbia.edu | 2007−09−19 17:46:48 −0400 (Wed, 19 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Research.wiki

 Edited wiki page through web user interface.

−−
r17 | ssierr@law.columbia.edu | 2007−09−19 16:41:53 −0400 (Wed, 19 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Research.wiki

 Edited wiki page through web user interface.

−−
r16 | ssierr@law.columbia.edu | 2007−09−19 16:40:57 −0400 (Wed, 19 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/UsefulLinks.wiki

 Edited wiki page through web user interface.

−−
r15 | ssierr@law.columbia.edu | 2007−09−19 15:02:42 −0400 (Wed, 19 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/UsefulLinks.wiki

 Edited wiki page through web user interface.

−−
r14 | ssierr@law.columbia.edu | 2007−09−18 11:22:46 −0400 (Tue, 18 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r13 | ssierr@law.columbia.edu | 2007−09−18 11:14:27 −0400 (Tue, 18 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r12 | ssierr@law.columbia.edu | 2007−09−18 11:09:09 −0400 (Tue, 18 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r11 | ssierr@law.columbia.edu | 2007−09−18 11:06:06 −0400 (Tue, 18 Sep 2007) | 2
 lines

Dec 18, 07 20:18 Page 43/45Changelog
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r10 | ssierr@law.columbia.edu | 2007−09−18 11:00:46 −0400 (Tue, 18 Sep 2007) | 2
 lines
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r9 | ssierr@law.columbia.edu | 2007−09−18 10:47:51 −0400 (Tue, 18 Sep 2007) | 3
lines
Changed paths:
 M /wiki/Proposal.wiki

 Edited wiki page through web user interface.

−−
r8 | ssierr@law.columbia.edu | 2007−09−18 10:32:19 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 M /wiki/Research.wiki

 Edited wiki page through web user interface.

−−
r7 | ssierr@law.columbia.edu | 2007−09−18 10:06:46 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 M /wiki/Research.wiki

 Edited wiki page through web user interface.

−−
r6 | ssierr@law.columbia.edu | 2007−09−18 09:52:27 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 A /wiki/Research.wiki

 Created wiki page through web user interface.

−−
r5 | ssierr@law.columbia.edu | 2007−09−18 09:51:11 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 M /wiki/UsefulLinks.wiki

 Edited wiki page through web user interface.

−−
r4 | ssierr@law.columbia.edu | 2007−09−18 09:50:50 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 M /wiki/UsefulLinks.wiki

 Edited wiki page through web user interface.

Dec 18, 07 20:18 Page 44/45Changelog

Printed by Stuart Sierra

Tuesday December 18, 2007 22/119Changelog

−−
r3 | ssierr@law.columbia.edu | 2007−09−18 09:48:06 −0400 (Tue, 18 Sep 2007) | 2
lines
Changed paths:
 A /wiki/UsefulLinks.wiki

 Created wiki page through web user interface.

−−
r2 | ssierr@law.columbia.edu | 2007−09−18 09:34:31 −0400 (Tue, 18 Sep 2007) | 5
lines
Changed paths:
 A /wiki
 A /wiki/Proposal.wiki

 Created wiki page through web user interface.

−−
r1 | (no author) | 2007−09−18 08:48:00 −0400 (Tue, 18 Sep 2007) | 1 line
Changed paths:
 A /branches
 A /tags
 A /trunk

Initial directory structure.
−−

Dec 18, 07 20:18 Page 45/45Changelog
Makefile for Physicalc
By Stuart Sierra, ss2806@columbia.edu

Path to the Java runtime interpreter
JAVA = java

Path to the Java compiler
JAVAC = javac

Path to the JavaDoc tool
JAVADOC = javadoc

The absolute path where this Makefile is located.
Default is current working directory.
PROJECT = $(PWD)

Directory where source .java file go.
SOURCE = $(PROJECT)/src

Directory where compiled .class files will go.
CLASS = $(PROJECT)/class

Directory for JavaDoc−generated documentation.
APIDOC = $(PROJECT)/doc/api

Directory for .java source files for unit tests.
TEST = $(PROJECT)/test

Directory for the .tex files for the final report.
REPORT = $(PROJECT)/report

Paths and .jar files to search for Java .class files
(colon separated)
CLASSPATH = $(CLASS):$(PROJECT)/lib/antlr.jar:$(PROJECT)/lib/junit−4.4.jar

Flags for the Java compiler (−g includes debugging info)
JAVACFLAGS = −g −cp $(CLASSPATH) −sourcepath $(SOURCE) −d $(CLASS)

Flags for the Java interpreter
JFLAGS = −cp $(CLASSPATH)

Command line to compile a java class file:
JC = $(JAVAC) $(JAVACFLAGS)

Directories for sources and class files within the ’physicalc’
package.
SDIR = $(SOURCE)/physicalc
CDIR = $(CLASS)/physicalc

Command line for ANTLR
ANTLR = $(JAVA) $(JFLAGS) antlr.Tool

List of all project class files. New classes should be added here
and in the PER−CLASS COMPILATION RULES, below.
CLASSES = \
 $(CDIR)/PhysiLexer.class \
 $(CDIR)/PhysiLexerTokenTypes.class \
 $(CDIR)/PhysiParser.class \
 $(CDIR)/PhysiWalker.class \
 $(CLASS)/TryDatum.class \
 $(CLASS)/TryLexer.class \
 $(CLASS)/TryParser.class \

Dec 18, 07 19:57 Page 1/8Makefile

Printed by Stuart Sierra

Tuesday December 18, 2007 23/119Changelog, Makefile

 $(CLASS)/ParseFile.class \
 $(CDIR)/Access.class \
 $(CDIR)/And.class \
 $(CDIR)/Arith.class \
 $(CDIR)/Block.class \
 $(CDIR)/BoundsError.class \
 $(CDIR)/Break.class \
 $(CDIR)/BreakSignal.class \
 $(CDIR)/ControlSignal.class \
 $(CDIR)/Datum.class \
 $(CDIR)/Def.class \
 $(CDIR)/Expr.class \
 $(CDIR)/ExprList.class \
 $(CDIR)/ExitFunction.class \
 $(CDIR)/For.class \
 $(CDIR)/FunCall.class \
 $(CDIR)/Function.class \
 $(CDIR)/GetNumberFunction.class \
 $(CDIR)/GetUnitFunction.class \
 $(CDIR)/Id.class \
 $(CDIR)/If.class \
 $(CDIR)/In.class \
 $(CDIR)/InterpreterError.class \
 $(CDIR)/Interpreter.class \
 $(CDIR)/Literal.class \
 $(CDIR)/Load.class \
 $(CDIR)/Logical.class \
 $(CDIR)/LValue.class \
 $(CDIR)/Main.class \
 $(CDIR)/Next.class \
 $(CDIR)/NextSignal.class \
 $(CDIR)/Node.class \
 $(CDIR)/Not.class \
 $(CDIR)/Op.class \
 $(CDIR)/Or.class \
 $(CDIR)/ParamList.class \
 $(CDIR)/PrintFunction.class \
 $(CDIR)/PBoolean.class \
 $(CDIR)/PList.class \
 $(CDIR)/PNumber.class \
 $(CDIR)/Program.class \
 $(CDIR)/PString.class \
 $(CDIR)/PUnit.class \
 $(CDIR)/PUnitPair.class \
 $(CDIR)/Rel.class \
 $(CDIR)/Return.class \
 $(CDIR)/ReturnSignal.class \
 $(CDIR)/RuntimeObject.class \
 $(CDIR)/Set.class \
 $(CDIR)/Stmt.class \
 $(CDIR)/SymbolTable.class \
 $(CDIR)/ToIntFunction.class \
 $(CDIR)/ToStringFunction.class \
 $(CDIR)/NPrintFunction.class \
 $(CDIR)/TypeError.class \
 $(CDIR)/Unary.class \
 $(CDIR)/UndefinedError.class \
 $(CDIR)/Variable.class \
 $(CDIR)/While.class \
 $(CDIR)/Constant.class \
 $(CDIR)/ConstantDef.class \
 $(CDIR)/Unit.class \

Dec 18, 07 19:57 Page 2/8Makefile
 $(CDIR)/UnitDef.class \
 $(CDIR)/FunctionDef.class \
 $(CDIR)/AliasDef.class

List of all test class files. New tests should be added here and in
the PER−CLASS COMPILATION RULES, below.
TESTCLASSES = $(CDIR)/InterpreterTest.class \
 $(CDIR)/PhysicalcSuite.class

Default target: compile all project classes (not tests)
all: $(CLASSES)

’run’ target: run the "Main" class
run: $(CLASSES)

$(JAVA) $(JFLAGS) physicalc.Main

’test’ target: compile and run all unit tests
test: $(CLASSES) $(TESTCLASSES)

$(JAVA) $(JFLAGS) org.junit.runner.JUnitCore physicalc.PhysicalcSuite

The files generated by running ANTLR on the grammar file.
ANTLR_OUTPUT = $(SDIR)/PhysiLexer.java \
 $(SDIR)/PhysiParser.java \
 $(SDIR)/PhysiLexerTokenTypes.java \
 $(SDIR)/PhysiLexer.smap \
 $(SDIR)/PhysiLexerTokenTypes.txt \
 $(SDIR)/PhysiParser.smap \
 $(SDIR)/PhysiWalker.java \
 $(SDIR)/PhysiWalker.smap

’doc’ target: make the Javadocs
doc: $(CLASSES)

mkdir −p $(APIDOC)
$(JAVADOC) −sourcepath $(SOURCE) \

−private −d $(APIDOC) physicalc

report: $(REPORT)/physicalc−report.pdf

$(REPORT)/physicalc−report.pdf: $(REPORT)/finalreport.pdf $(REPORT)/sources.pdf
(cd $(REPORT); pdftk finalreport.pdf sources.pdf \

 cat output physicalc−report.pdf)

$(REPORT)/finalreport.pdf: $(REPORT)/finalreport.tex \
 $(REPORT)/bibliography.tex \
 $(REPORT)/functions.tex \
 $(REPORT)/intro.tex \
 $(REPORT)/refman.tex

(cd $(REPORT); pdflatex finalreport; pdflatex finalreport; pdflatex fina
lreport)

$(REPORT)/sources.pdf: $(REPORT)/sources.ps
ps2pdf $(REPORT)/sources.ps $(REPORT)/sources.pdf

$(REPORT)/sources.ps: Changelog
a2ps −A fill −o $(REPORT)/sources.ps \

 Changelog \
 Makefile \
 profile.sh si.phy otherunits.phy \
 runexamples runexample \
 src/grammar.g \
 src/*.java \
 src/physicalc/*.java \

Dec 18, 07 19:57 Page 3/8Makefile

Printed by Stuart Sierra

Tuesday December 18, 2007 24/119Makefile

 test/*.java \
 test/examples/*

Changelog:
svn log −v http://bcis.googlecode.com/svn/ > Changelog

Rules for generating the lexer & parser sources from the
ANTLR grammar.
$(ANTLR_OUTPUT): $(SOURCE)/grammar.g

$(ANTLR) −o $(SDIR) $(SOURCE)/grammar.g

’clean’ target: remove all generated files
clean:

rm −f $(ANTLR_OUTPUT) $(CLASSES) $(TESTCLASSES)
rm −rf $(APIDOC)
rm −f $(TEST)/examples/*.actual
rm −f $(REPORT)/*.toc $(REPORT)/*.aux $(REPORT)/*.log
rm −f $(REPORT)/*.pdf $(REPORT)/*.ps
find $(PROJECT) −name ’ *~ ’ −exec rm ’ {} ’ \;

PER−CLASS COMPILATION RULES

Compilation rules for each class file. We need one rule
for every class file because the .java sources and the
compiled .class files go in different directories.

$(CLASS)/TryParser.class: $(SOURCE)/TryParser.java
$(JC) $(SOURCE)/TryParser.java

$(CLASS)/TryLexer.class: $(SOURCE)/TryLexer.java
$(JC) $(SOURCE)/TryLexer.java

$(CLASS)/TryDatum.class: $(SOURCE)/TryDatum.java
$(JC) $(SOURCE)/TryDatum.java

$(CLASS)/ParseFile.class: $(SOURCE)/ParseFile.java
$(JC) $(SOURCE)/ParseFile.java

$(CDIR)/PhysiLexer.class: $(SDIR)/PhysiLexer.java
$(JC) $(SDIR)/PhysiLexer.java

$(CDIR)/PhysiLexerTokenTypes.class: $(SDIR)/PhysiLexerTokenTypes.java
$(JC) $(SDIR)/PhysiLexerTokenTypes.java

$(CDIR)/PhysiParser.class: $(SDIR)/PhysiParser.java
$(JC) $(SDIR)/PhysiParser.java

$(CDIR)/PhysiWalker.class: $(SDIR)/PhysiWalker.java
$(JC) $(SDIR)/PhysiWalker.java

$(CDIR)/Access.class: $(SDIR)/Access.java
$(JC) $(SDIR)/Access.java

$(CDIR)/And.class: $(SDIR)/And.java
$(JC) $(SDIR)/And.java

Dec 18, 07 19:57 Page 4/8Makefile
$(CDIR)/Arith.class: $(SDIR)/Arith.java

$(JC) $(SDIR)/Arith.java

$(CDIR)/Block.class: $(SDIR)/Block.java
$(JC) $(SDIR)/Block.java

$(CDIR)/BoundsError.class: $(SDIR)/BoundsError.java
$(JC) $(SDIR)/BoundsError.java

$(CDIR)/Break.class: $(SDIR)/Break.java
$(JC) $(SDIR)/Break.java

$(CDIR)/BreakSignal.class: $(SDIR)/BreakSignal.java
$(JC) $(SDIR)/BreakSignal.java

$(CDIR)/ControlSignal.class: $(SDIR)/ControlSignal.java
$(JC) $(SDIR)/ControlSignal.java

$(CDIR)/Datum.class: $(SDIR)/Datum.java
$(JC) $(SDIR)/Datum.java

$(CDIR)/Def.class: $(SDIR)/Def.java
$(JC) $(SDIR)/Def.java

$(CDIR)/ExitFunction.class: $(SDIR)/ExitFunction.java
$(JC) $(SDIR)/ExitFunction.java

$(CDIR)/Expr.class: $(SDIR)/Expr.java
$(JC) $(SDIR)/Expr.java

$(CDIR)/ExprList.class: $(SDIR)/ExprList.java
$(JC) $(SDIR)/ExprList.java

$(CDIR)/For.class: $(SDIR)/For.java
$(JC) $(SDIR)/For.java

$(CDIR)/FunCall.class: $(SDIR)/FunCall.java
$(JC) $(SDIR)/FunCall.java

$(CDIR)/Function.class: $(SDIR)/Function.java
$(JC) $(SDIR)/Function.java

$(CDIR)/GetNumberFunction.class: $(SDIR)/GetNumberFunction.java
$(JC) $(SDIR)/GetNumberFunction.java

$(CDIR)/GetUnitFunction.class: $(SDIR)/GetUnitFunction.java
$(JC) $(SDIR)/GetUnitFunction.java

$(CDIR)/Id.class: $(SDIR)/Id.java
$(JC) $(SDIR)/Id.java

$(CDIR)/If.class: $(SDIR)/If.java
$(JC) $(SDIR)/If.java

$(CDIR)/In.class: $(SDIR)/In.java
$(JC) $(SDIR)/In.java

$(CDIR)/InterpreterError.class: $(SDIR)/InterpreterError.java
$(JC) $(SDIR)/InterpreterError.java

$(CDIR)/Interpreter.class: $(SDIR)/Interpreter.java
$(JC) $(SDIR)/Interpreter.java

Dec 18, 07 19:57 Page 5/8Makefile

Printed by Stuart Sierra

Tuesday December 18, 2007 25/119Makefile

$(CDIR)/Literal.class: $(SDIR)/Literal.java
$(JC) $(SDIR)/Literal.java

$(CDIR)/Load.class: $(SDIR)/Load.java
$(JC) $(SDIR)/Load.java

$(CDIR)/Logical.class: $(SDIR)/Logical.java
$(JC) $(SDIR)/Logical.java

$(CDIR)/LValue.class: $(SDIR)/LValue.java
$(JC) $(SDIR)/LValue.java

$(CDIR)/Main.class: $(SDIR)/Main.java
$(JC) $(SDIR)/Main.java

$(CDIR)/Next.class: $(SDIR)/Next.java
$(JC) $(SDIR)/Next.java

$(CDIR)/NextSignal.class: $(SDIR)/NextSignal.java
$(JC) $(SDIR)/NextSignal.java

$(CDIR)/Node.class: $(SDIR)/Node.java
$(JC) $(SDIR)/Node.java

$(CDIR)/Not.class: $(SDIR)/Not.java
$(JC) $(SDIR)/Not.java

$(CDIR)/Op.class: $(SDIR)/Op.java
$(JC) $(SDIR)/Op.java

$(CDIR)/Or.class: $(SDIR)/Or.java
$(JC) $(SDIR)/Or.java

$(CDIR)/ParamList.class: $(SDIR)/ParamList.java
$(JC) $(SDIR)/ParamList.java

$(CDIR)/PBoolean.class: $(SDIR)/PBoolean.java
$(JC) $(SDIR)/PBoolean.java

$(CDIR)/PList.class: $(SDIR)/PList.java
$(JC) $(SDIR)/PList.java

$(CDIR)/PNumber.class: $(SDIR)/PNumber.java
$(JC) $(SDIR)/PNumber.java

$(CDIR)/PrintFunction.class: $(SDIR)/PrintFunction.java
$(JC) $(SDIR)/PrintFunction.java

$(CDIR)/Program.class: $(SDIR)/Program.java
$(JC) $(SDIR)/Program.java

$(CDIR)/PString.class: $(SDIR)/PString.java
$(JC) $(SDIR)/PString.java

$(CDIR)/PUnit.class: $(SDIR)/PUnit.java
$(JC) $(SDIR)/PUnit.java

$(CDIR)/PUnitPair.class: $(SDIR)/PUnitPair.java
$(JC) $(SDIR)/PUnitPair.java

$(CDIR)/Rel.class: $(SDIR)/Rel.java

Dec 18, 07 19:57 Page 6/8Makefile
$(JC) $(SDIR)/Rel.java

$(CDIR)/Return.class: $(SDIR)/Return.java
$(JC) $(SDIR)/Return.java

$(CDIR)/ReturnSignal.class: $(SDIR)/ReturnSignal.java
$(JC) $(SDIR)/ReturnSignal.java

$(CDIR)/RuntimeObject.class: $(SDIR)/RuntimeObject.java
$(JC) $(SDIR)/RuntimeObject.java

$(CDIR)/Set.class: $(SDIR)/Set.java
$(JC) $(SDIR)/Set.java

$(CDIR)/Stmt.class: $(SDIR)/Stmt.java
$(JC) $(SDIR)/Stmt.java

$(CDIR)/SymbolTable.class: $(SDIR)/SymbolTable.java
$(JC) $(SDIR)/SymbolTable.java

$(CDIR)/ToIntFunction.class: $(SDIR)/ToIntFunction.java
$(JC) $(SDIR)/ToIntFunction.java

$(CDIR)/ToStringFunction.class: $(SDIR)/ToStringFunction.java
$(JC) $(SDIR)/ToStringFunction.java

$(CDIR)/NPrintFunction.class: $(SDIR)/NPrintFunction.java
$(JC) $(SDIR)/NPrintFunction.java

$(CDIR)/TypeError.class: $(SDIR)/TypeError.java
$(JC) $(SDIR)/TypeError.java

$(CDIR)/UndefinedError.class: $(SDIR)/UndefinedError.java
$(JC) $(SDIR)/UndefinedError.java

$(CDIR)/Unary.class: $(SDIR)/Unary.java
$(JC) $(SDIR)/Unary.java

$(CDIR)/Variable.class: $(SDIR)/Variable.java
$(JC) $(SDIR)/Variable.java

$(CDIR)/While.class: $(SDIR)/While.java
$(JC) $(SDIR)/While.java

$(CDIR)/ConstantDef.class: $(SDIR)/ConstantDef.java
$(JC) $(SDIR)/ConstantDef.java

$(CDIR)/Constant.class: $(SDIR)/Constant.java
$(JC) $(SDIR)/Constant.java

$(CDIR)/Unit.class: $(SDIR)/Unit.java
$(JC) $(SDIR)/Unit.java

$(CDIR)/UnitDef.class: $(SDIR)/UnitDef.java
$(JC) $(SDIR)/UnitDef.java

$(CDIR)/FunctionDef.class: $(SDIR)/FunctionDef.java
$(JC) $(SDIR)/FunctionDef.java

$(CDIR)/AliasDef.class: $(SDIR)/AliasDef.java
$(JC) $(SDIR)/AliasDef.java

Dec 18, 07 19:57 Page 7/8Makefile

Printed by Stuart Sierra

Tuesday December 18, 2007 26/119Makefile

$(CDIR)/InterpreterTest.class: $(TEST)/InterpreterTest.java
$(JC) $(TEST)/InterpreterTest.java

$(CDIR)/PhysicalcSuite.class: $(TEST)/PhysicalcSuite.java
$(JC) $(TEST)/PhysicalcSuite.java

Dec 18, 07 19:57 Page 8/8Makefile
#!/bin/bash

profile.sh

This file sets up the CLASSPATH and other needed environment
variables to run the example programs and tests.
#
Do not execute this file as a shell script; instead, "source" it at
the shell command line like this:
#
source profile.sh
#
This will only work if your shell is "bash". It should work in any
UNIX−like environment, including Linux and Cygwin.

Java class search path: needs to include the project "class"
directory and any .jar files.
export CLASSPATH=.:$PWD:$PWD/class:$PWD/lib/antlr.jar:$PWD/lib/junit−4.4.jar

Java source search path:
export SOURCEPATH=.:$PWD:$PWD/src:$PWD/test

Convenience alias for ANTLR.
alias antlr=" java antlr.Tool −diagnostic"

Convenience alias for compiling files without changing the Makefile:
alias compile=" javac −g −d $PWD/class −sourcepath $SOURCEPATH"

Convenience alias for running a single test class. Should be
followed by the name of a Test class, like "physicalc.NumberTest":
alias test=" java org.junit.runner.JUnitCore"

Dec 08, 07 11:26 Page 1/1profile.sh

Printed by Stuart Sierra

Tuesday December 18, 2007 27/119Makefile, profile.sh

SI Units
by Stuart Sierra

SI Base Quantities & Base Units
from http://en.wikipedia.org/wiki/SI_base_unit
unit meter
unit kilogram
unit second
unit ampere
unit kelvin
unit mole
unit candela

SI Derived Units
from http://en.wikipedia.org/wiki/SI_derived_unit

unit minute = 60 * second
unit hour = 60 * minute
unit day = 24 * hour
unit year = 365 * day
unit newton = meter * kilogram / second ^ 2

unit hertz = 1 * second ^−1
unit newton = meter * kilogram / second ^ 2
unit pascal = newton / meter ^ 2
unit joule = newton * meter
unit watt = joule / second
unit coulomb = second * ampere
unit volt = watt / ampere
unit farad = coulomb / volt
unit ohm = volt / ampere
unit siemens = 1 * ohm ^ −1
unit weber = joule / ampere
unit tesla = volt * second / meter ^ 2
unit henry = volt * second / ampere
unit lumen = candela
unit lux = lumen / meter ^ 2
unit becquerel = 1 * second^−1
unit gray = joule / kilogram
unit sievert = joule / kilogram
unit katal = mole / second

unit gram = kilogram * 0.001

Prefixed SI units
unit yottahertz = hertz * 10 ^ 24
unit zettahertz = hertz * 10 ^ 21
unit exahertz = hertz * 10 ^ 18
unit petahertz = hertz * 10 ^ 15
unit terahertz = hertz * 10 ^ 12
unit gigahertz = hertz * 10 ^ 9
unit megahertz = hertz * 10 ^ 6
unit kilohertz = hertz * 10 ^ 3
unit hectohertz = hertz * 10 ^ 2
unit decahertz = hertz * 10 ^ 1
unit decihertz = hertz * 10 ^ −1
unit centihertz = hertz * 10 ^ −2
unit millihertz = hertz * 10 ^ −3
unit microhertz = hertz * 10 ^ −6
unit nanohertz = hertz * 10 ^ −9
unit picohertz = hertz * 10 ^ −12

Dec 18, 07 20:07 Page 1/10si.phy
unit femtohertz = hertz * 10 ^ −15
unit attohertz = hertz * 10 ^ −18
unit zeptohertz = hertz * 10 ^ −21
unit yoctohertz = hertz * 10 ^ −24
unit yottanewton = newton * 10 ^ 24
unit zettanewton = newton * 10 ^ 21
unit exanewton = newton * 10 ^ 18
unit petanewton = newton * 10 ^ 15
unit teranewton = newton * 10 ^ 12
unit giganewton = newton * 10 ^ 9
unit meganewton = newton * 10 ^ 6
unit kilonewton = newton * 10 ^ 3
unit hectonewton = newton * 10 ^ 2
unit decanewton = newton * 10 ^ 1
unit decinewton = newton * 10 ^ −1
unit centinewton = newton * 10 ^ −2
unit millinewton = newton * 10 ^ −3
unit micronewton = newton * 10 ^ −6
unit nanonewton = newton * 10 ^ −9
unit piconewton = newton * 10 ^ −12
unit femtonewton = newton * 10 ^ −15
unit attonewton = newton * 10 ^ −18
unit zeptonewton = newton * 10 ^ −21
unit yoctonewton = newton * 10 ^ −24
unit yottapascal = pascal * 10 ^ 24
unit zettapascal = pascal * 10 ^ 21
unit exapascal = pascal * 10 ^ 18
unit petapascal = pascal * 10 ^ 15
unit terapascal = pascal * 10 ^ 12
unit gigapascal = pascal * 10 ^ 9
unit megapascal = pascal * 10 ^ 6
unit kilopascal = pascal * 10 ^ 3
unit hectopascal = pascal * 10 ^ 2
unit decapascal = pascal * 10 ^ 1
unit decipascal = pascal * 10 ^ −1
unit centipascal = pascal * 10 ^ −2
unit millipascal = pascal * 10 ^ −3
unit micropascal = pascal * 10 ^ −6
unit nanopascal = pascal * 10 ^ −9
unit picopascal = pascal * 10 ^ −12
unit femtopascal = pascal * 10 ^ −15
unit attopascal = pascal * 10 ^ −18
unit zeptopascal = pascal * 10 ^ −21
unit yoctopascal = pascal * 10 ^ −24
unit yottajoule = joule * 10 ^ 24
unit zettajoule = joule * 10 ^ 21
unit exajoule = joule * 10 ^ 18
unit petajoule = joule * 10 ^ 15
unit terajoule = joule * 10 ^ 12
unit gigajoule = joule * 10 ^ 9
unit megajoule = joule * 10 ^ 6
unit kilojoule = joule * 10 ^ 3
unit hectojoule = joule * 10 ^ 2
unit decajoule = joule * 10 ^ 1
unit decijoule = joule * 10 ^ −1
unit centijoule = joule * 10 ^ −2
unit millijoule = joule * 10 ^ −3
unit microjoule = joule * 10 ^ −6
unit nanojoule = joule * 10 ^ −9
unit picojoule = joule * 10 ^ −12
unit femtojoule = joule * 10 ^ −15
unit attojoule = joule * 10 ^ −18

Dec 18, 07 20:07 Page 2/10si.phy

Printed by Stuart Sierra

Tuesday December 18, 2007 28/119si.phy

unit zeptojoule = joule * 10 ^ −21
unit yoctojoule = joule * 10 ^ −24
unit yottawatt = watt * 10 ^ 24
unit zettawatt = watt * 10 ^ 21
unit exawatt = watt * 10 ^ 18
unit petawatt = watt * 10 ^ 15
unit terawatt = watt * 10 ^ 12
unit gigawatt = watt * 10 ^ 9
unit megawatt = watt * 10 ^ 6
unit kilowatt = watt * 10 ^ 3
unit hectowatt = watt * 10 ^ 2
unit decawatt = watt * 10 ^ 1
unit deciwatt = watt * 10 ^ −1
unit centiwatt = watt * 10 ^ −2
unit milliwatt = watt * 10 ^ −3
unit microwatt = watt * 10 ^ −6
unit nanowatt = watt * 10 ^ −9
unit picowatt = watt * 10 ^ −12
unit femtowatt = watt * 10 ^ −15
unit attowatt = watt * 10 ^ −18
unit zeptowatt = watt * 10 ^ −21
unit yoctowatt = watt * 10 ^ −24
unit yottacoulomb = coulomb * 10 ^ 24
unit zettacoulomb = coulomb * 10 ^ 21
unit exacoulomb = coulomb * 10 ^ 18
unit petacoulomb = coulomb * 10 ^ 15
unit teracoulomb = coulomb * 10 ^ 12
unit gigacoulomb = coulomb * 10 ^ 9
unit megacoulomb = coulomb * 10 ^ 6
unit kilocoulomb = coulomb * 10 ^ 3
unit hectocoulomb = coulomb * 10 ^ 2
unit decacoulomb = coulomb * 10 ^ 1
unit decicoulomb = coulomb * 10 ^ −1
unit centicoulomb = coulomb * 10 ^ −2
unit millicoulomb = coulomb * 10 ^ −3
unit microcoulomb = coulomb * 10 ^ −6
unit nanocoulomb = coulomb * 10 ^ −9
unit picocoulomb = coulomb * 10 ^ −12
unit femtocoulomb = coulomb * 10 ^ −15
unit attocoulomb = coulomb * 10 ^ −18
unit zeptocoulomb = coulomb * 10 ^ −21
unit yoctocoulomb = coulomb * 10 ^ −24
unit yottavolt = volt * 10 ^ 24
unit zettavolt = volt * 10 ^ 21
unit exavolt = volt * 10 ^ 18
unit petavolt = volt * 10 ^ 15
unit teravolt = volt * 10 ^ 12
unit gigavolt = volt * 10 ^ 9
unit megavolt = volt * 10 ^ 6
unit kilovolt = volt * 10 ^ 3
unit hectovolt = volt * 10 ^ 2
unit decavolt = volt * 10 ^ 1
unit decivolt = volt * 10 ^ −1
unit centivolt = volt * 10 ^ −2
unit millivolt = volt * 10 ^ −3
unit microvolt = volt * 10 ^ −6
unit nanovolt = volt * 10 ^ −9
unit picovolt = volt * 10 ^ −12
unit femtovolt = volt * 10 ^ −15
unit attovolt = volt * 10 ^ −18
unit zeptovolt = volt * 10 ^ −21
unit yoctovolt = volt * 10 ^ −24

Dec 18, 07 20:07 Page 3/10si.phy
unit yottafarad = farad * 10 ^ 24
unit zettafarad = farad * 10 ^ 21
unit exafarad = farad * 10 ^ 18
unit petafarad = farad * 10 ^ 15
unit terafarad = farad * 10 ^ 12
unit gigafarad = farad * 10 ^ 9
unit megafarad = farad * 10 ^ 6
unit kilofarad = farad * 10 ^ 3
unit hectofarad = farad * 10 ^ 2
unit decafarad = farad * 10 ^ 1
unit decifarad = farad * 10 ^ −1
unit centifarad = farad * 10 ^ −2
unit millifarad = farad * 10 ^ −3
unit microfarad = farad * 10 ^ −6
unit nanofarad = farad * 10 ^ −9
unit picofarad = farad * 10 ^ −12
unit femtofarad = farad * 10 ^ −15
unit attofarad = farad * 10 ^ −18
unit zeptofarad = farad * 10 ^ −21
unit yoctofarad = farad * 10 ^ −24
unit yottaohm = ohm * 10 ^ 24
unit zettaohm = ohm * 10 ^ 21
unit exaohm = ohm * 10 ^ 18
unit petaohm = ohm * 10 ^ 15
unit teraohm = ohm * 10 ^ 12
unit gigaohm = ohm * 10 ^ 9
unit megaohm = ohm * 10 ^ 6
unit kiloohm = ohm * 10 ^ 3
unit hectoohm = ohm * 10 ^ 2
unit decaohm = ohm * 10 ^ 1
unit deciohm = ohm * 10 ^ −1
unit centiohm = ohm * 10 ^ −2
unit milliohm = ohm * 10 ^ −3
unit microohm = ohm * 10 ^ −6
unit nanoohm = ohm * 10 ^ −9
unit picoohm = ohm * 10 ^ −12
unit femtoohm = ohm * 10 ^ −15
unit attoohm = ohm * 10 ^ −18
unit zeptoohm = ohm * 10 ^ −21
unit yoctoohm = ohm * 10 ^ −24
unit yottasiemens = siemens * 10 ^ 24
unit zettasiemens = siemens * 10 ^ 21
unit exasiemens = siemens * 10 ^ 18
unit petasiemens = siemens * 10 ^ 15
unit terasiemens = siemens * 10 ^ 12
unit gigasiemens = siemens * 10 ^ 9
unit megasiemens = siemens * 10 ^ 6
unit kilosiemens = siemens * 10 ^ 3
unit hectosiemens = siemens * 10 ^ 2
unit decasiemens = siemens * 10 ^ 1
unit decisiemens = siemens * 10 ^ −1
unit centisiemens = siemens * 10 ^ −2
unit millisiemens = siemens * 10 ^ −3
unit microsiemens = siemens * 10 ^ −6
unit nanosiemens = siemens * 10 ^ −9
unit picosiemens = siemens * 10 ^ −12
unit femtosiemens = siemens * 10 ^ −15
unit attosiemens = siemens * 10 ^ −18
unit zeptosiemens = siemens * 10 ^ −21
unit yoctosiemens = siemens * 10 ^ −24
unit yottaweber = weber * 10 ^ 24
unit zettaweber = weber * 10 ^ 21

Dec 18, 07 20:07 Page 4/10si.phy

Printed by Stuart Sierra

Tuesday December 18, 2007 29/119si.phy

unit exaweber = weber * 10 ^ 18
unit petaweber = weber * 10 ^ 15
unit teraweber = weber * 10 ^ 12
unit gigaweber = weber * 10 ^ 9
unit megaweber = weber * 10 ^ 6
unit kiloweber = weber * 10 ^ 3
unit hectoweber = weber * 10 ^ 2
unit decaweber = weber * 10 ^ 1
unit deciweber = weber * 10 ^ −1
unit centiweber = weber * 10 ^ −2
unit milliweber = weber * 10 ^ −3
unit microweber = weber * 10 ^ −6
unit nanoweber = weber * 10 ^ −9
unit picoweber = weber * 10 ^ −12
unit femtoweber = weber * 10 ^ −15
unit attoweber = weber * 10 ^ −18
unit zeptoweber = weber * 10 ^ −21
unit yoctoweber = weber * 10 ^ −24
unit yottatesla = tesla * 10 ^ 24
unit zettatesla = tesla * 10 ^ 21
unit exatesla = tesla * 10 ^ 18
unit petatesla = tesla * 10 ^ 15
unit teratesla = tesla * 10 ^ 12
unit gigatesla = tesla * 10 ^ 9
unit megatesla = tesla * 10 ^ 6
unit kilotesla = tesla * 10 ^ 3
unit hectotesla = tesla * 10 ^ 2
unit decatesla = tesla * 10 ^ 1
unit decitesla = tesla * 10 ^ −1
unit centitesla = tesla * 10 ^ −2
unit millitesla = tesla * 10 ^ −3
unit microtesla = tesla * 10 ^ −6
unit nanotesla = tesla * 10 ^ −9
unit picotesla = tesla * 10 ^ −12
unit femtotesla = tesla * 10 ^ −15
unit attotesla = tesla * 10 ^ −18
unit zeptotesla = tesla * 10 ^ −21
unit yoctotesla = tesla * 10 ^ −24
unit yottahenry = henry * 10 ^ 24
unit zettahenry = henry * 10 ^ 21
unit exahenry = henry * 10 ^ 18
unit petahenry = henry * 10 ^ 15
unit terahenry = henry * 10 ^ 12
unit gigahenry = henry * 10 ^ 9
unit megahenry = henry * 10 ^ 6
unit kilohenry = henry * 10 ^ 3
unit hectohenry = henry * 10 ^ 2
unit decahenry = henry * 10 ^ 1
unit decihenry = henry * 10 ^ −1
unit centihenry = henry * 10 ^ −2
unit millihenry = henry * 10 ^ −3
unit microhenry = henry * 10 ^ −6
unit nanohenry = henry * 10 ^ −9
unit picohenry = henry * 10 ^ −12
unit femtohenry = henry * 10 ^ −15
unit attohenry = henry * 10 ^ −18
unit zeptohenry = henry * 10 ^ −21
unit yoctohenry = henry * 10 ^ −24
unit yottalumen = lumen * 10 ^ 24
unit zettalumen = lumen * 10 ^ 21
unit exalumen = lumen * 10 ^ 18
unit petalumen = lumen * 10 ^ 15

Dec 18, 07 20:07 Page 5/10si.phy
unit teralumen = lumen * 10 ^ 12
unit gigalumen = lumen * 10 ^ 9
unit megalumen = lumen * 10 ^ 6
unit kilolumen = lumen * 10 ^ 3
unit hectolumen = lumen * 10 ^ 2
unit decalumen = lumen * 10 ^ 1
unit decilumen = lumen * 10 ^ −1
unit centilumen = lumen * 10 ^ −2
unit millilumen = lumen * 10 ^ −3
unit microlumen = lumen * 10 ^ −6
unit nanolumen = lumen * 10 ^ −9
unit picolumen = lumen * 10 ^ −12
unit femtolumen = lumen * 10 ^ −15
unit attolumen = lumen * 10 ^ −18
unit zeptolumen = lumen * 10 ^ −21
unit yoctolumen = lumen * 10 ^ −24
unit yottalux = lux * 10 ^ 24
unit zettalux = lux * 10 ^ 21
unit exalux = lux * 10 ^ 18
unit petalux = lux * 10 ^ 15
unit teralux = lux * 10 ^ 12
unit gigalux = lux * 10 ^ 9
unit megalux = lux * 10 ^ 6
unit kilolux = lux * 10 ^ 3
unit hectolux = lux * 10 ^ 2
unit decalux = lux * 10 ^ 1
unit decilux = lux * 10 ^ −1
unit centilux = lux * 10 ^ −2
unit millilux = lux * 10 ^ −3
unit microlux = lux * 10 ^ −6
unit nanolux = lux * 10 ^ −9
unit picolux = lux * 10 ^ −12
unit femtolux = lux * 10 ^ −15
unit attolux = lux * 10 ^ −18
unit zeptolux = lux * 10 ^ −21
unit yoctolux = lux * 10 ^ −24
unit yottabecquerel = becquerel * 10 ^ 24
unit zettabecquerel = becquerel * 10 ^ 21
unit exabecquerel = becquerel * 10 ^ 18
unit petabecquerel = becquerel * 10 ^ 15
unit terabecquerel = becquerel * 10 ^ 12
unit gigabecquerel = becquerel * 10 ^ 9
unit megabecquerel = becquerel * 10 ^ 6
unit kilobecquerel = becquerel * 10 ^ 3
unit hectobecquerel = becquerel * 10 ^ 2
unit decabecquerel = becquerel * 10 ^ 1
unit decibecquerel = becquerel * 10 ^ −1
unit centibecquerel = becquerel * 10 ^ −2
unit millibecquerel = becquerel * 10 ^ −3
unit microbecquerel = becquerel * 10 ^ −6
unit nanobecquerel = becquerel * 10 ^ −9
unit picobecquerel = becquerel * 10 ^ −12
unit femtobecquerel = becquerel * 10 ^ −15
unit attobecquerel = becquerel * 10 ^ −18
unit zeptobecquerel = becquerel * 10 ^ −21
unit yoctobecquerel = becquerel * 10 ^ −24
unit yottagray = gray * 10 ^ 24
unit zettagray = gray * 10 ^ 21
unit exagray = gray * 10 ^ 18
unit petagray = gray * 10 ^ 15
unit teragray = gray * 10 ^ 12
unit gigagray = gray * 10 ^ 9

Dec 18, 07 20:07 Page 6/10si.phy

Printed by Stuart Sierra

Tuesday December 18, 2007 30/119si.phy

unit megagray = gray * 10 ^ 6
unit kilogray = gray * 10 ^ 3
unit hectogray = gray * 10 ^ 2
unit decagray = gray * 10 ^ 1
unit decigray = gray * 10 ^ −1
unit centigray = gray * 10 ^ −2
unit milligray = gray * 10 ^ −3
unit microgray = gray * 10 ^ −6
unit nanogray = gray * 10 ^ −9
unit picogray = gray * 10 ^ −12
unit femtogray = gray * 10 ^ −15
unit attogray = gray * 10 ^ −18
unit zeptogray = gray * 10 ^ −21
unit yoctogray = gray * 10 ^ −24
unit yottasievert = sievert * 10 ^ 24
unit zettasievert = sievert * 10 ^ 21
unit exasievert = sievert * 10 ^ 18
unit petasievert = sievert * 10 ^ 15
unit terasievert = sievert * 10 ^ 12
unit gigasievert = sievert * 10 ^ 9
unit megasievert = sievert * 10 ^ 6
unit kilosievert = sievert * 10 ^ 3
unit hectosievert = sievert * 10 ^ 2
unit decasievert = sievert * 10 ^ 1
unit decisievert = sievert * 10 ^ −1
unit centisievert = sievert * 10 ^ −2
unit millisievert = sievert * 10 ^ −3
unit microsievert = sievert * 10 ^ −6
unit nanosievert = sievert * 10 ^ −9
unit picosievert = sievert * 10 ^ −12
unit femtosievert = sievert * 10 ^ −15
unit attosievert = sievert * 10 ^ −18
unit zeptosievert = sievert * 10 ^ −21
unit yoctosievert = sievert * 10 ^ −24
unit yottakatal = katal * 10 ^ 24
unit zettakatal = katal * 10 ^ 21
unit exakatal = katal * 10 ^ 18
unit petakatal = katal * 10 ^ 15
unit terakatal = katal * 10 ^ 12
unit gigakatal = katal * 10 ^ 9
unit megakatal = katal * 10 ^ 6
unit kilokatal = katal * 10 ^ 3
unit hectokatal = katal * 10 ^ 2
unit decakatal = katal * 10 ^ 1
unit decikatal = katal * 10 ^ −1
unit centikatal = katal * 10 ^ −2
unit millikatal = katal * 10 ^ −3
unit microkatal = katal * 10 ^ −6
unit nanokatal = katal * 10 ^ −9
unit picokatal = katal * 10 ^ −12
unit femtokatal = katal * 10 ^ −15
unit attokatal = katal * 10 ^ −18
unit zeptokatal = katal * 10 ^ −21
unit yoctokatal = katal * 10 ^ −24
unit yottagram = gram * 10 ^ 24
unit zettagram = gram * 10 ^ 21
unit exagram = gram * 10 ^ 18
unit petagram = gram * 10 ^ 15
unit teragram = gram * 10 ^ 12
unit gigagram = gram * 10 ^ 9
unit megagram = gram * 10 ^ 6
unit kilogram = gram * 10 ^ 3

Dec 18, 07 20:07 Page 7/10si.phy
unit hectogram = gram * 10 ^ 2
unit decagram = gram * 10 ^ 1
unit decigram = gram * 10 ^ −1
unit centigram = gram * 10 ^ −2
unit milligram = gram * 10 ^ −3
unit microgram = gram * 10 ^ −6
unit nanogram = gram * 10 ^ −9
unit picogram = gram * 10 ^ −12
unit femtogram = gram * 10 ^ −15
unit attogram = gram * 10 ^ −18
unit zeptogram = gram * 10 ^ −21
unit yoctogram = gram * 10 ^ −24
unit yottameter = meter * 10 ^ 24
unit zettameter = meter * 10 ^ 21
unit exameter = meter * 10 ^ 18
unit petameter = meter * 10 ^ 15
unit terameter = meter * 10 ^ 12
unit gigameter = meter * 10 ^ 9
unit megameter = meter * 10 ^ 6
unit kilometer = meter * 10 ^ 3
unit hectometer = meter * 10 ^ 2
unit decameter = meter * 10 ^ 1
unit decimeter = meter * 10 ^ −1
unit centimeter = meter * 10 ^ −2
unit millimeter = meter * 10 ^ −3
unit micrometer = meter * 10 ^ −6
unit nanometer = meter * 10 ^ −9
unit picometer = meter * 10 ^ −12
unit femtometer = meter * 10 ^ −15
unit attometer = meter * 10 ^ −18
unit zeptometer = meter * 10 ^ −21
unit yoctometer = meter * 10 ^ −24
unit yottasecond = second * 10 ^ 24
unit zettasecond = second * 10 ^ 21
unit exasecond = second * 10 ^ 18
unit petasecond = second * 10 ^ 15
unit terasecond = second * 10 ^ 12
unit gigasecond = second * 10 ^ 9
unit megasecond = second * 10 ^ 6
unit kilosecond = second * 10 ^ 3
unit hectosecond = second * 10 ^ 2
unit decasecond = second * 10 ^ 1
unit decisecond = second * 10 ^ −1
unit centisecond = second * 10 ^ −2
unit millisecond = second * 10 ^ −3
unit microsecond = second * 10 ^ −6
unit nanosecond = second * 10 ^ −9
unit picosecond = second * 10 ^ −12
unit femtosecond = second * 10 ^ −15
unit attosecond = second * 10 ^ −18
unit zeptosecond = second * 10 ^ −21
unit yoctosecond = second * 10 ^ −24
unit yottaampere = ampere * 10 ^ 24
unit zettaampere = ampere * 10 ^ 21
unit exaampere = ampere * 10 ^ 18
unit petaampere = ampere * 10 ^ 15
unit teraampere = ampere * 10 ^ 12
unit gigaampere = ampere * 10 ^ 9
unit megaampere = ampere * 10 ^ 6
unit kiloampere = ampere * 10 ^ 3
unit hectoampere = ampere * 10 ^ 2
unit decaampere = ampere * 10 ^ 1

Dec 18, 07 20:07 Page 8/10si.phy

Printed by Stuart Sierra

Tuesday December 18, 2007 31/119si.phy

unit deciampere = ampere * 10 ^ −1
unit centiampere = ampere * 10 ^ −2
unit milliampere = ampere * 10 ^ −3
unit microampere = ampere * 10 ^ −6
unit nanoampere = ampere * 10 ^ −9
unit picoampere = ampere * 10 ^ −12
unit femtoampere = ampere * 10 ^ −15
unit attoampere = ampere * 10 ^ −18
unit zeptoampere = ampere * 10 ^ −21
unit yoctoampere = ampere * 10 ^ −24
unit yottakelvin = kelvin * 10 ^ 24
unit zettakelvin = kelvin * 10 ^ 21
unit exakelvin = kelvin * 10 ^ 18
unit petakelvin = kelvin * 10 ^ 15
unit terakelvin = kelvin * 10 ^ 12
unit gigakelvin = kelvin * 10 ^ 9
unit megakelvin = kelvin * 10 ^ 6
unit kilokelvin = kelvin * 10 ^ 3
unit hectokelvin = kelvin * 10 ^ 2
unit decakelvin = kelvin * 10 ^ 1
unit decikelvin = kelvin * 10 ^ −1
unit centikelvin = kelvin * 10 ^ −2
unit millikelvin = kelvin * 10 ^ −3
unit microkelvin = kelvin * 10 ^ −6
unit nanokelvin = kelvin * 10 ^ −9
unit picokelvin = kelvin * 10 ^ −12
unit femtokelvin = kelvin * 10 ^ −15
unit attokelvin = kelvin * 10 ^ −18
unit zeptokelvin = kelvin * 10 ^ −21
unit yoctokelvin = kelvin * 10 ^ −24
unit yottamole = mole * 10 ^ 24
unit zettamole = mole * 10 ^ 21
unit examole = mole * 10 ^ 18
unit petamole = mole * 10 ^ 15
unit teramole = mole * 10 ^ 12
unit gigamole = mole * 10 ^ 9
unit megamole = mole * 10 ^ 6
unit kilomole = mole * 10 ^ 3
unit hectomole = mole * 10 ^ 2
unit decamole = mole * 10 ^ 1
unit decimole = mole * 10 ^ −1
unit centimole = mole * 10 ^ −2
unit millimole = mole * 10 ^ −3
unit micromole = mole * 10 ^ −6
unit nanomole = mole * 10 ^ −9
unit picomole = mole * 10 ^ −12
unit femtomole = mole * 10 ^ −15
unit attomole = mole * 10 ^ −18
unit zeptomole = mole * 10 ^ −21
unit yoctomole = mole * 10 ^ −24
unit yottacandela = candela * 10 ^ 24
unit zettacandela = candela * 10 ^ 21
unit exacandela = candela * 10 ^ 18
unit petacandela = candela * 10 ^ 15
unit teracandela = candela * 10 ^ 12
unit gigacandela = candela * 10 ^ 9
unit megacandela = candela * 10 ^ 6
unit kilocandela = candela * 10 ^ 3
unit hectocandela = candela * 10 ^ 2
unit decacandela = candela * 10 ^ 1
unit decicandela = candela * 10 ^ −1
unit centicandela = candela * 10 ^ −2

Dec 18, 07 20:07 Page 9/10si.phy
unit millicandela = candela * 10 ^ −3
unit microcandela = candela * 10 ^ −6
unit nanocandela = candela * 10 ^ −9
unit picocandela = candela * 10 ^ −12
unit femtocandela = candela * 10 ^ −15
unit attocandela = candela * 10 ^ −18
unit zeptocandela = candela * 10 ^ −21
unit yoctocandela = candela * 10 ^ −24

Dec 18, 07 20:07 Page 10/10si.phy

Printed by Stuart Sierra

Tuesday December 18, 2007 32/119si.phy

#distance units
unit inch = meter * 2.52 * 10 ^ −2
unit foot = meter * 3.048 * 10 ^ −1
unit yard = meter * 0.9144
unit fathom = meter * 1.8288
unit chain = meter * 2.01168 * 10
unit furlong = meter * 2.01168 * 10 ^ −2
unit cable = foot * 608
unit mile = yard * 1.609344 * 10 ^ 3

#weight units
unit dram = kilogram * 1.77185 * 10 ^ −3
unit ounce = kilogram * 2.83495 * 10 ^ −2
unit pound = kilogram * 0.45359237

Dec 08, 07 14:27 Page 1/1otherunits.phy
#!/bin/bash

runexamples

by Stuart Sierra, ss2806@columbia.edu

This is a Bash shell script. Run it like this:
bash runexamples
#
This script runs the example test programs in test/examples/
#
Each *.in file contains Physicalc source code. Each *.in file has a
corresponding *.out file, which is what that program should print
out when it is run.
#
This will run the Physicalc interpreter on each *.in file and
compares the printed output of that program with the corresponding
*.out file. If they match, it prints "OK". If not, it prints the
"diff" between the expected output and the actual output. The
actual output is saved as *.out.actual

source ./profile.sh
make

for infile in test/examples/*.in
do
 outfile=‘echo " $infile" | sed −e ’ s/\.in/.out/’‘
 actual=" $outfile.actual"
 echo " Testing $infile"
 java physicalc.Main $infile > $actual
 if diff −bu $outfile $actual
 then

echo " OK"
rm $actual

 fi
done

Dec 18, 07 20:07 Page 1/1runexamples

Printed by Stuart Sierra

Tuesday December 18, 2007 33/119otherunits.phy, runexamples

#!/bin/bash

runexample

This is a Bash shell script. Run it like this:
bash runexamples [testname]
#
This script runs a single example test program in test/examples/
#
See "runexamples" for documentation on the example file format.
#

source ./profile.sh
make

infile=test/examples/$1.in
outfile=test/examples/$1.out

if [! −r $infile]
then
 echo " Missing $infile"
 exit
fi

if [! −r $outfile]
then
 echo " Missing $outfile"
 exit
fi

actual=" $outfile.actual"
echo " Testing $infile"
java physicalc.Main $infile > $actual
if diff −bu $outfile $actual
then
 echo " OK"
 rm $actual
fi

Dec 08, 07 11:26 Page 1/1runexample
/* ***
 * grammar.g : the lexer and the parser, in ANTLR grammar for Physicalc
 *
 * ANTLR Parser Generator Version 2.7.7 (2006−11−01)
 *
 * @author Changlong Jiang, cj2214@columbia.edu
 * @author Stuart Sierra, ss2806@colmbia.edu
 *
 * @version 1.0
 * ***/

header {
 package physicalc;
 import java.util.ArrayList;
}

/* **
 * LEXER *
 * ** */
class PhysiLexer extends Lexer;

options {
 charVocabulary = ’\11’..’\177’; // Plain 7−bit ASCII
 testLiterals = false;
 k = 2; // for >= or <= operators
}

protected DIGIT : ’0’..’9’;
protected LETTER : ’a’..’z’ | ’A’..’Z’;

/** Identifiers must begin with a letter or underscore, which may be
 * followed by any combination of letters, digits, and underscores. */
ID options { testLiterals = true; }
 : (LETTER | ’_’) (LETTER | DIGIT | ’_’)*;

/** Whitespace is ignored. */
WHITESPACE : (’ ’ | ’\t’ | ’\f’)+ { $setType(Token.SKIP); };

/** Line breaks are significant as statement separators, but are not
 * tokens on their own. */
protected NEWLINE : (’\n’ | (’\r’ ’\n’) => ’\r’ ’\n’ | ’\r’)
 { newline(); } ;

/** Comments begin with ’#’ and go to the end of the line. Since line
 * breaks are used as statement separators, the comment text does NOT
 * include the newline. */
COMMENT : ’#’ (~(’\n’ | ’\r’))*
 { $setType(Token.SKIP); } ;

/** Statements are terminated by (any number of) newlines or
 * semicolons. */
TERMINATOR : (NEWLINE | ’;’)+;

/** There is no syntactic distinction among integers, decimal numbers,
 * and numbers with exponents. They’re all just numbers. */
NUMBER : ((DIGIT)+ (’.’ (DIGIT)*)?
 | ’.’ (DIGIT)+
)
 ((’e’|’E’) (’+’|’−’)? (DIGIT)+)?

Dec 08, 07 11:26 Page 1/8grammar.g

Printed by Stuart Sierra

Tuesday December 18, 2007 34/119runexample, src/grammar.g

 ;

/** Strings are surrounded by double quotation marks. A double
 * quotation character may be inside a string by using two double
 * quotation marks in a row. */
STRING : ’"’!
 (~(’"’)
 | (’"’!’"’)
)*
 ’"’!
 ;

PLUS : ’+’;
MINUS : ’−’;
TIMES : ’*’;
DIVIDE : ’/’;
CARET : ’^’;
LPAREN : ’(’;
RPAREN : ’)’;
LBRACKET : ’[’;
RBRACKET : ’]’;
LBRACE : ’{’;
RBRACE : ’}’;
COMMA : ’,’;
EQ : ’=’; // we use ’set’ for assignment
NEQ : "!=";
RELOP : ’>’ | ’<’ | ">=" | "<=" ;

/* **
 * PARSER *
 * ** */
class PhysiParser extends Parser;

options {
 k = 2; // needed for subscripts, function calls, etc.
 buildAST = true;
}

tokens { /* used in the abstract syntax tree */
 BLOCK;
 EXPR_LIST;
 FUNCALL;
 IF;
 LIST;
 PARAMS;
 SUBSCRIPT;
 UMINUS;
 VECTOR;
 BASEUNIT;
 DERIVEDUNIT;
}

program : (load | def | stmt)+;

/** Load statement: load the file at the path given. */
load : "load"^ STRING TERMINATOR!;

/* **
 * Definitions
 * ** */

Dec 08, 07 11:26 Page 2/8grammar.g
/** Definitions. */
def : (unit_def | constant_def | alias_def | function_def)
 TERMINATOR!;

unit_def
 : "unit"! ID
 (/* nothing − it’s a base unit */
 {#unit_def = #([BASEUNIT, "BASEUNIT"], unit_def); }
 | EQ! expr
 {#unit_def = #([DERIVEDUNIT, "DERIVEDUNIT"], unit_def); }
)
 ;

constant_def : "constant"^ ID EQ! expr;

alias_def : "alias"^ ID "for"! ID;

function_def : "function"^ ID LPAREN! params RPAREN! TERMINATOR!
 block "done"!;

/** Parameter list for function definitions. */
params : (ID)? (COMMA! ID)*
 {#params = #([PARAMS, "PARAMS"], params); } ;

/* **
 * Statements
 * ** */

/** Statements. */
stmt : simple_stmt | compound_stmt;

/** A block of one or more statements. */
block : (stmt)+
 {#block = #([BLOCK, "BLOCK"], block); } ;

/** Simple statement: A single−line statement that must end with a
 * TERMINATOR. An expression by itself can be a statement.*/
simple_stmt :
 (expr
 | "return"^ expr
 | "next"^
 | "break"^
 | "set"^ lvalue EQ! expr
 | /* nothing */
)
 TERMINATOR! ;

/** An lvalue is anything that can be assigned to with "set".
 * Variables and subscript expressions can be assigned. */
lvalue : subscript_expr | ID ;

/** Compound statement: a multi−part statement like if/then/else or
 * while. Compound statements always end with "done". */
compound_stmt : (if_stmt | while_stmt | for_stmt) "done"! TERMINATOR!;

/** If/then/else. These rules transfrom an if/elsif/else sequence
 * into nested IF trees. Each IF subtree has 3 arguments: (1) a test
 * expression, (2) a "then" block, and (3) an optional "else"
 * block. */
if_stmt :
 "if"! expr "then"! TERMINATOR! block
 elsif_stmt

Dec 08, 07 11:26 Page 3/8grammar.g

Printed by Stuart Sierra

Tuesday December 18, 2007 35/119src/grammar.g

 {#if_stmt = #([IF,"IF"], if_stmt); } ;

elsif_stmt
 : "elsif"! expr "then"! TERMINATOR! block (elsif_stmt)
 /* need to enclose next IF in a BLOCK for tree walker */
 { #elsif_stmt = #([BLOCK,"BLOCK"], #([IF,"IF"], elsif_stmt)); }
 | else_stmt ;

else_stmt : "else"! TERMINATOR! block
 | /* nothing, but still have to include a block for the tree walker */
 { #else_stmt = #([BLOCK,"BLOCK"], else_stmt); }
 ;

/** "while" loops. */
while_stmt : "while"^ expr "do"! TERMINATOR! block;

/** "for" loops. */
for_stmt : "for"^ ID "from"! expr "to"! expr "step"! expr "do"! TERMINATOR!
 block ;

/* **
 * Expressions
 * ** */

/** A list of expressions, separated by commas. Used in literal lists
 * and function calls. */
expr_list
 : expr (COMMA! expr)*
 {#expr_list = #([EXPR_LIST, "EXPR_LIST"], expr_list); }
 | /* nothing, still need a node for the tree walker */
 {#expr_list = #([EXPR_LIST, "EXPR_LIST"], expr_list); }
 ;

/** Expressions */
expr: in_expr;

/* Every binary operator is can repeat infinitely with a ’*’ closure.
 *
 * This parses expressions like "a < b < c" as "(< (< a b) c)", which
 * makes no sense.
 *
 * However, changing the ’*’ to a ’?’ means that anything after the
 * first operator gets ignored, which is clearly wrong. Better let
 * the back−end decide if "(< (< a b) c)" is reasonable. */

in_expr : or_expr ("in"^ or_expr)*;

or_expr : and_expr ("or"^ and_expr)*;

and_expr : eq_expr ("and"^ eq_expr)*;

eq_expr : neq_expr (EQ^ neq_expr)*;

neq_expr : rel_expr (NEQ^ rel_expr)*;

rel_expr : add_expr (RELOP^ add_expr)*;

add_expr : mul_expr ((PLUS^ | MINUS^) mul_expr)*;

Dec 08, 07 11:26 Page 4/8grammar.g
mul_expr : exp_expr ((TIMES^ | DIVIDE^) exp_expr)*;

/** Exponentiation: tail−recursion makes it right−associative. */
exp_expr : not_expr (CARET^ exp_expr)?;

not_expr : ("not"^)? uminus_expr; /* ’not’ expressions cannot be chained */

/** Unary negation operator. Unary plus ("+") is not included because
 * it’s meaningless. */
uminus_expr :
 MINUS! atom
 {#uminus_expr = #([UMINUS, "UMINUS"], uminus_expr); }
 | atom;

/** atomic expressions (highest precedence) */
atom
 : ID
 | NUMBER
 | STRING
 | list_literal
 | vector_literal
 | subscript_expr
 | funcall_expr
 | LPAREN! expr RPAREN!
 | "true"
 | "false"
 ;

/** Literal list (in square brackets) */
list_literal : LBRACKET! expr_list RBRACKET!
 {#list_literal = #([LIST,"LIST"], list_literal); };

/** Literal vector (in curly brackets, must have exactly 2 elements. */
vector_literal : LBRACE! expr COMMA! expr RBRACE!
 {#vector_literal = #([VECTOR,"VECTOR"], vector_literal); };

/** Array/list subscripts like "a[b]". Back−end is responsible for
 * checking that the subscript evaluates to an integer. Chained
 * subscript expressions like a[b][c] are allowed, but the first token
 * (the ’a’) must be an identifier. */
subscript_expr : ID (LBRACKET! expr RBRACKET!)+
 {#subscript_expr = #([SUBSCRIPT, "SUBSCRIPT"], subscript_expr); };

/** Function calls */
funcall_expr : ID LPAREN! expr_list RPAREN!
 {#funcall_expr = #([FUNCALL, "FUNCALL"], funcall_expr); };

/* **
 * TREE WALKER *
 * ** */
class PhysiWalker extends TreeParser;

program returns [Program p]
{
 p = new Program();
 Node n;
}
 : (n=node { p.insert(n); })+
 ;

Dec 08, 07 11:26 Page 5/8grammar.g

Printed by Stuart Sierra

Tuesday December 18, 2007 36/119src/grammar.g

node returns [Node n]
{
 n = null;
 Expr e;
 Load l;
 Def d;
 Stmt s;
}
 : e=expr { n = e; }
 | l=load { n = l; }
 | s=stmt { n = s; }
 | d=def { n = d; }
 ;

expr returns [Expr e]
{
 Expr a, b;
 e = null;
}
 /* Logical operators */
 : #("and" a=expr b=expr) { e = new And(a, b); }
 | #("or" a=expr b=expr) { e = new Or(a, b); }
 | #("not" a=expr) { e = new Not(a); }
 | #("in" a=expr b=expr) { e = new In(a, b); }

 /* Relational operators */
 | #(EQ a=expr b=expr) { e = new Rel("=", a, b); }
 | #(NEQ a=expr b=expr) { e = new Rel("!=", a, b); }
 | #(op:RELOP a=expr b=expr) { e = new Rel(op.getText(), a, b); }

 /* Arithmetic operators */
 | #(PLUS a=expr b=expr) { e = new Arith("+", a, b); }
 | #(MINUS a=expr b=expr) { e = new Arith("−", a, b); }
 | #(TIMES a=expr b=expr) { e = new Arith("*", a, b); }
 | #(DIVIDE a=expr b=expr) { e = new Arith("/", a, b); }
 | #(CARET a=expr b=expr) { e = new Arith("^", a, b); }
 | #(UMINUS a=expr) { e = new Unary(a); }

 /* Other expressions */
 | a=funcall { e = a; }
 | a=subscript { e = a; }
 | a=literal { e = a; }
 | a=literal_list { e = a; }
 | i:ID { e = new Id(i.getText()); }
 ;

expr_list returns [ExprList elist]
{
 Expr a;
 elist = null;
}
 : #(EXPR_LIST { elist = new ExprList(); }
 (a=expr { elist.insert(a); }

)*
)
 ;

funcall returns [FunCall f]
{
 ExprList e;
 f = null;

Dec 08, 07 11:26 Page 6/8grammar.g
}
 : #(FUNCALL i:ID e=expr_list) { f = new FunCall(i.getText(), e); }
 ;

literal returns [Literal lit]
{
 lit = null;
}
 : n:NUMBER { lit = new Literal(new PNumber(n.getText())); }
 | s:STRING { lit = new Literal(new PString(s.getText())); }
 | "true" { lit = new Literal(new PBoolean(true)); }
 | "false" { lit = new Literal(new PBoolean(false)); }
 ;

literal_list returns [ExprList elist]
{
 Expr e;
 elist = null;
}
 : #(LIST { elist = new ExprList(); }
 #(EXPR_LIST
 (e=expr { elist.insert(e); }

)*
)
)
 ;

load returns [Load ld]
{
 ld = null;
}
 : #("load" file:STRING) { ld = new Load(file.getText()); }
 ;

stmt returns [Stmt s]
{
 s = null;
 Expr e,a,from,to,step;
 Block b,c;
}
 : #("set" a=expr e=expr) { s = new Set((LValue)a, e); }
 | "break" { s = new Break(); }
 | "next" { s = new Next(); }
 | #("return" e=expr) { s = new Return(e); }
 | #(IF a=expr b=block c=block) { s = new If(a,b,c); }
 | #("while" a=expr b=block) { s = new While(a,b); }
 | #("for" id2:ID from=expr to=expr step=expr b=block)
 { s = new For(id2.getText(), from, to, step, b); }
 ;

block returns [Block b]
{
 b = null;
 Node n;
}
 : #(BLOCK { b = new Block(); }
 (n=node { b.insert(n); })*
)
 ;

Dec 08, 07 11:26 Page 7/8grammar.g

Printed by Stuart Sierra

Tuesday December 18, 2007 37/119src/grammar.g

param_list returns [ParamList plist]
{
 plist = null;
}
 : #(PARAMS { plist = new ParamList(); }
 (id:ID { plist.insert(id.getText()); }

)*
)
 ;

def returns [Def d]
{
 d = null;
 Block b;
 Expr e;
 ParamList p;
}
 : #("constant" id1:ID e=expr) { d = new ConstantDef(id1.getText(), e); }
 | #(BASEUNIT id6:ID) { d = new UnitDef(id6.getText()); }
 | #(DERIVEDUNIT id2:ID e=expr) { d = new UnitDef(id2.getText(), e); }
 | #("function" id3:ID p=param_list b=block)
 { d = new FunctionDef(id3.getText(), p, b); }
 | #("alias" id4:ID id5:ID)
 { d = new AliasDef(id4.getText(), id5.getText()); }
 ;

subscript returns [Access a]
{
 a = null;
 ExprList elist;
 Expr e;
}
 : #(SUBSCRIPT id:ID { elist = new ExprList();
 a = new Access(id.getText(), elist); }
 (e=expr { elist.insert(e); }
)*
)
 ;

Dec 08, 07 11:26 Page 8/8grammar.g
import java.lang.String;
import java.io.Reader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.util.*;
import antlr.Token;
import physicalc.*;

/** ParseFile: test the Physicalc parser on a full file on the command
 * line.
 *
 * ParseFile is an executable class that takes a single command−line
 * argument, a file name. It reads the file and feeds it through the
 * PhysiCalc parser and prints out the Lisp−style abstract syntax tree
 * it generates.
 *
 * Run it like this:
 *
 * java ParseFile filename
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class ParseFile {
 public static void main(String [] args) {

Reader reader;
try {
 reader = new FileReader(args[0]);
} catch (FileNotFoundException err) {
 System.out.println(" File not found.");
 return;
}

PhysiLexer lexer = new PhysiLexer(reader);
PhysiParser parser = new PhysiParser(lexer);
try {
 parser.program();
 System.out.println(parser.getAST().toStringList());
} catch (Exception err) {
 System.out.println(err.toString());
}

 }
}

Dec 18, 07 19:57 Page 1/1ParseFile.java

Printed by Stuart Sierra

Tuesday December 18, 2007 38/119src/grammar.g, src/ParseFile.java

import java.lang.String;
import java.io.InputStream;
import java.io.StringReader;
import java.util.*;
import antlr.Token;
import physicalc.*;

/** TryDatum: test the Datum classes
 *
 * TryDatum will create and test various Datum objects
 *
 * Run it like this:
 *
 * java TryDatum
 *
 */
public class TryDatum {
 public static void main(String [] args) {

/*****************
PNumber & PBoolean Tests − testing basic algebra and logic of in

tegers, decimals, and exponents
*****************/

PNumber integer = new PNumber(5);
// you can use a primitive int, float, double, long, short

PNumber integer2 = new PNumber(new Integer(5)); //or wra
pper class Integer, Float, Double, Long, Short

PNumber integer3 = new PNumber(" 5");
//or you can use a String

PNumber decimal = new PNumber(3.14159);
PNumber pos_exponent = new PNumber(" 3e4");
PNumber neg_exponent = new PNumber(" 3e−4");
Datum result = new PNumber();
PBoolean bool = new PBoolean();

try {

System.out.println(" ***
********************* ");

System.out.println(" PNumber & PBoolean Tests:\n");
result = integer.add(decimal);
System.out.println(integer.toString()+" + "+decimal.toStr

ing()+" = "+result.toString());

result = pos_exponent.sub(integer);
System.out.println(pos_exponent.toString()+" − "+integer.

toString()+" = "+result.toString());

result = integer.mul(neg_exponent);
System.out.println(integer.toString()+" * "+neg_exponent.

toString()+" = "+result.toString());

result = decimal.div(pos_exponent);
System.out.println(decimal.toString()+" / "+pos_exponent.

toString()+" = "+result.toString());

result = integer.pow(decimal);
System.out.println(integer.toString()+" ^ "+decimal.toStr

ing()+" = "+result.toString());

Dec 08, 07 11:26 Page 1/5TryDatum.java
bool = new PBoolean(integer.equals(integer2));
System.out.println(integer.toString()+" == "+integer2.toS

tring()+" = "+bool.toString());

bool = integer.lessThan(decimal);
System.out.println(integer.toString()+" < "+decimal.toStr

ing()+" = "+bool.toString());
System.out.println(" ***

********************* ");

} catch (TypeError err) {
System.out.println(err.toString());

}

/*****************
PUnit Tests − testing basic algebraic symbolic computation of un

its
*****************/

PUnit second = new PUnit(" second");
PUnit meter = new PUnit(" meter");

PNumber num1 = new PNumber(" 0.5");
PNumber num2 = new PNumber(" 30");

Datum result2 = new PUnit();

try {

System.out.println(" PUnit Tests:\n");

PUnit minute = new PUnit(" minute",second.mul(new PNumber(
" 60"))); // minute = 60 * seconds

System.out.println(" minute: "+minute.getConversion().toStr
ing()+minute.toString());

PUnit foot = new PUnit(" foot",meter.mul(new PNumber(" 0.304
8"))); // foot = 0.3048 * meters

System.out.println(" foot: "+foot.getConversion().toString(
)+foot.toString());

Datum accel = num1.mul(foot.div(minute.pow(new PNumber("
2")))); // accel = 0.5 * foot / minute^2 = 0.0000423 * meter / second^2

System.out.println(" accel: "+accel.toString());

Datum time = num2.mul(second); // time = 30 * second
System.out.println(" time: "+time.toString());

Datum veloc = time.mul(accel); // veloc = time * accel
= 30 * second * 0.0000423 * meter / second^2 = 0.0762 * meter / second

System.out.println(" veloc: "+veloc.toString());

System.out.println(" ***
********************* ");

} catch (TypeError err) {
System.out.println(err.toString());

}

/*****************
PUnitPair Tests − testing algebraic manipulation of number−unit

Dec 08, 07 11:26 Page 2/5TryDatum.java

Printed by Stuart Sierra

Tuesday December 18, 2007 39/119src/TryDatum.java

pairs
*****************/

PUnitPair pair1 = new PUnitPair(integer,second);
PUnitPair pair2 = new PUnitPair(decimal,meter);
PUnitPair pair3 = new PUnitPair(integer,meter);
Datum result3 = new PUnitPair();

try {

System.out.println(" PUnitPair Tests:\n");
result3 = pair2.add(pair3); //note that in practice, ad

dition/subraction with unit pairs must catch exceptions (incompatible units)
System.out.println(pair2.toString()+" + "+pair3.toString(

)+" = "+result3.toString());

result3 = pair2.sub(pair3);
System.out.println(pair2.toString()+" − "+pair3.toString(

)+" = "+result3.toString());

result3 = pair1.mul(pair2);
System.out.println(pair1.toString()+" * "+pair2.toString(

)+" = "+result3.toString());

result3 = pair2.div(pair3);
System.out.println(pair2.toString()+" / "+pair3.toString(

)+" = "+result3.toString());

bool = new PBoolean(pair1.equals(pair2));
System.out.println(pair1.toString()+" == "+pair2.toString

()+" = "+bool.toString());
System.out.println(" ***

********************* ");

} catch (TypeError err) {
System.out.println(err.toString());

}

/*****************
PVector Tests − testing basic algebra and logic of vectors (2d x

,y component) integers, decimals, and exponents
*****************/

/*
PVector vector1 = new PVector(integer,decimal);
PVector vector2 = new PVector(decimal,pos_exponent);
PVector vector3 = new PVector(neg_exponent,integer);
PVector result4 = new PVector();

try {

System.out.println("PVector Tests:\n");
result4 = vector1.add(vector2);
System.out.println(vector1.toString()+" + "+vector2.toSt

ring()+" = "+result4.toString());

result4 = vector3.sub(vector1);
System.out.println(vector3.toString()+" − "+vector1.toSt

ring()+" = "+result4.toString());

result4 = vector2.mul(vector3);

Dec 08, 07 11:26 Page 3/5TryDatum.java
System.out.println(vector2.toString()+" * "+vector3.toSt

ring()+" = "+result4.toString());

result4 = vector1.div(vector2);
System.out.println(vector1.toString()+" / "+vector2.toSt

ring()+" = "+result4.toString());

result4 = vector3.pow(vector1);
System.out.println(vector3.toString()+" ^ "+vector1.toSt

ring()+" = "+result4.toString());

bool = new PBoolean(vector2.equals(vector3));
System.out.println(vector2.toString()+" == "+vector3.toS

tring()+" = "+bool.toString());

bool = vector1.lessThan(vector2);
System.out.println(vector1.toString()+" < "+vector2.toSt

ring()+" = "+bool.toString());
System.out.println("************************************

****************************");

} catch (TypeError err) {
System.out.println(err.toString());

}

*/

/*****************
Plist Tests − testing adding and removing PNumber and PUnitPair

elements from list
*****************/

PList list1 = new PList();
list1.push(integer);
list1.push(second);
list1.push(pair1);
list1.push(pair2);

try {

System.out.println(" PList Tests:\n");
System.out.println(list1.toString());
System.out.println(" ***

********************* ");

} catch (TypeError err) {
System.out.println(err.toString());

}

/*****************
PString Tests − testing concatenation and lexigraphical comparis

ons of strings
*****************/

PString string1 = new PString(" apple");
PString string2 = new PString(" sauce");
PString string3 = new PString(" power");
Datum result5 = new PString();

try {

System.out.println(" PString Tests:\n");

Dec 08, 07 11:26 Page 4/5TryDatum.java

Printed by Stuart Sierra

Tuesday December 18, 2007 40/119src/TryDatum.java

result5 = string1.add(string2);
System.out.println(string1.toString()+" + "+string2.toStr

ing()+" = "+result5.toString());

bool = new PBoolean(string2.equals(string3));
System.out.println(string2.toString()+" == "+string3.toSt

ring()+" = "+bool.toString());

bool = string3.lessThan(string1);
System.out.println(string3.toString()+" < "+string1.toStr

ing()+" = "+bool.toString());
System.out.println(" ***

********************* ");

} catch (TypeError err) {
System.out.println(err.toString());

}
 }
}

Dec 08, 07 11:26 Page 5/5TryDatum.java
import java.lang.String;
import java.io.InputStream;
import java.io.StringReader;
import java.util.*;
import antlr.Token;
import physicalc.*;

/** TryLexer: test the PhysiCalc lexer on the command line.
 *
 * TryLexer is an executable class that takes a single command−line
 * argument, a string. It feeds the string through PhysiCalc’s
 * ANTLR−generated lexer and prints out the list of tokens recognized.
 *
 * Run it like this:
 *
 * java TryLexer "3 + 4"
 *
 * And you get output like this:
 *
 * ["3",<11>,line=1,col=1]
 * ["+",<13>,line=1,col=3]
 * ["4",<11>,line=1,col=5]
 *
 * On each line, the first field is the string matched, the second is
 * the number of the token type, which you can find in the
 * ANTLR−generated file src/physicalc/PhysiLexerTokenTypes.txt .
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class TryLexer {
 public static void main(String [] args) {

List<Token> tokens = new ArrayList<Token>();
try {
 String test = args[0];
 StringReader reader = new StringReader(test);
 PhysiLexer lexer = new PhysiLexer(reader);

 Token t;
 while ((t = lexer.nextToken()) != null) {

if (t.getType() == antlr.Token.EOF_TYPE) { break; }
tokens.add(t);

 }
} catch (antlr.TokenStreamException err) {
 System.out.println(err.toString());
}

for (Token t : tokens) {
 System.out.println(t.toString());
}

 }
}

Dec 18, 07 19:57 Page 1/1TryLexer.java

Printed by Stuart Sierra

Tuesday December 18, 2007 41/119src/TryDatum.java, src/TryLexer.java

import java.lang.String;
import java.io.InputStream;
import java.io.StringReader;
import java.util.*;
import antlr.Token;
import physicalc.*;

/** TryParser: test the Physicalc parser on the command line.
 *
 * TryParser is an executable class that takes a single command−line
 * argument, a string. It feeds the string through the PhysiCalc
 * parser and prints out the Lisp−style abstract syntax tree it
 * generates.
 *
 * Run it like this:
 *
 * java TryAst "Physicalc code here"
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class TryParser {
 public static void main(String [] args) {

StringReader reader = new StringReader(args[0]);
PhysiLexer lexer = new PhysiLexer(reader);
PhysiParser parser = new PhysiParser(lexer);
try {
 parser.program();
 System.out.println(parser.getAST().toStringList());
} catch (Exception err) {
 System.out.println(err.toString());
}

 }
}

Dec 18, 07 19:58 Page 1/1TryParser.java
package physicalc;

import java.lang.*;
import java.util.*;

/** Access implements list access with [] subscripts.
 *
 * @see Node
 * @see PList
 * @see Set
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Access extends Expr implements LValue {

 private String id;
 private ExprList subscripts;

 public Access(String identifier, ExprList subExprs) {
//System.out.println("Constructing an Access");
id = identifier;
subscripts = subExprs;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in Access");

/* Look up id in the symbol tables −− global first, then local
 * −− or throw UndefinedError it it’s not in either. */
RuntimeObject r;
r = globals.get(id);
if (r == null) {
 r = locals.get(id);
 if (r == null) {

throw new UndefinedError(id);
 }
}

/* Get the value stored in the symbol table, check that it is
 * an instanceof Variable. If not, throw an
 * InterpreterError. */
Datum value;
if (r instanceof Variable) {
 /* Cast the object from the symbol table to a Variable. */
 Variable var = (Variable)r;
 value = var.getValue();
} else if (r instanceof Constant) {
 Constant constant = (Constant)r;
 value = constant.getValue();
} else {
 throw new InterpreterError(" Symbol ’" + id + " ’ is not a variable.");
}

int index;
for (Expr e : subscripts.getContents()) {
 index = ((PNumber)e.eval(globals,locals)).toInt();
 if (value instanceof PList) {

value = ((PList)value).getIndex(index);
 } else {

throw new InterpreterError(" Tried to access element in a non−list.");

Dec 18, 07 19:58 Page 1/2Access.java

Printed by Stuart Sierra

Tuesday December 18, 2007 42/119src/TryParser.java, src/physicalc/Access.java

 }
}

return value;
 }

 public void setValue(SymbolTable globals, SymbolTable locals,
 Datum newValue) {

//System.out.println("Calling setValue() in Access");

/* Look up id in the local symbol table, or throw
 * UndefinedError it it’s not there. */
RuntimeObject r;
r = locals.get(id);
if (r == null) {
 throw new UndefinedError(id);
}

/* Get the value stored in the symbol table, check that it is
 * an instanceof Variable. If not, throw an
 * InterpreterError. */
Variable var;
if (r instanceof Variable) {
 /* Cast the object from the symbol table to a Variable. */
 var = (Variable)r;
} else {
 throw new InterpreterError(" Symbol ’" + id + " ’ is not a variable.");
}

Datum value = var.getValue();
PList list = null ;
int index = 0;
for (Expr e : subscripts.getContents()) {
 index = ((PNumber)e.eval(globals,locals)).toInt();
 if (value instanceof PList) {

list = (PList)value;
try {
 value = ((PList)value).getIndex(index);
} catch (java.lang.IndexOutOfBoundsException error) {
 value = null ;
}

 } else {
throw new InterpreterError(" Tried to access element in a non−list.");

 }
}

if (list == null) {
throw new InterpreterError(" Tried to access element in a non−list.");

} else {
 list.set(index, newValue);
}

 }

}

Dec 18, 07 19:58 Page 2/2Access.java
package physicalc;

/** @author Ici Li, il2117@columbia.edu
 */
public class AliasDef extends Def {

 private String newSymb;
 private String oldSymb;

 public AliasDef(String newSymbol, String oldSymbol) {
 newSymb = newSymbol;

oldSymb = oldSymbol;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
 //lookup old symbol in global symbol table

//then, if it’s not defined, throw an error
//add new entry to global symbol table with newSymb as the symbol
//value as value

RuntimeObject R = globals.get(oldSymb);

if(R == null) {
 throw new UndefinedError(oldSymb);
}
else {
 globals.put(newSymb, R);
}

return null ;
 }
}

Dec 18, 07 20:08 Page 1/1AliasDef.java

Printed by Stuart Sierra

Tuesday December 18, 2007 43/119src/physicalc/Access.java, src/physicalc/AliasDef.java

package physicalc;

/** And is a node implementing the "and" logical operator.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class And extends Logical {
 private Expr left;
 private Expr right;

 public And(Expr leftOperand, Expr rightOperand) {
left = leftOperand;
right = rightOperand;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
if (!(left.eval(globals, locals).isTrue())) {
 /* short−circuit if left operand is false */
 return new PBoolean(false);
} else if (right.eval(globals, locals).isTrue()) {
 return new PBoolean(true);
} else {
 return new PBoolean(false);
}

 }
}

Dec 18, 07 19:58 Page 1/1And.java
package physicalc;

import java.lang.String;

/** Arith is a node implementing "+","−","*","/", and "^"
 *
 * @see Node
 * @author Changlong Jiang cj2214@columbia.edu
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Arith extends Op {
 private Expr left;
 private Expr right;
 private String op;

 public Arith(String operator, Expr leftOperand, Expr rightOperand) {
op = operator;
left = leftOperand;
right = rightOperand;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
Datum leftValue = left.eval(globals, locals);
Datum rightValue = right.eval(globals, locals);

/* Datum classes take care of type checking. */
if (op.equals(" +")) {
 return leftValue.add(rightValue);
} else if (op.equals(" −")) {
 return leftValue.sub(rightValue);
} else if (op.equals(" * ")) {
 return leftValue.mul(rightValue);
} else if (op.equals(" /")) {
 return leftValue.div(rightValue);
} else if (op.equals(" ^")) {
 return leftValue.pow(rightValue);
} else {
 /* This will only happen if the tree walker is wrong. */
 throw new InterpreterError(" GHASTLY ERROR: Arith class with invalid operator.");
}

 }
}

Dec 14, 07 0:37 Page 1/1Arith.java

Printed by Stuart Sierra

Tuesday December 18, 2007 44/119src/physicalc/And.java, src/physicalc/Arith.java

package physicalc;

import java.util.ArrayList;
import java.util.List;

/** A Block is container for a list of Nodes. It is used in two
 * places: 1) the body of a loop, and 2) the body of a function.
 *
 * Evaluating a block evaluates all its sub−nodes in order, and
 * returns the value of the last node.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Block extends Stmt {

 private ArrayList<Node> contents;

 public Block() {
//System.out.println("Constructing a Block");
contents = new ArrayList<Node>();

 }

 public void insert(Node n) {
//System.out.println("Adding to a Block");
contents.add(n);

 }

 public List<Node> getContents() {
return contents;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in Block");
//System.out.println(" the block has " + ((Integer)contents.size()).to

String() + " nodes");

Datum result = null ;
for (Node n : contents) {
 //System.out.println("Executing a Node inside a Block");
 result = n.eval(globals, locals);
}
return result;

 }
}

Dec 18, 07 19:58 Page 1/1Block.java
package physicalc;

/** BoundsError is raised when you attempt to access a value beyond
 * the end of a list or vector.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
class BoundsError extends InterpreterError {}

Dec 18, 07 19:59 Page 1/1BoundsError.java

Printed by Stuart Sierra

Tuesday December 18, 2007 45/119src/physicalc/Block.java, src/physicalc/BoundsError.java

package physicalc;

/** "break" statement
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Break extends Stmt {

 public Break() {
 ;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
throw new BreakSignal();

 }
}

Dec 18, 07 19:59 Page 1/1Break.java
package physicalc;

/** Signal used to break out of a loop.
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class BreakSignal extends ControlSignal {

 public BreakSignal() {
 ;
 }
}

Dec 18, 07 19:59 Page 1/1BreakSignal.java

Printed by Stuart Sierra

Tuesday December 18, 2007 46/119src/physicalc/Break.java, src/physicalc/BreakSignal.java

package physicalc;

/** A Constant stores a value globally. It cannot be changed.
 *
 * @see SymbolTable
 * @see ConstantDef
 * @author Ici Li, il2117@columbia.edu
 */
public class Constant implements RuntimeObject {

 Datum constant1;

 public Constant() {
constant1 = null ;

 }

 public Constant(Datum initialValue) {
constant1 = initialValue;

 }

 public Datum getValue() {
return constant1; // remove

 }
}

Dec 18, 07 20:08 Page 1/1Constant.java
package physicalc;

/** @author Ici Li, il2117@columbia.edu
 */
public class ConstantDef extends Def {

 private String id1;
 private Expr valueExpr1;

 public ConstantDef(String id, Expr valueExpr) {
 id1 = id;

valueExpr1 = valueExpr;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
Constant c1 = new Constant(valueExpr1.eval(globals, locals));

RuntimeObject R = c1;

globals.put(id1, R);

 return null ;
 }
}

Dec 18, 07 20:08 Page 1/1ConstantDef.java

Printed by Stuart Sierra

Tuesday December 18, 2007 47/119src/physicalc/Constant.java, src/physicalc/ConstantDef.java

package physicalc;

/** ControlSignal is an abstract base class for "exceptions" that are
 * used to signal changes in the control flow of a Physicalc program:
 * "break", "next", and "return" statements.
 *
 * This is an abuse of the Java exception mechanism, but it’s the
 * easiest way to unwind the stack, since Java does not provide a
 * general−purpose condition system like Common Lisp.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class ControlSignal extends RuntimeException {
}

Dec 18, 07 19:59 Page 1/1ControlSignal.java
package physicalc;

import java.lang.*;

/** Datum is an abstract base class for all data objects in a
 * Physicalc program.
 *
 * The methods in Datum just raise errors. Sub−classes must override
 * the supported operations.
 * @author Stuart Sierra, ss2806@columbia.edu
*/
public abstract class Datum {

 /** Returns the result of this + that. Does not modify this. */
 public Datum add(Datum that) throws TypeError {

//System.out.println("called Datum#add");
throw new TypeError(" +", this , that);

 }

 /** Returns the result of this − that. Does not modify this. */
 public Datum sub(Datum that) throws TypeError {

throw new TypeError(" −", this , that);
 }

 /** Returns the result of this * that. Does not modify this. */
 public Datum mul(Datum that) throws TypeError {

throw new TypeError(" * ", this , that);
 }

 /** Returns the result of this / that. Does not modify this. */
 public Datum div(Datum that) throws TypeError {

throw new TypeError(" /", this , that);
 }

 /** Returns the result of this ^ that. Does not modify this. */
 public Datum pow(Datum that) throws TypeError {

throw new TypeError(" ^", this , that);
 }

 /** Returns the result of the unary minus operator, (− this).
 * Does not modify this. */
 public Datum neg() throws TypeError {

throw new TypeError(" unary −", this , null);
 }

 /** Returns true if "that" is the same type and has the same value
 * as this. */
 public boolean equals(Object that) {

return false ; // Default; sub−classes should override
 }

 /** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
 public boolean isTrue() {

return true ;
 }

 public PBoolean lessThan(Datum that) throws TypeError {
throw new TypeError(" <", this , that);

 }

Dec 18, 07 19:59 Page 1/2Datum.java

Printed by Stuart Sierra

Tuesday December 18, 2007 48/119src/physicalc/ControlSignal.java, src/physicalc/Datum.java

 public PBoolean lessEqual(Datum that) throws TypeError {
throw new TypeError(" <=", this , that);

 }

 public PBoolean greaterThan(Datum that) throws TypeError {
throw new TypeError(" >", this , that);

 }

 public PBoolean greaterEqual(Datum that) throws TypeError {
throw new TypeError(" >=", this , that);

 }

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
 public String toString() {

return " Datum"; // sub−classes must override
 }

 /** For lists, returns the nth item in the collection. For
 * strings, returns the nth character. For vectors, index 0
 * returns the x component, and index 1 returns the y
 * component. */
 public Datum getIndex(int index) throws TypeError, BoundsError {

throw new TypeError(" [] ", this , this);
 }

}

Dec 18, 07 19:59 Page 2/2Datum.java
package physicalc;

/** Def is an abstract base class for all definition nodes.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Def extends Node {
}

Dec 18, 07 20:00 Page 1/1Def.java

Printed by Stuart Sierra

Tuesday December 18, 2007 49/119src/physicalc/Datum.java, src/physicalc/Def.java

package physicalc;

/** @author Ici Li, il2117@columbia.edu */
public class ExitFunction extends Function {

 public ExitFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {
// System.err.println("Calling call() in ExitFunction");
 System.exit(0);
 return null ;
 }

}

Dec 18, 07 20:09 Page 1/1ExitFunction.java
package physicalc;

/** Expr is an abstract base class for all expression nodes.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Expr extends Node {
}

Dec 18, 07 20:00 Page 1/1Expr.java

Printed by Stuart Sierra

Tuesday December 18, 2007 50/119src/physicalc/ExitFunction.java, src/physicalc/Expr.java

package physicalc;

import java.util.ArrayList;
import java.util.List;

/** An ExprList is container for a list of Expr objects. It is used
 * in two places: 1) list literals, and 2) function calls.
 *
 * For a list literal, you call the "eval" method and ExprList returns
 * a new PList containing the results of all the expressions inside
 * it.
 *
 * For a function call, the FunCall object can call the getContents()
 * method to retrieve the Expr child nodes directly.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class ExprList extends Expr {

 private ArrayList<Expr> contents;

 public ExprList() {
//System.out.println("Constructing an ExprList");
contents = new ArrayList<Expr>();

 }

 public void insert(Expr e) {
//System.out.println("Adding to an ExprList");
contents.add(e);

 }

 public List<Expr> getContents() {
return contents;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in ExprList");

PList result = new PList();
for (Expr e : contents) {
 result.push(e.eval(globals, locals));
}
return result;

 }
}

Dec 18, 07 20:00 Page 1/1ExprList.java
package physicalc;

import java.lang.String;
/**this is for class
 * for identifier from expressions1 to experssion2 step expression3 do
 * statements
 * done
 *
 * @see Node
 * @author Changlong Jiang cj2214@columbia.edu
 * @author Stuart Sierra, ss2806@columbia.edu
 */

public class For extends Stmt {
 String idname;
 Expr expr1,expr2,expr3;
 Block block1;

 public For(String id,Expr fromExpr, Expr toExpr, Expr stepExpr,
 Block b) {
idname = id;
expr1 = fromExpr;
expr2 = toExpr;
expr3 = stepExpr;
block1 = b;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

 Datum from = expr1.eval(globals,locals);
Datum to = expr2.eval(globals,locals);
Datum step = expr3.eval(globals,locals);

 Id id = new Id(idname);

id.setValue(globals, locals, from);

while(id.eval(globals,locals).lessEqual(to).isTrue()){

 try {
block1.eval(globals,locals);

 }
 catch (BreakSignal breaksignal){

break;
 }

 catch (NextSignal nextsignal) {
continue;

 }

 id.setValue(globals,locals, id.eval(globals,locals).add(step));

}
 return null ; // remove
 }
}

Dec 14, 07 0:37 Page 1/1For.java

Printed by Stuart Sierra

Tuesday December 18, 2007 51/119src/physicalc/ExprList.java, src/physicalc/For.java

package physicalc;

import java.lang.*;
import java.util.*;

/** FunCall implements a function call.
 *
 * @see Node
 * @see Function
 * @author Brian Foo, bwf2101@columia.edu
 */
public class FunCall extends Expr {

private String functionName;
private ExprList argumentList;
private Function func;

 public FunCall(String f, ExprList al) {
functionName = f;
argumentList = al;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

//System.out.println("Calling eval() in FunCall");

/* Look up functionName in the global symbol table,
 * throw UndefinedError if it’s not there. */
 if (globals.get(functionName).equals(null)) {

throw new UndefinedError(functionName);
 }

/* Get the object out of the symbol table, check that it’s an
 * instanceof Function, then cast it to a Function. */
 if (globals.get(functionName) instanceof Function) {

 func = (Function) globals.get(functionName);
 } else {

 throw new InterpreterError(" FunCall on a non−Function object");
 }

/* Call the function’s "call" method, passing in the global
 * symbol table and the argument list. */
 return func.call(globals,locals,argumentList);

 }
}

Dec 18, 07 20:09 Page 1/1FunCall.java
package physicalc;

import java.lang.*;
import java.util.*;

/** A Function object stores a user−defined function. Sub−classes may
 * implement built−in functions.
 *
 * @see SymbolTable
 * @see FunCall
 * @author Brian Foo, bwf2101@columia.edu
 */
public class Function implements RuntimeObject {

private ParamList parameterList;
private Block bodyStatements;

 /** Protected default constructor; only built−in function may be
 * created without a parameter list or block. */
 protected Function() { ; }

 public Function(ParamList pl, Block bs) {
parameterList = pl;
bodyStatements = bs;

 }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

/* Check that the arguments list is the same length as the
 * parameter list; throw error if it’s not. */
 if (arguments.getContents().size() != parameterList.getContents().size

()) {
throw new InterpreterError(" Function called with improper number of arguments"

);
 }

 /* Create a new SymbolTable for local variables. */
 SymbolTable function_locals = new SymbolTable();

/* For each name in the parameter list, create a new Variable
 * and add it to the local SymbolTable you just created */
 for (Iterator it = parameterList.getContents().iterator(); it.hasNext()

;) {
RuntimeObject r = new Variable();
function_locals.put((String) it.next(), r);

 }

/* Evaluate each argument in the ExprList and assign its value
 * to one of the local Variables you just created. */
 Iterator argIt = arguments.getContents().iterator();
 for (Iterator it2 = parameterList.getContents().iterator(); it2.hasNext

();) {
((Variable)function_locals.get((String) it2.next())).setValue(((

Expr)argIt.next()).eval(globals,locals));
 }

/* Call "eval" on the Block of body statements, passing in the
 * global symbol table and the local symbol table you created.
 * Return the value of "eval". */
 try {

Dec 18, 07 20:10 Page 1/2Function.java

Printed by Stuart Sierra

Tuesday December 18, 2007 52/119src/physicalc/FunCall.java, src/physicalc/Function.java

 return bodyStatements.eval(globals,function_locals);
 } catch (ReturnSignal rs) {

return rs.getValue();
 }

 }
}

Dec 18, 07 20:10 Page 2/2Function.java
package physicalc;

/** Function Definitions
 * @author Brian Foo, bwf2101@columia.edu
 */
public class FunctionDef extends Def {

private String id;
private ParamList paramList;
private Block bodyBlock;

 public FunctionDef(String i, ParamList pl, Block bb) {
 id = i;
 paramList = pl;
 bodyBlock = bb;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

RuntimeObject func = new Function(paramList,bodyBlock);
 globals.put(id,func);

 return null ; // definitions always return null
 }
}

Dec 18, 07 20:10 Page 1/1FunctionDef.java

Printed by Stuart Sierra

Tuesday December 18, 2007 53/119src/physicalc/Function.java, src/physicalc/FunctionDef.java

package physicalc;

/**
 * @author Brian Foo, bwf2101@columia.edu
 */
public class GetNumberFunction extends Function {

 public GetNumberFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

//System.out.println("Calling call() in GetNumberFunction");

if (arguments.getContents().size() != 1) {
throw new InterpreterError(" Cannot call getNumber on more than one

 argument");
}

Expr expr = arguments.getContents().get(0);

Datum pair = expr.eval(globals,locals);

if (pair instanceof PUnitPair) {
return ((PUnitPair)pair).getNumber();

} else {
throw new InterpreterError(" Must call GetNumberFunction on a Unit

Pair");
}

 }

}

Dec 18, 07 20:10 Page 1/1GetNumberFunction.java
package physicalc;

/**
 * @author Brian Foo, bwf2101@columia.edu
 */
public class GetUnitFunction extends Function {

 public GetUnitFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

//System.out.println("Calling call() in GetUnitFunction");

if (arguments.getContents().size() != 1) {
throw new InterpreterError(" Cannot call getUnit on more than one arg

ument");
}

Expr expr = arguments.getContents().get(0);

Datum pair = expr.eval(globals,locals);

if (pair instanceof PUnitPair) {
PUnit u = ((PUnitPair)pair).getUnit();
u.setUnitMode();
return u;

} else {
throw new InterpreterError(" Must call GetUnitFunction on a UnitPair

");
}

 }

}

Dec 18, 07 20:10 Page 1/1GetUnitFunction.java

Printed by Stuart Sierra

Tuesday December 18, 2007 54/119src/physicalc/GetNumberFunction.java, src/physicalc/GetUnitFunction.java

package physicalc;

import java.lang.String;

/** Id is a node implementing any source−code identifier. It also
 * implements LValue, so it can be assigned in a "Set" statement.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Id extends Expr implements LValue {

 private String name;

 public Id(String idName) {

name = idName;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

/* Look up idName in the local symbol table, or throw
 * UndefinedError it it’s not there. */

/* Check the type of the object you got with instanceof. If
 * it’s a Variable or Constant, get the value and return it.
 * If it’s a Unit, return the Unit. Anything else, throw an
 * InterpreterError. */

RuntimeObject R = locals.get(name);

if(R == null) {
 R = globals.get(name);
}
if(R == null) {
 throw new UndefinedError(name);
}

if(R instanceof Variable) {
 return ((Variable)R).getValue();
} else if (R instanceof Constant) {
 return ((Constant)R).getValue();
}
else if(R instanceof Unit) {
 return ((Unit)R).getValue();
}
else {

throw new InterpreterError(" Tried to get value of a non−Variable/Constant/Unit"
);

}
 }

 public void setValue(SymbolTable globals, SymbolTable locals,
 Datum newValue) {

//System.out.println("Calling setValue() in Name");

RuntimeObject r;
r = locals.get(name);
if (r == null) {
 r = new Variable(newValue);
 locals.put(name, r);
} else if (r instanceof Variable) {

Dec 18, 07 20:00 Page 1/2Id.java
 ((Variable)r).setValue(newValue);
} else if (globals.get(name) != null) {
 throw new InterpreterError(" Tried to assign to a non−variable.");
} else {
 throw new UndefinedError(name);
}

 }
}

Dec 18, 07 20:00 Page 2/2Id.java

Printed by Stuart Sierra

Tuesday December 18, 2007 55/119src/physicalc/Id.java

package physicalc;

/** this is If Class
 * Syntax: if expression1 then
 * statements1
 * elsif expression2 then
 * statements2
 * else
 * statements3
 * done
 *
 *
 * @see Node
 * @author Changlong Jiang cj2214@columbia.edu
 * @author Stuart Sierra, ss2806@columbia.edu
 */

public class If extends Stmt {

 private Expr expr1;
 private Block block1;
 private Block block2;
 public If(Expr condition, Block thenBlock, Block elseBlock) {

expr1 = condition;
block1 = thenBlock;
block2 = elseBlock;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in If");

 if (expr1.eval(globals, locals).isTrue()) {
 //System.out.println("’If’ condition was true; executing ’then’ bloc

k.");

 return block1.eval(globals,locals);
}
else {
 return block2.eval(globals,locals);

 }

 }
}

Dec 14, 07 0:37 Page 1/1If.java
package physicalc;

/** In is a node implementing the "in" unit−conversion operator.
 *
 * @see Node
 * @author Brian Foo, bwf2101@columia.edu
 */
public class In extends Op {
 private Expr left;
 private Expr right;

 public In(Expr leftOperand, Expr rightOperand) {
left = leftOperand;
right = rightOperand;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

System.err.println(" Calling eval() in In");

Datum leftUnit = left.eval(globals,locals);
Datum rightUnit = right.eval(globals,locals);

if (rightUnit instanceof PUnit) {

String fromName;
String fromBase;
PNumber fromConversion;
PNumber fromNumber;

String toName = ((PUnit)rightUnit).getName();
String toBase = ((PUnit)rightUnit).getBaseUnit();
PNumber toConversion = ((PUnit)rightUnit).getConversion(

);

if (leftUnit instanceof PUnit) {
fromName = ((PUnit)leftUnit).getName();
fromBase = ((PUnit)leftUnit).getBaseUnit();
fromConversion = ((PUnit)leftUnit).getConversion

();
fromNumber = new PNumber(" 1");

} else if (leftUnit instanceof PUnitPair) {
fromName = ((PUnitPair)leftUnit).getUnit().getNa

me();
fromBase = ((PUnitPair)leftUnit).getUnit().getBa

seUnit();
fromConversion = ((PUnitPair)leftUnit).getUnit()

.getConversion();
fromNumber = ((PUnitPair)leftUnit).getNumber();

} else {
throw new InterpreterError(" Left operand in ’in’ must be a

 unit or number*unit");
}

//System.err.println("toName: "+toName+", toBase: "+toBa
se+", toConv: "+toConversion.toString());

//System.err.println("fromName: "+fromName+", fromBase:
"+fromBase+", fromConv: "+fromConversion.toString()+", fromNumber: "+fromNumber.
toString());

if (fromBase.equals(toBase)) {
return new PUnitPair(((fromConversion.mul(fromN

Dec 18, 07 20:10 Page 1/2In.java

Printed by Stuart Sierra

Tuesday December 18, 2007 56/119src/physicalc/If.java, src/physicalc/In.java

umber)).div(toConversion)), (PUnit)rightUnit, true);
} else {

throw new InterpreterError(" Base units do not match with
’ "+fromName+" in "+toName+" ’ ");

}

} else {
throw new InterpreterError(" Right operand in ’in’ must be a unit");

}

 }
}

Dec 18, 07 20:10 Page 2/2In.java
package physicalc;

import java.io.*;
import antlr.CommonAST;
import antlr.collections.AST;

/** An Interpreter object is responsible for running Physicalc code.
 * It has input, output, and error streams, which default to STDIN,
 * STDOUT, and STDERR, respectively; but may be changed by the calling
 * code for testing.
 *
 * To use this class, create an instance of it and call "eval",
 * passing in a stream for the code you want to run.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Interpreter {

 private Reader in;

 private PrintWriter out;

 private PrintWriter err;

 /** Constructor. Creates a new interpreter instance. Input,
 * output, and error streams default to system STDIN, STDOUT, and
 * STDERR, respectively. */
 public Interpreter() { ; }

 /** Changes the stream that this Interpreter uses as its standard
 * input. */
 public void setInputStream(InputStream inputStream) {

System.setIn(inputStream);
 }

 /** Changes the stream that this Interpreter uses as its standard
 * output. */
 public void setOutputStream(OutputStream outputStream) {

System.setOut(new PrintStream(outputStream));
 }

 /** Changes the stream that this Interpreter uses as its standard
 * error. */
 public void setErrorStream(OutputStream errorStream) {

System.setErr(new PrintStream(errorStream));
 }

 /** eval() executes Physicalc source code.
 *
 * @param code A Reader containing Physicalc source code. For
 * normal use this would be a file stream, but it could be a
 * string reader for testing. It could even be standard input.
 */
 public void eval(Reader code) {

try {
 PhysiLexer lexer = new PhysiLexer(code);
 PhysiParser parser = new PhysiParser(lexer);

 parser.program();

 CommonAST parseTree = (CommonAST)parser.getAST();

Dec 18, 07 20:01 Page 1/2Interpreter.java

Printed by Stuart Sierra

Tuesday December 18, 2007 57/119src/physicalc/In.java, src/physicalc/Interpreter.java

 PhysiWalker walker = new PhysiWalker();
 Program p = walker.program(parseTree);

 SymbolTable globals = setupGlobalSymbols();
 SymbolTable topLevel = new SymbolTable();
 Datum result = p.eval(globals, topLevel);

 // Print the result of the last expression, for testing only.
 if (result == null) {

//System.out.println("null");
 } else {

//System.out.println(result.toString());
 }

} catch(Exception e) {
 //System.out.println(e.toString());
}

 }

 private SymbolTable setupGlobalSymbols() {
SymbolTable globals = new SymbolTable();
globals.put(" print", ((RuntimeObject)(new PrintFunction())));
globals.put(" nprint", ((RuntimeObject)(new NPrintFunction())));
globals.put(" toInt", ((RuntimeObject)(new ToIntFunction())));
globals.put(" toString", ((RuntimeObject)(new ToStringFunction())));
globals.put(" getUnit", ((RuntimeObject)(new GetUnitFunction())));
globals.put(" getNumber", ((RuntimeObject)(new GetNumberFunction())));
return globals;

 }
}

Dec 18, 07 20:01 Page 2/2Interpreter.java
package physicalc;

import java.lang.String;

/** General parent class for all errors generated by user code.
 * @author Stuart Sierra, ss2806@columbia.edu
 */
class InterpreterError extends RuntimeException {

 private String message;

 public InterpreterError() {; }

 public InterpreterError(String errorMessage) {
message = errorMessage;

 }

 public String toString() {
return message;

 }
}

Dec 18, 07 20:01 Page 1/1InterpreterError.java

Printed by Stuart Sierra

Tuesday December 18, 2007 58/119src/physicalc/Interpreter.java, src/physicalc/InterpreterError.java

package physicalc;

/** LValue is an interface implemented by any Node that can be
 * assigned a value in a "set" statement. Identifiers (i.e. instances
 * of Id) and list items (i.e. instances of Access) are both LValues.
 *
 * @see Id
 * @see Access
 * @see Set
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public interface LValue {

 public void setValue(SymbolTable globals, SymbolTable locals,
 Datum newValue);

}

Dec 18, 07 20:01 Page 1/1LValue.java
package physicalc;

/** Literal is a node implementing any source−code literal, such as a
 * number or a list.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Literal extends Expr {
 private Datum value;

 public Literal(Datum theValue) {
value = theValue;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in Literal");
return value;

 }
}

Dec 18, 07 20:01 Page 1/1Literal.java

Printed by Stuart Sierra

Tuesday December 18, 2007 59/119src/physicalc/LValue.java, src/physicalc/Literal.java

package physicalc;

import java.lang.String;
import java.io.*;
import antlr.CommonAST;
import antlr.collections.AST;

/** Load implements the "load" statement.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Load extends Node {

 private String file;

 public Load(String filename) {
file = filename;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
Reader input;
try {
 input = new FileReader(file);
} catch (FileNotFoundException e) {
 //System.out.println("File ’" + file + "’ not found.");
 System.exit(1);
 return null ; // to keep the compiler happy
}

try {
 PhysiLexer lexer = new PhysiLexer(input);
 PhysiParser parser = new PhysiParser(lexer);

 parser.program();

 CommonAST parseTree = (CommonAST)parser.getAST();

 PhysiWalker walker = new PhysiWalker();
 Program p = walker.program(parseTree);

 p.eval(globals, locals);

} catch(Exception e) {
 //System.out.println(e.toString());
}

return null ;
 }
}

Dec 18, 07 20:01 Page 1/1Load.java
package physicalc;

/** Logical is an abstract base class for all logical operator nodes.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Logical extends Expr {
}

Dec 18, 07 20:01 Page 1/1Logical.java

Printed by Stuart Sierra

Tuesday December 18, 2007 60/119src/physicalc/Load.java, src/physicalc/Logical.java

package physicalc;

import java.io.*;
import java.lang.String;

/** Main executable class
 * @author Stuart Sierra, ss2806@columbia.edu
*/
class Main {

 public static void main(String[] args) {
// TODO: add code to check syntax of command line

Reader input;
try {
 input = new FileReader(args[0]);
} catch (FileNotFoundException e) {
 //System.out.println("File ’" + args[0] + "’ not found.");
 return;
}

Interpreter interpreter = new Interpreter();
interpreter.eval(input);

 }

}

Dec 18, 07 20:01 Page 1/1Main.java
package physicalc;

/**
 * @author Ici Li, il2117@columbia.edu
 */
public class NPrintFunction extends Function {

 public NPrintFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

//System.out.println("Calling call() in NPrintFunction");

for (Expr expr : arguments.getContents()) {
 System.out.print(expr.eval(globals, locals).toString());
}

return null ;
 }

}

Dec 18, 07 20:11 Page 1/1NPrintFunction.java

Printed by Stuart Sierra

Tuesday December 18, 2007 61/119src/physicalc/Main.java, src/physicalc/NPrintFunction.java

package physicalc;

/** "next" statement
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Next extends Stmt {

 public Next() {
 ;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
throw new NextSignal();

 }
}

Dec 18, 07 20:02 Page 1/1Next.java
package physicalc;

/** Signal to continue next iteration of a loop.
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class NextSignal extends ControlSignal {

 public NextSignal() {
 ;
 }
}

Dec 18, 07 20:02 Page 1/1NextSignal.java

Printed by Stuart Sierra

Tuesday December 18, 2007 62/119src/physicalc/Next.java, src/physicalc/NextSignal.java

package physicalc;

/** The Node class is an abstract base class for all abstract program
 * representations in the Interpreter.
 *
 * Each Node sub−class represents a specific type of program
 * structure, such as an "if" statement or an addition expression. A
 * tree of these Nodes is generated by the tree walker.
 *
 * Sub−classes must provide constructors with the appropriate argument
 * types to be used by the tree walker. For example, a binary
 * operator node would have a constructor with two Expr arguments, one
 * for the left operand and one for the right.
 *
 * Each Node sub−class must provide an "eval" method. "Eval" is
 * responsible for executing whatever logical part of the program is
 * represented by its node, recursively calling the "eval" methods of
 * its child nodes. So, for example, an "if" node would "eval" its
 * conditional expression and use that result to decide which block to
 * "eval."
 *
 * "Eval" takes two SymbolTable arguments. The first is the global
 * symbol table, which will remain constant throughout the program.
 * The second is the current local symbol table. There is one local
 * symbol table for each function invocation, and one "top−level"
 * symbol table for statements executed outside any function body.
 * All nodes will pass these symbol tables unmodified to their child
 * nodes, except for function calls, which create a new local symbol
 * table.
 *
 * "Eval" returns a Datum object, which, if applicable, is the result
 * of evaluating this node’s expression. Statements and definitions
 * can simply return null.
 *
 * @see Program
 * @see Interpreter
 * @see SymbolTable
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Node {

 public abstract Datum eval(SymbolTable globals, SymbolTable locals)
throws InterpreterError;

}

Dec 18, 07 20:02 Page 1/1Node.java
package physicalc;

/** Not is a node implementing the "not" logical operator.
 *
 * @see Node
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 * @author Changlong Jiang cj2214@columbia.edu
 */
public class Not extends Logical {
 private Expr oper;

 public Not(Expr Operand) {

oper = Operand;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {

if(oper.eval(globals, locals).isTrue()) {
return new PBoolean(false);

}
else {

return new PBoolean(true);
}

 }
}

Dec 14, 07 0:37 Page 1/1Not.java

Printed by Stuart Sierra

Tuesday December 18, 2007 63/119src/physicalc/Node.java, src/physicalc/Not.java

package physicalc;

/** Op is an abstract base class for all operator nodes.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Op extends Expr {
}

Dec 18, 07 20:02 Page 1/1Op.java
package physicalc;

/** Or is a node implementing the "or" logical operator.
 *
 * @see Node
 * @author Ici Li, il2117@columbia.edu
 */
public class Or extends Expr {
 private Expr left;
 private Expr right;

 public Or(Expr leftOperand, Expr rightOperand) {
left = leftOperand;
right = rightOperand;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
if ((left.eval(globals, locals).isTrue())) {
 /* short−circuit if left operand is true */
 return new PBoolean(true);
} else if ((right.eval(globals, locals).isTrue())) {
 return new PBoolean(true);
} else {

 return new PBoolean(false);
}

 }
}

Dec 18, 07 20:11 Page 1/1Or.java

Printed by Stuart Sierra

Tuesday December 18, 2007 64/119src/physicalc/Op.java, src/physicalc/Or.java

package physicalc;

import java.lang.*;

/**
 * @author Brian Foo, bwf2101@columia.edu
 */
public class PBoolean extends Datum {

 protected Boolean boolValue;

 public PBoolean() {
boolValue = new Boolean(false);

}

 public PBoolean(boolean value) {
boolValue = new Boolean(value);

 }

 public boolean isTrue() {
return boolValue.booleanValue();

 }

 public String toString() {
return boolValue.toString();

}
}

Dec 18, 07 20:11 Page 1/1PBoolean.java
package physicalc;

import java.lang.*;
import java.util.*;

/** PList is the list data structure which
 * basically a front for java’s ArrayList class
 * @author Brian Foo, bwf2101@columia.edu
 */
public class PList extends Datum {

protected ArrayList<Datum> list;

public PList () {
list = new ArrayList<Datum>();

}

public PList (int initCapacity) {
list = new ArrayList<Datum>(initCapacity);

}

public Datum add(Datum that) {
if (that instanceof PList) {

PList returnList = this ;
PList thatList = (PList)that;
for (Iterator it = thatList.list.iterator (); it.hasNext

 ();) {
returnList.push((Datum) it.next());

 }
 return returnList;

} throw new TypeError(" +", this , that);
}

public boolean push(Datum d) {
return list.add(d);

}

public boolean contains(Datum d) {
return list.contains(d);

}

public int indexOf(Datum d) {
return list.indexOf(d);

}

public Datum getIndex(int index) throws TypeError, BoundsError {
return list.get(index);

}

public Datum remove(int index) {
return list.remove(index);

}

public Datum set(int index,Datum d) {
 //System.out.println("Calling set() in List");
 while (index >= list.size()) {

//System.out.println("Enlarging a List");
list.add(new PBoolean(false));

 }
 list.set(index,d);
 return d;
}

Dec 18, 07 20:11 Page 1/2PList.java

Printed by Stuart Sierra

Tuesday December 18, 2007 65/119src/physicalc/PBoolean.java, src/physicalc/PList.java

public int size() {
return list.size();

}

 /** Returns true if "that" is the same type and has the same value
 * as this. */
 public boolean equals(Object that) {

if (that instanceof PList) {
return equals((PList) that);

}
 return false ;

 }

 /** Returns true if "that" has the same value as this. */
private boolean equals(PList that) {

if (list.size() != that.list.size()) { return false ; }
Iterator thatIt = that.list.iterator();
for (Iterator it = list.iterator (); it.hasNext ();) {
 Datum thisD = (Datum) it.next();
 Datum thatD = (Datum) thatIt.next();
 if (!thisD.equals(thatD)) { return false ; }

 }
 return true ;
 }

 /** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
 public boolean isTrue() {

return (!list.equals(false));
 }

 public void clear() {
list.clear();

}

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
 public String toString() {

String returnString = " { ";
for (Iterator it = list.iterator (); it.hasNext ();) {

Datum d = (Datum) it.next();
returnString += d.toString()+" ,";

 }
 returnString += " } ";
 return returnString;
 }

}

Dec 18, 07 20:11 Page 2/2PList.java
package physicalc;

import java.lang.*;
import java.lang.Math;
import java.math.*;

/** PNumber is the number data class which includes
intergers, decimals, and exponents.
This is similar to the abstract Number class in java,
but will convert all types into a Double object before
algebraic processing

 @author Brian Foo, bwf2101@columia.edu
*/
public class PNumber extends Datum {

protected BigDecimal numValue;

public PNumber () {
numValue = new BigDecimal(0);

}

public PNumber (int number) {
Integer n = new Integer(number);
numValue = new BigDecimal(new BigInteger(n.toString()));

}

public PNumber (float number) {
Float n = new Float(number);
numValue = new BigDecimal(n.doubleValue());

}

public PNumber (double number) {
numValue = new BigDecimal(number);

}

public PNumber (long number) {
Long n = new Long(number);
numValue = new BigDecimal(n.doubleValue());

}

public PNumber (short number) {
Short n = new Short(number);
numValue = new BigDecimal(n.doubleValue());

}

public PNumber (Integer number) {
numValue = new BigDecimal(number.doubleValue());

}

public PNumber (Float number) {
numValue = new BigDecimal(number.doubleValue());

}

public PNumber (Double number) {
numValue = new BigDecimal(number.doubleValue());

}

public PNumber (Long number) {
numValue = new BigDecimal(number.doubleValue());

}

public PNumber (Short number) {

Dec 18, 07 20:12 Page 1/4PNumber.java

Printed by Stuart Sierra

Tuesday December 18, 2007 66/119src/physicalc/PList.java, src/physicalc/PNumber.java

numValue = new BigDecimal(number.doubleValue());
}

public PNumber (BigDecimal number) {
numValue = number;

}

public PNumber (BigInteger number) {
numValue = new BigDecimal(number);

}

public PNumber (String number) throws NumberFormatException {
numValue = new BigDecimal(number);
//numValue.setScale(7,java.math.BigDecimal.ROUND_HALF_EVEN);

}

 /** Returns the result of this + that. Does not modify this. */
 public Datum add(Datum that) throws TypeError {

if (that instanceof PNumber) {
return new PNumber(numValue.add(((PNumber)that).numValue

));
} throw new TypeError(" +", this , that);

 }

 /** Returns the result of this − that. Does not modify this. */
 public Datum sub(Datum that) throws TypeError {

if (that instanceof PNumber) {
return new PNumber(numValue.subtract(((PNumber)that).num

Value));
} throw new TypeError(" −", this , that);

 }

 /** Returns the result of this * that. Does not modify this. */
 /** Case: number*number returns number */
 /** Case: number*unit returns unit pair */
 /** Case: number*unitpair return unit pair */
 public Datum mul(Datum that) throws TypeError {

if (that instanceof PNumber) {
return new PNumber(numValue.multiply(((PNumber)that).num

Value));
} else if (that instanceof PUnit) {

return new PUnitPair(((PUnit)that).conversion.mul(this),
(PUnit)that);

} else if (that instanceof PUnitPair) {
return new PUnitPair(this.mul(((PUnitPair)that).getNumbe

r()),((PUnitPair)that).getUnit());
} else {

throw new TypeError(" * ", this , that);
}

 }

 /** Returns the result of this / that. Does not modify this. */
 /** Case: number/number return number */
 /** Case: number/unitpair return unit pair */
 public Datum div(Datum that) throws TypeError {

if (that instanceof PNumber) {
return new PNumber((numValue.divide(((PNumber)that).numV

alue,20,java.math.BigDecimal.ROUND_HALF_EVEN)).toString());
} else if (that instanceof PUnitPair) {

return new PUnitPair(this.div(((PUnitPair)that).getNumbe
r()),((PUnitPair)that).getUnit().neg());

} else {

Dec 18, 07 20:12 Page 2/4PNumber.java
throw new TypeError(" /", this , that);

}
 }

 /** Returns the result of this ^ that. Does not modify this. */
 public Datum pow(Datum that) throws TypeError {

if (that instanceof PNumber) {
return new PNumber(java.lang.Math.pow(numValue.doubleVal

ue() ,((PNumber)that).numValue.doubleValue()));
} throw new TypeError(" ^", this , that);

 }

 /** Returns the result of the unary minus operator, (− this).
 * Does not modify this. */
 public Datum neg() throws TypeError {

return new PNumber(numValue.negate());
 }

 /** Returns true if "that" is the same type and has the same value
 * as this. */
 public boolean equals(Object that) {

if (that instanceof PNumber) {
return equals((PNumber) that);

}
 return false ;

 }

 private boolean equals(PNumber that) {
return numValue.compareTo(that.numValue) == 0;

}

 /** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
 public boolean isTrue() {

return !numValue.equals(false);
 }

 public PBoolean lessThan(Datum that) throws TypeError {
if (that instanceof PNumber) {

return new PBoolean(numValue.compareTo(((PNumber)that).
numValue) < 0);

} throw new TypeError(" <", this , that);
 }

 public PBoolean lessEqual(Datum that) throws TypeError {
if (that instanceof PNumber) {

return new PBoolean(numValue.compareTo(((PNumber)that).
numValue) <= 0);

} throw new TypeError(" <=", this , that);
 }

 public PBoolean greaterThan(Datum that) throws TypeError {
if (that instanceof PNumber) {

return new PBoolean(numValue.compareTo(((PNumber)that).
numValue) > 0);

} throw new TypeError(" >", this , that);
 }

 public PBoolean greaterEqual(Datum that) throws TypeError {
if (that instanceof PNumber) {

return new PBoolean(numValue.compareTo(((PNumber)that).

Dec 18, 07 20:12 Page 3/4PNumber.java

Printed by Stuart Sierra

Tuesday December 18, 2007 67/119src/physicalc/PNumber.java

numValue) >= 0);
} throw new TypeError(" >=", this , that);

 }

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
 public String toString() {

Double d = new Double(numValue.toString());
return d.toString();

 }

 /** Returns this number as an int. */
 public int toInt() {

return numValue.intValue();
 }

}

Dec 18, 07 20:12 Page 4/4PNumber.java
package physicalc;

import java.lang.*;

/** PString is the string data class which is
basically a front for java’s String class

* @author Brian Foo, bwf2101@columia.edu
*/
public class PString extends Datum {

protected String sValue;

public PString () {
sValue = "";

}

public PString (String s) throws NumberFormatException {
sValue = s;

}

 /** Returns the result of this + that. Does not modify this. */
 public Datum add(Datum that) throws TypeError {

if (that instanceof PString) {
return new PString(sValue+((PString)that).sValue);

} throw new TypeError(" +", this , that);
 }

 /** Returns true if "that" is the same type and has the same value
 * as this. */
 public boolean equals(Object that) {

if (that instanceof PString) {
return equals((PString) that);

}
 return false ;

 }

 /** Returns true if "that" has the same value as this. */
private boolean equals(PString that) {

return sValue.compareTo(that.sValue) == 0;
 }

 /** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
 public boolean isTrue() {

return (!sValue.equals(false));
 }

 public PBoolean lessThan(Datum that) throws TypeError {
if (that instanceof PString) {

return new PBoolean(sValue.compareTo(((PString) that).s
Value) < 0);

} throw new TypeError(" <", this , that);
 }

 public PBoolean lessEqual(Datum that) throws TypeError {
if (that instanceof PString) {

return new PBoolean(sValue.compareTo(((PString) that).s
Value) <= 0);

} throw new TypeError(" <=", this , that);
 }

Dec 18, 07 20:12 Page 1/2PString.java

Printed by Stuart Sierra

Tuesday December 18, 2007 68/119src/physicalc/PNumber.java, src/physicalc/PString.java

 public PBoolean greaterThan(Datum that) throws TypeError {
if (that instanceof PString) {

return new PBoolean(sValue.compareTo(((PString) that).s
Value) > 0);

} throw new TypeError(" >", this , that);
 }

 public PBoolean greaterEqual(Datum that) throws TypeError {
if (that instanceof PString) {

return new PBoolean(sValue.compareTo(((PString) that).s
Value) >= 0);

} throw new TypeError(" >=", this , that);
 }

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
 public String toString() {

return sValue.toString();
 }

}

Dec 18, 07 20:12 Page 2/2PString.java
package physicalc;

import java.lang.*;
import java.lang.Math;
import java.util.*;

/** PUnit is the symbolic data class which includes
the algebraic manipulation of symbolic units
stored as HashMaps

*
* @author Brian Foo, bwf2101@columia.edu */
public class PUnit extends Datum {

protected String name; // ie. m
inute

protected String rootName; // ie. second
protected PNumber conversion; // ie. 60
protected HashMap<String,PNumber> unitMap;
protected boolean unitMode;

public PUnit () {
name = "";
conversion = new PNumber(" 1");
unitMap = new HashMap<String,PNumber>();
unitMode = false ;

}

public PUnit (HashMap<String,PNumber> map, PNumber conv) {
name = "";
rootName = "";
conversion = conv;
unitMap = map;
unitMode = false ;

}

public PUnit (String s) {
name = s;
rootName = s;
conversion = new PNumber(" 1");
unitMap = new HashMap<String,PNumber>();
unitMap.put(s, new PNumber(" 1"));
unitMode = false ;

}

public PUnit (String s, Datum p) throws TypeError {
name = s;
if (p instanceof PUnitPair) {

conversion = ((PUnitPair) p).getNumber();
unitMap = ((PUnitPair) p).getUnit().unitMap;
rootName = ((PUnitPair) p).getUnit().rootName;
unitMode = false ;

} else { throw new TypeError(p, " PUnitPair", this); }
}

/** lets you know if the two units can be added */
public Datum add(Datum that) throws TypeError {

if (that instanceof PUnit) {
return new PBoolean(equals(((PUnit)that)));

} throw new TypeError(" +", this , that);
}

/** lets you know if the two units can be subtracted */

Dec 18, 07 20:12 Page 1/6PUnit.java

Printed by Stuart Sierra

Tuesday December 18, 2007 69/119src/physicalc/PString.java, src/physicalc/PUnit.java

public Datum sub(Datum that) throws TypeError {
if (that instanceof PUnit) {

return new PBoolean(equals(((PUnit)that)));
} throw new TypeError(" −", this , that);

 }

 /** Returns the result of this * that. Does not modify this. */
 /** Case: number*unit returns unit pair */
 public Datum mul(Datum that) throws TypeError {

if (that instanceof PUnit) {
HashMap<String,PNumber> returnMap = new HashMap<String,P

Number>();
Iterator it = unitMap.keySet().iterator();
String thisKey = "";
PNumber thisValue = new PNumber();
PNumber thatValue = new PNumber();
while(it.hasNext()) { // go through this unit hashmap

thisKey = (String)it.next();
thisValue = new PNumber(unitMap.get(thisKey).to

String());
if (((PUnit)that).unitMap.containsKey(thisKey))

{
thatValue = new PNumber(((PUnit)that).u

nitMap.get(thisKey).toString());
returnMap.put(thisKey,(PNumber)thisValu

e.add(thatValue));
}
else {

returnMap.put(thisKey,thisValue);
}

}
it = ((PUnit)that).unitMap.keySet().iterator();
String thatKey = "";
while(it.hasNext()) { // go through that unit hashmap

thatKey = (String)it.next();
thatValue = new PNumber(((PUnit)that).unitMap.g

et(thatKey).toString());
if (!unitMap.containsKey(thatKey)) {

returnMap.put(thatKey,thatValue);
}

}
return new PUnit(returnMap,(PNumber) conversion.mul(((PU

nit)that).conversion));
} else if (that instanceof PNumber) {

PUnit returnUnit = this ;
return new PUnitPair(conversion.mul((PNumber)that),retur

nUnit);
} else {

throw new TypeError(" * ", this , that);
}

 }

 /** Returns the result of this / that. Does not modify this. */
public Datum div(Datum that) throws TypeError {

if (that instanceof PUnit) {
HashMap<String,PNumber> returnMap = new HashMap<String,P

Number>();
Iterator it = unitMap.keySet().iterator();
String thisKey = "";
PNumber thisValue = new PNumber();
PNumber thatValue = new PNumber();
while(it.hasNext()) { // go through this unit hashmap

Dec 18, 07 20:12 Page 2/6PUnit.java
thisKey = (String)it.next();
thisValue = new PNumber(unitMap.get(thisKey).to

String());
if (((PUnit)that).unitMap.containsKey(thisKey))

{
thatValue = new PNumber(((PUnit)that).u

nitMap.get(thisKey).toString());
//System.err.println("putting in "+thisK

ey);
returnMap.put(thisKey,(PNumber) thisVal

ue.sub(thatValue));
}
else {

//System.err.println("putting in "+thisK
ey);

returnMap.put(thisKey,thisValue);
}

}
it = ((PUnit)that).unitMap.keySet().iterator();
String thatKey = "";
while(it.hasNext()) { // go through that unit hashmap

thatKey = (String)it.next();
thatValue = new PNumber(((PUnit)that).unitMap.g

et(thatKey).toString());
if (!unitMap.containsKey(thatKey)) {

//System.err.println("putting in "+thatK
ey);

returnMap.put(thatKey,(PNumber) thatVal
ue.neg());

}
}
return new PUnit(returnMap,(PNumber) conversion.div(((PU

nit)that).conversion));
} else {

throw new TypeError(" /", this , that);
}

}

public Datum pow(Datum n) {
if (n instanceof PNumber) {

HashMap<String,PNumber> returnMap = new HashMap<String,P
Number>();

Iterator it = unitMap.keySet().iterator();
String thisKey = "";
PNumber thisValue = new PNumber();
while(it.hasNext()) { // go through this unit hashmap

thisKey = (String)it.next();
thisValue = new PNumber(unitMap.get(thisKey).to

String());
returnMap.put(thisKey,(PNumber)thisValue.mul(n)

);
}
return new PUnit(returnMap,(PNumber)conversion.pow((PNum

ber)n));
} else {

throw new TypeError(" ^", this , n);
}

}

public Datum neg() {
HashMap<String,PNumber> returnMap = new HashMap<String,PNumber>(

);

Dec 18, 07 20:12 Page 3/6PUnit.java

Printed by Stuart Sierra

Tuesday December 18, 2007 70/119src/physicalc/PUnit.java

Iterator it = unitMap.keySet().iterator();
String thisKey = "";
PNumber thisValue = new PNumber();
while(it.hasNext()) { // go through this unit hashmap

thisKey = (String)it.next();
thisValue = new PNumber(unitMap.get(thisKey).toString()

);
returnMap.put(thisKey,(PNumber)thisValue.neg());

}
return new PUnit(returnMap,(PNumber)(new PNumber(" 1")).div(conve

rsion));
}

/** Returns true if "that" is the same type and has the same value
 * as this. */
public boolean equals(Object that) {

if (that instanceof PUnit) {
return equals((PUnit) that);

}
return false ;

}

/** Returns true if "that" has the same value as this. */
private boolean equals(PUnit that) {

if (unitMap.size() != that.unitMap.size()) { return false ; }
Iterator it = unitMap.keySet().iterator();
String thisKey = "";
PNumber thisValue = new PNumber();
PNumber thatValue = new PNumber();
while(it.hasNext()) { // go through this unit hashmap

thisKey = (String)it.next();
thisValue = new PNumber(unitMap.get(thisKey).toString()

);
if (that.unitMap.containsKey(thisKey)) {

thatValue = new PNumber(that.unitMap.get(thisKe
y).toString());

if (!thisValue.equals(thatValue)){ return fals
e; }

}
else {

return false ;
}

}
return true ;

}

/** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
public boolean isTrue() {

return !unitMap.isEmpty();
 }

 public PNumber getConversion() {
return conversion;

}

public String getName() {
return name;

}

public String getBaseUnit() {

Dec 18, 07 20:12 Page 4/6PUnit.java
return rootName;

}
public void setUnitMode() {

unitMode = true ;
}
public void unsetUnitMode() {

unitMode = false ;
}

public String toUnit() {
Iterator it = unitMap.keySet().iterator();
String returnString = "";
String negString = "";
String thisKey = "";
int negCount = 0;
boolean first = true ;
boolean firstneg = true ;

while(it.hasNext()) { // go through this unit hashmap
thisKey = (String)it.next();
PNumber value = unitMap.get(thisKey);

if ((value.greaterThan(new PNumber(" 1"))).isTrue())
{

if (!first) { returnString += " * "; } else { firs
t = false ; }

if (!(thisKey.compareTo("") == 0)) {
returnString += thisKey + " ^" + value.toString()

; }
}
else if (value.equals(new PNumber(" 1"))) {

if (!first) { returnString += " * "; } else { firs
t = false ; }

if (!(thisKey.compareTo("") == 0)) {
returnString += thisKey; }

}
else if ((value.lessThan(new PNumber(" −1"))).isTrue()

) {
if (!firstneg) { negString += " * "; } else { firs

tneg = false ; }
if (!(thisKey.compareTo("") == 0)) {
negString += thisKey + " ^" + value.neg().toStrin

g(); }
negCount++;

}
else if (value.equals(new PNumber(" −1"))) {

if (!firstneg) { negString += " * "; } else { firs
tneg = false ; }

if (!(thisKey.compareTo("") == 0)) {
negString += thisKey;}
negCount++;

}
else if ((value.greaterThan(new PNumber(" 0"))).isTrue

()) {
if (!first) { returnString += " * "; } else { firs

t = false ; }
if (!(thisKey.compareTo("") == 0)) {
returnString += thisKey + " ^" + value.toString()

; }
}
else if ((value.lessThan(new PNumber(" 0"))).isTrue()

Dec 18, 07 20:12 Page 5/6PUnit.java

Printed by Stuart Sierra

Tuesday December 18, 2007 71/119src/physicalc/PUnit.java

) {
if (!firstneg) { negString += " * "; } else { firs

tneg = false ; }
if (!(thisKey.compareTo("") == 0)) {
negString += thisKey + " ^" + value.neg().toStrin

g(); }
negCount++;

}
else {

returnString += "";
}

}

// now put the positive and negative together
if (returnString.equals("")) { returnString = " 1"; }
if (negCount > 1) {

if (returnString.equals("")) { returnString = " ("+negS
tring+")^−1"; }

else { returnString += " *("+negString+")^−1"; }
} else {

if (negCount > 0){
if (returnString.equals("")) { returnString =

negString+" ^−1"; }
else { returnString += " * "+negString+" ^−1"; }

}
}

return returnString;
}

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
public String toString() {

if (unitMode)
return this.toUnit();

else
return conversion.toString()+" * "+this.toUnit();

 }

}

Dec 18, 07 20:12 Page 6/6PUnit.java
package physicalc;

import java.lang.*;
import java.lang.Math;

/** PUnitPair is the number data class which includes
intergers, decimals, and exponents.
This is similar to the abstract Number class in java,
but will convert all types into a Double object before
algebraic processing

* @author Brian Foo, bwf2101@columia.edu */
public class PUnitPair extends Datum {

protected PNumber number;
protected PUnit unit;
protected boolean forceName;

public PUnitPair () {
number = new PNumber(0);
unit = new PUnit();

}

public PUnitPair (Datum n,Datum u) throws TypeError {
if (n instanceof PNumber) {

number = (PNumber) n;
forceName = false ;

} else { throw new TypeError(n, " PNumber", this); }
if (u instanceof PUnit) {

unit = (PUnit) u;
forceName = false ;

} else { throw new TypeError(u, " PUnit", this); }
}

public PUnitPair (Datum n,Datum u, boolean _forceName) throws TypeError {
if (n instanceof PNumber) {

number = (PNumber) n;
forceName = _forceName;

} else { throw new TypeError(n, " PNumber", this); }
if (u instanceof PUnit) {

unit = (PUnit) u;
forceName = _forceName;

} else { throw new TypeError(u, " PUnit", this); }

}

 /** Returns the result of this + that. Does not modify this. */
 public Datum add(Datum that) throws TypeError {

if (that instanceof PUnitPair) {
if ((unit.add(((PUnitPair)that).unit)).isTrue()) {

return new PUnitPair(number.add(((PUnitPair)that
).number),unit);

}
throw new TypeError(" +", this , that);

}
throw new TypeError(" +", this , that);

 }

 /** Returns the result of this + that. Does not modify this. */
public Datum sub(Datum that) throws TypeError {

if (that instanceof PUnitPair) {
if ((unit.sub(((PUnitPair)that).unit)).isTrue()) {

return new PUnitPair(number.sub(((PUnitPair)that

Dec 18, 07 20:13 Page 1/3PUnitPair.java

Printed by Stuart Sierra

Tuesday December 18, 2007 72/119src/physicalc/PUnit.java, src/physicalc/PUnitPair.java

).number),unit);
}
throw new TypeError(" −", this , that);

}
throw new TypeError(" −", this , that);

 }

 /** Returns the result of this * that. Does not modify this. */
 /** Case: unitpair*unitpair return unit pair */
 /** Case: number*unitpair return unit pair */
 public Datum mul(Datum that) throws TypeError {

if (that instanceof PUnitPair) {
return new PUnitPair(number.mul(((PUnitPair)that).number

),unit.mul(((PUnitPair)that).unit));
} else if (that instanceof PNumber) {

return new PUnitPair(number.mul(((PNumber)that)),unit);
} else {

throw new TypeError(" * ", this , that);
}

 }

 /** Returns the result of this / that. Does not modify this. */
/** Case: unitpair/unitpair return unit pair */
/** Case: number/unitpair return unit pair */
public Datum div(Datum that) throws TypeError {

if (that instanceof PUnitPair) {
return new PUnitPair(number.div(((PUnitPair)that).number

),unit.div(((PUnitPair)that).unit));
} else if (that instanceof PNumber) {

return new PUnitPair(number.div(((PNumber)that)),unit);
} else {

throw new TypeError(" /", this , that);
}

 }

 /** Returns the result of this ^ n. Does not modify this. */
 public Datum pow(Datum n) throws TypeError {

if (n instanceof PNumber) {
return new PUnitPair(number.pow((PNumber)n),unit.pow((PN

umber)n));
} throw new TypeError(" ^", this , n);

 }

 /** Returns the result of the unary minus operator, (− this).
 * Does not modify this. */
 public Datum neg() throws TypeError {

return new PUnitPair(number.neg(),unit);
 }

 /** Returns true if "that" is the same type and has the same value
 * as this. */
 public boolean equals(Object that) {

if (that instanceof PUnitPair) {
return equals((PUnitPair) that);

}
 return false ;

 }

 /** Returns true if "that" has the same value as this. */
private boolean equals(PUnitPair that) {

return number.equals(that.number) && unit.equals(that.unit);
 }

Dec 18, 07 20:13 Page 2/3PUnitPair.java

 /** Returns true if this object is "true" in the Physicalc sense.
 * Anything that is not the literal boolean "false" is considered
 * true in Physicalc. */
 public boolean isTrue() {

return number.isTrue() && unit.isTrue();
 }

 public void setNumber(PNumber n) {
number = n;

}

public void setUnit(PUnit u) {
unit = u;

}

 public PNumber getNumber() {
return number;

}

public PUnit getUnit() {
return unit;

}

 /** Returns a string representation of this Datum suitable for
 * display in program output. */
 public String toString() {

if (!forceName)
return number.toString()+" * "+unit.toUnit();

else
return number.toString()+" * "+unit.getName();

 }

}

Dec 18, 07 20:13 Page 3/3PUnitPair.java

Printed by Stuart Sierra

Tuesday December 18, 2007 73/119src/physicalc/PUnitPair.java

package physicalc;

import java.lang.String;
import java.util.ArrayList;
import java.util.List;

/** A ParamList is a container for a list of function parameters. It
 * is used in function definitions.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class ParamList extends Expr {

 private ArrayList<String> contents;

 public ParamList() {
//System.out.println("Constructing a ParamList");
contents = new ArrayList<String>();

 }

 public void insert(String i) {
//System.out.println("Adding to a ParamList");
contents.add(i);

 }

 public List<String> getContents() {
return contents;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
/* This shouldn’t be called. */
throw new InterpreterError(" GHASTLY ERROR: Called ’eval’ method on a ParamList.");

 }
}

Dec 18, 07 20:02 Page 1/1ParamList.java
package physicalc;

/**
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class PrintFunction extends Function {

 public PrintFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

//System.out.println("Calling call() in PrintFunction");

for (Expr expr : arguments.getContents()) {
 System.out.print(expr.eval(globals, locals).toString());
}
System.out.println();
return null ;

 }

}

Dec 18, 07 20:12 Page 1/1PrintFunction.java

Printed by Stuart Sierra

Tuesday December 18, 2007 74/119src/physicalc/ParamList.java, src/physicalc/PrintFunction.java

package physicalc;

import java.util.ArrayList;
import java.util.List;

/** A Program is a container for a collection of Nodes representing a
 * complete program.
 *
 * Evaluating a Program evaluates all its sub−nodes in order, and
 * returns the value of the last node.
 *
 * A Program creates its own top−level symbol table for variables
 * defined outisde of any function definitions.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Program extends Node {

 private ArrayList<Node> contents;

 public Program() {
//System.out.println("Constructing a Program");
contents = new ArrayList<Node>();

 }

 public void insert(Node n) {
//System.out.println("Adding to a Program");
contents.add(n);

 }

 public List<Node> getContents() {
return contents;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in Program");

locals = new SymbolTable();

Datum result = null ;
for (Node n : contents) {
 result = n.eval(globals, locals);
}
return result;

 }
}

Dec 18, 07 20:03 Page 1/1Program.java
package physicalc;

import java.lang.String;

/** Rel is a node implementing any relational operator, including
 * equals and not−equals.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Rel extends Logical {
 private Expr left;
 private Expr right;
 private String op;

 public Rel(String operator, Expr leftOperand, Expr rightOperand) {
op = operator;
left = leftOperand;
right = rightOperand;

 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
Datum leftValue = left.eval(globals, locals);
Datum rightValue = right.eval(globals, locals);

/* Datum classes take care of type checking. */
if (op.equals(" =")) {
 /* equals() returns a Java boolean; we must create a
 * PBoolean to match our return type. */
 return new PBoolean(leftValue.equals(rightValue));
} else if (op.equals(" !=")) {
 /* Same thing, but take the logical opposite. */
 return new PBoolean(!(leftValue.equals(rightValue)));
} else if (op.equals(" <")) {
 return leftValue.lessThan(rightValue);
} else if (op.equals(" <=")) {
 return leftValue.lessEqual(rightValue);
} else if (op.equals(" >")) {
 return leftValue.greaterThan(rightValue);
} else if (op.equals(" >=")) {
 return leftValue.greaterEqual(rightValue);
} else {
 /* This will only happen if the tree walker is wrong. */
 throw new InterpreterError(" GHASTLY ERROR: Rel class with invalid operator.");
}

 }
}

Dec 18, 07 20:03 Page 1/1Rel.java

Printed by Stuart Sierra

Tuesday December 18, 2007 75/119src/physicalc/Program.java, src/physicalc/Rel.java

package physicalc;

/**
 * @author Ici Li, il2117@columbia.edu
 */
public class Return extends Stmt {

private Expr returnVal;

 public Return(Expr rv) {
 returnVal = rv;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
 throw new ReturnSignal(returnVal.eval(globals,locals));
 }
}

Dec 18, 07 20:13 Page 1/1Return.java
package physicalc;

/** ReturnSignal is used to signal to a function call that a "return"
 * statement has been executed. It carries the value to be returned
 * from the function.
 *
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class ReturnSignal extends ControlSignal {

 private Datum value;

 public ReturnSignal(Datum returnValue) {
 value = returnValue;
 }

 public Datum getValue() {
return value;

 }
}

Dec 18, 07 20:03 Page 1/1ReturnSignal.java

Printed by Stuart Sierra

Tuesday December 18, 2007 76/119src/physicalc/Return.java, src/physicalc/ReturnSignal.java

package physicalc;

/** A RuntimeObject is anything that can be bound to a symbol in the
 * SymbolTable, i.e. a Function, Variable, Constant, or Unit.
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public interface RuntimeObject {
}

Dec 18, 07 20:03 Page 1/1RuntimeObject.java
package physicalc;

import java.lang.String;

/**
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class Set extends Stmt {

 LValue lvalue;
 Expr valueExpr;

 public Set(LValue place, Expr valueExpression) {
 lvalue = place;

valueExpr = valueExpression;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
lvalue.setValue(globals, locals, valueExpr.eval(globals,locals));
return null ;

 }
}

Dec 18, 07 20:13 Page 1/1Set.java

Printed by Stuart Sierra

Tuesday December 18, 2007 77/119src/physicalc/RuntimeObject.java, src/physicalc/Set.java

package physicalc;

/** Stmt is an abstract base class for all statement nodes.
 *
 * @see Node
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public abstract class Stmt extends Node {
}

Dec 18, 07 20:03 Page 1/1Stmt.java
package physicalc;

import java.util.HashMap;

/** A SymbolTable associates symbols (strings) with run−time objects
 * (functions, variables, units, or constants).
 *
 * Physicalc’s symbol tables do not have a parent node, because
 * Physicalc has no nested scopes. At any time there are exactly two
 * scopes in effect: a global scope for definitions and a local scope
 * for variables and function arguments.
 *
 * SymbolTable stores any object that implements the RuntimeObject
 * interface.
 *
 * @see RuntimeObject
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class SymbolTable {

 private HashMap<String, RuntimeObject> table;

 /** Creates a new, empty symbol table. */
 public SymbolTable() {

table = new HashMap<String, RuntimeObject>();
 }

 /** Associates an object with a symbol in the symbol table. If
 * "symbol" is already in the table, its value will be
 * overwritten.
 */
 public void put(String symbol, RuntimeObject object) {

table.put(symbol, object);
 }

 /** Associates "newSymbol" with the value of "oldSymbol". If
 * "oldSymbol" is not defined, throws an UndefinedError.
 *
 * Aliases are not references. If "oldSymbol" is redefined to
 * point to a new object, the alias continues to point to the old
 * object.
 */
 public void putAlias(String newSymbol, String oldSymbol) {

if (table.containsKey(oldSymbol)) {
 table.put(newSymbol, table.get(oldSymbol));
} else {
 throw new UndefinedError(oldSymbol);
}

 }

 /** Looks up and returns the value of "symbol" in the table.
 * Returns null if this table does not contain "symbol".
 *
 * Returns a generic RuntimeObject reference. Callers of this
 * method must check the type of the returned object and cast it
 * appropriately.
 */
 public RuntimeObject get(String symbol) {

return table.get(symbol);
 }
}

Dec 18, 07 20:03 Page 1/1SymbolTable.java

Printed by Stuart Sierra

Tuesday December 18, 2007 78/119src/physicalc/Stmt.java, src/physicalc/SymbolTable.java

package physicalc;

/**
 * @author Brian Foo, bwf2101@columia.edu
 */
public class ToIntFunction extends Function {

 public ToIntFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

if (arguments.getContents().size() != 1) {
 throw new InterpreterError(" Cannot call toInt on more than one argument");
}

Expr expr = arguments.getContents().get(0);

Datum number = expr.eval(globals,locals);

if (number instanceof PNumber) {
 return new PNumber(((PNumber)number).toInt());
} else {
 throw new InterpreterError(" Cannot call ToInt function on non−number");
}

 }

}

Dec 18, 07 20:14 Page 1/1ToIntFunction.java
package physicalc;

/**
 * @author Ici Li, il2117@columbia.edu
 */
public class ToStringFunction extends Function {

 public ToStringFunction() { ; }

 public Datum call(SymbolTable globals, SymbolTable locals, ExprList argument
s) {

if (arguments.getContents().size() != 1) {
 throw new InterpreterError(" Cannot call toInt on more than one argument");
}

Expr expr = arguments.getContents().get(0);

Datum string1 = expr.eval(globals,locals);

return new PString(string1.toString());
 }

}

Dec 18, 07 20:14 Page 1/1ToStringFunction.java

Printed by Stuart Sierra

Tuesday December 18, 2007 79/119src/physicalc/ToIntFunction.java, src/physicalc/ToStringFunction.java

package physicalc;

import java.lang.*;

/** TypeError is raised when an operation cannot be performed because
 * the types of its arguments are incompatible.
 *
 * @author Brian Foo, bwf2101@columia.edu
 */
public class TypeError extends InterpreterError {

 String errorMessage;

 public TypeError(String operation, Datum object1, Datum object2) {
errorMessage = " Types are incompatible in the following operation:\n" + object1.

toString() + " " + operation + " " + object2.toString() + " \n";
 }

 /* wrong types for instantiation */
 public TypeError(Datum found, String requires, Datum object) {

errorMessage = " Cannot instantiate " + object.toString() + " wi
th " + found.toString() + " , requires " + requires + " \n";
 }

 public String toString() {
return errorMessage;

}
}

Dec 18, 07 20:14 Page 1/1TypeError.java
package physicalc;

/** Unary is a node implementing the unary minus operator. It returns
 * the numeric negative of its argument.
 *
 * @see Node
 * @author Ici Li, il2117@columbia.edu
 */
public class Unary extends Op {
 private Expr op;

 public Unary(Expr operand) {

op = operand;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
Datum oper = op.eval(globals, locals);

return oper.neg();
 }
}

Dec 18, 07 20:14 Page 1/1Unary.java

Printed by Stuart Sierra

Tuesday December 18, 2007 80/119src/physicalc/TypeError.java, src/physicalc/Unary.java

package physicalc;

/** Error when an undefined symbol is used.
 * @author Stuart Sierra, ss2806@columbia.edu
 */
public class UndefinedError extends InterpreterError {
 private String symbol;

 public UndefinedError(String undefinedSymbol) {
symbol = undefinedSymbol;

 }

 public String toString() {
return " ’ " + symbol + " ’ is not defined";

 }
}

Dec 18, 07 20:04 Page 1/1UndefinedError.java
package physicalc;

/** A Unit stores a value locally. Unit are created and
 * modified with the "set" statement. The name of the Unit is
 * stored in the SymbolTable. The value of a Unit can be changed.
 *
 * @see SymbolTable
 * @see Set
 * @author Brian Foo, bwf2101@columia.edu
 */
public class Unit implements RuntimeObject {

PUnit unit;

 public Unit() {
unit = new PUnit();

 }

 public Unit(String id) {
//System.out.println("Creating Base Unit");
unit = new PUnit(id);

}

 public Unit(String id,Datum initialValue) {
//System.out.println("Creating Derived Unit");
if (initialValue instanceof PUnit) {

unit = (PUnit) initialValue;
} else if (initialValue instanceof PUnitPair) {

unit = new PUnit(id,(PUnitPair)initialValue);
} else {

throw new InterpreterError(" Unit initialized with illegal expression")
;

}
 }

 public Datum getValue() {
return unit;

 }

 public Datum setValue(String id,Datum newValue) {
if (newValue instanceof PUnitPair) {

unit = new PUnit(id,(PUnitPair)newValue);
return unit;

} else if (newValue instanceof PUnit) {
unit = (PUnit) newValue;
return unit;

} else {
throw new InterpreterError(" Unit set with non−unit object");

}
 }

 public Datum setValue(String id) {
unit = new PUnit(id);
return unit;

}
}

Dec 18, 07 20:15 Page 1/1Unit.java

Printed by Stuart Sierra

Tuesday December 18, 2007 81/119src/physicalc/UndefinedError.java, src/physicalc/Unit.java

package physicalc;

/**
 * @author Brian Foo, bwf2101@columia.edu
 */
public class UnitDef extends Def {

String id;
Expr valueExpr;

 public UnitDef(String i) {
id = i;
valueExpr = null ;

 }

 public UnitDef(String i, Expr val) {
 id = i;
 valueExpr = val;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
//System.out.println("Calling eval() in UnitDef");
if (valueExpr == null) {

//System.out.println("Found Unit definition with null ex
pression");

globals.put(id, new Unit(id));
} else {

//System.out.println("Found Unit definition with express
ion");

Datum val = valueExpr.eval(globals,locals);
globals.put(id, new Unit(id,val));

}

 return null ; // definitions always return null
 }
}

Dec 18, 07 20:15 Page 1/1UnitDef.java
package physicalc;

/** A Variable stores a value locally. Variable are created and
 * modified with the "set" statement. The name of the Variable is
 * stored in the SymbolTable. The value of a Variable can be changed.
 *
 * @see SymbolTable
 * @see Set
 * @author Ici Li, il2117@columbia.edu
 */
public class Variable implements RuntimeObject {

 Datum var;

 public Variable() {
var = null ;

 }

 public Variable(Datum initialValue) {
var = initialValue;

 }

 public Datum getValue() {
return var;

 }

 public Datum setValue(Datum newValue) {
var = newValue;
return var;

 }
}

Dec 18, 07 20:15 Page 1/1Variable.java

Printed by Stuart Sierra

Tuesday December 18, 2007 82/119src/physicalc/UnitDef.java, src/physicalc/Variable.java

package physicalc;

import java.lang.*;

/** While Statement
 * While expr1 do
 * block1
 * done
 *
 * @author Changlong Jiang cj2214@columbia.edu
 * @author Stuart Sierra, ss2806@columbia.edu
 */

public class While extends Stmt {

private Expr expr1;
private Block block1;

public While() { expr1 = null ; block1 = null ;}

 public While(Expr testExpr, Block block) {
 expr1 = testExpr;

block1 = block;
 }

 public Datum eval(SymbolTable globals, SymbolTable locals) {
 while (expr1.eval(globals,locals).isTrue()) {

try {
 block1.eval(globals,locals);
}
catch (BreakSignal breaksignal)
{

break;
}
catch (NextSignal nextsignal)
{

continue;
}

 }
 return null ;
 }
}

Dec 14, 07 0:37 Page 1/1While.java
package physicalc;

import java.lang.String;
import java.io.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;
import junit.framework.JUnit4TestAdapter;

public class InterpreterTest {

 /** An interpreter instance used by each test. */
 private Interpreter interpreter;

 @Before public void setupInterpreter() {
interpreter = new Interpreter();

 }

 @Test public void alwaysPasses() {
assertEquals(" This test always passes.", true , true);

 }

 @Test public void doNothing() {
assertPrints(" Should do nothing.", "", "");

 }

 @Test public void arithmetic() {
assertPrints(" print(2 + 3)\n", " 5\n");
assertPrints(" print(1.1 + 2.2)\n", " 3.3\n");
assertPrints(" print(9 − 5)\n", " 4\n");
assertPrints(" print(3 * 4)\n", " 12\n");
assertPrints(" print(2 ^ 8)\n", " 256\n");

/* Need Unary class for the following: */
assertPrints(" print(−3)\n", " −3\n");
assertPrints(" print(4 ^ −2)\n", " 0.0625\n");

 }

 @Test public void strings() {
assertPrints(" print(\"foo\" + \"bar\")\n", " foobar\n");

 }

 @Test public void ifStmt() {
assertPrints(" if true then\n print(\"yes\")\n done\n",

 " yes\n");
assertPrints(" if false then\n print(\"yes\")\n done\n",

 "");
assertPrints(" if true then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if false then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if true then \n print(\"a\") \n elsif true then \n print(\"b\") \n elsif true then \n print(\"c\"

) \n elsif true then \n print(\"d\") \n else \n print(\"e\") \n done \n ", " a\n");
assertPrints(" if false then \n print(\"a\") \n elsif true then \n print(\"b\") \n elsif true then \n print(\"c\

") \n elsif true then \n print(\"d\") \n else \n print(\"e\") \n done \n ", " b\n");
assertPrints(" if false then \n print(\"a\") \n elsif false then \n print(\"b\") \n elsif true then \n print(\"c

\") \n elsif true then \n print(\"d\") \n else \n print(\"e\") \n done \n ", " c\n");
assertPrints(" if false then \n print(\"a\") \n elsif false then \n print(\"b\") \n elsif false then \n print(\"

c\") \n elsif true then \n print(\"d\") \n else \n print(\"e\") \n done \n ", " d\n");
assertPrints(" if false then \n print(\"a\") \n elsif false then \n print(\"b\") \n elsif false then \n print(\"

c\") \n elsif false then \n print(\"d\") \n else \n print(\"e\") \n done \n ", " e\n");
 }

Dec 08, 07 11:26 Page 1/3InterpreterTest.java

Printed by Stuart Sierra

Tuesday December 18, 2007 83/119src/physicalc/While.java, test/InterpreterTest.java

 @Test public void relational() {
assertPrints(" if 3 < 4 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if 4 < 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 3 <= 4 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if 4 <= 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 3 > 4 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 4 > 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if 3 >= 4 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 4 >= 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if 3 = 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");
assertPrints(" if 3 != 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 4 = 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " no\n");
assertPrints(" if 4 != 3 then\n print(\"yes\")\n else\n print(\"no\")\n done\n ", " yes\n");

 }

 @Test public void helloWorld() {
assertPrints(" print(\"Hello, world!\")\n",

 " Hello, world!\n");
 }

 @Test public void testWhile() {
assertPrints(" while true do \n print(\"a\") \n break \n print(\"b\") \n done \n",

 " a\n");
assertPrints(" while false do \n print(\"a\") \n break \n print(\"b\") \n done \n",

 "");
 }

 /** The suite() method is required for compatibility with older
 * JUnit versions. */
 public static junit.framework.Test suite() {

return new JUnit4TestAdapter(InterpreterTest.class);
 }

 /** The assertPrints() method is an assertion that runs the
 * interpreter and checks that it prints out a certain string.
 *
 * @param message A string explaining what the test does.
 * @param program A string of Physicalc source code. Remember the
 * terminating line break or semicolon!
 * @param expected A string of what the interpreter should print.
 */
 private void assertPrints(String message,

 String program,
 String expected) {

StringReader code = new StringReader(program);
OutputStream output = new ByteArrayOutputStream();
interpreter.setOutputStream(output);
interpreter.eval(code);
assertEquals(message, expected, output.toString());

 }

 private void assertPrints(String program,
 String expected) {

String message = " Should execute: \n" + program;
StringReader code = new StringReader(program);
OutputStream output = new ByteArrayOutputStream();
interpreter.setOutputStream(output);
interpreter.eval(code);

Dec 08, 07 11:26 Page 2/3InterpreterTest.java
assertEquals(message, expected, output.toString());

 }
}

Dec 08, 07 11:26 Page 3/3InterpreterTest.java

Printed by Stuart Sierra

Tuesday December 18, 2007 84/119test/InterpreterTest.java

package physicalc;

import java.lang.String;
import java.io.StringWriter;
import java.io.StringReader;
import org.junit.After;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;
import junit.framework.JUnit4TestAdapter;

/** Class to test the Number class and its arithmetic methods. This
 * assumes a Number constructor method that takes a string (from the
 * Lexer) and returns a Number instance. */
public class NumberTest {

 /** Integers. */
 private Number one, two, three, four, five, six, eight;

 /** Decimals. */
 private Number onePointOne, twoPointThree, twoPointFiveThree,

threePointFour, fivePointTwoNine;

 /** Numbers with exponents. */
 private Number onePoint2e24, oneE24, twoE23, twoE47, fourE46;

 @Before public void setValues() {
one = new Number(" 1");
two = new Number(" 2");
three = new Number(" 3");
four = new Number(" 4");
five = new Number(" 5");
six = new Number(" 6");
eight = new Number(" 8");

onePointOne = new Number(" 1.1");
twoPointThree = new Number(" 2.3");
twoPointFiveThree = new Number(" 2.53");
threePointFour = new Number(" 3.4");
fivePointTwoNine = new Number(" 5.29");

onePoint2e24 = new Number(" 1.2e24");
oneE24 = new Number(" 1e24");
twoE23 = new Number(" 2e23");
twoE47 = new Number(" 2e47");
fourE46 = new Number(" 4e46");

 }

 /* **
 * INTEGER ARITHMETIC *
 * **/

 @Test public void addInts() {
assertEquals(" 2 + 3 = 5", five, two.add(three));

 }

 @Test public void subtractInts() {
assertEquals(" 4 − 3 = 1", one, four.sub(three));

 }

Dec 08, 07 11:26 Page 1/3NumberTest.java
 @Test public void multiplyInts() {

assertEquals(" 2 * 3 = 6", six, two.mul(three));
 }

 @Test public void divideInts() {
assertEquals(" 6 / 2 = 3", three, six.div(two));

 }

 @Test public void exponentInts() {
assertEquals(" 2 ^ 3 = 8", eight, two.pow(three));

 }

 /* **
 * DECIMAL ARITHMETIC *
 * **/

 @Test public void addDecimals() {
assertEquals(" 1.1 + 2.3 = 3.4", threePointFour,

 onePointOne.add(twoPointThree));
 }

 @Test public void subtractDecimals() {
assertEquals(" 3.4 − 1.1 = 2.3", twoPointThree,

 threePointFour.sub(onePointOne));
 }

 @Test public void multiplyDecimals() {
assertEquals(" 1.1 * 2.3 = 2.53", twoPointFiveThree,

 onePointOne.mul(twoPointThree));
 }

 @Test public void divideDecimals() {
assertEquals(" 2.53 / 1.1 = 2.3", twoPointFiveThree,

 twoPointFiveThree.div(onePointOne));
 }

 @Test public void exponentDecimals() {
assertEquals(" 2.3 ^ 2 = 5.29", fivePointTwoNine,

 twoPointThree.pow(two));
 }

 /* **
 * NUMBER WITH EXPONENT ARITHMETIC *
 * **/

 @Test public void addExponents() {
assertEquals(" 1e24 + 2e23 = 1.2e24", onePoint2e24,

 oneE24.add(twoE23));
 }

 @Test public void subtractExponents() {
assertEquals(" 1.2e24 − 2e23 = 1e24", oneE24,

 onePoint2e24.sub(twoE23));
 }

 @Test public void multiplyExponents() {
assertEquals(" 1e24 * 2e23 = 2e47", twoE47,

 oneE24.mul(twoE23));
 }

Dec 08, 07 11:26 Page 2/3NumberTest.java

Printed by Stuart Sierra

Tuesday December 18, 2007 85/119test/NumberTest.java

 @Test public void divideExponents() {
assertEquals(" 2e47 / 2e23 = 1e24", oneE24,

 twoE47.div(twoE23));
 }

 @Test public void exponentExponents() {
assertEquals(" 2e23 ^ 2 = 4e46", fourE46,

 twoE23.pow(two));
 }

 /** The suite() method is required for compatibility with older
 * JUnit versions. */
 public static junit.framework.Test suite() {

return new JUnit4TestAdapter(NumberTest.class);
 }
}

Dec 08, 07 11:26 Page 3/3NumberTest.java
package physicalc;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({
 InterpreterTest.class
 // add additional test classes here, separated by commas
})

public class PhysicalcSuite {
 // the class remains completely empty,
 // being used only as a holder for the above annotations
 // see http://radio.javaranch.com/lasse/2006/07/27/1154024535662.html
}

Dec 08, 07 11:26 Page 1/1PhysicalcSuite.java

Printed by Stuart Sierra

Tuesday December 18, 2007 86/119test/NumberTest.java, test/PhysicalcSuite.java

package physicalc;

import java.lang.String;
import org.junit.After;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;
import junit.framework.JUnit4TestAdapter;

/** Class to test the Unit class and its arithmetic methods. */
public class UnitTest {

 private Unit second, minute;
 private Unit meter, foot;
 private Number three, four, twelve;

 @Before public void setValues() {
second = new Unit(" second");
meter = new Unit(" meter");

three = new Number(" 3");
four = new Number(" 4");
twelve = new Number(" 12");

 }

 @Test public void deriveFromNumbers() {
minute = new Unit(" minute", second.mul(new Number(" 60")));
foot = new Unit(" foot", meter.mul(new Number(" 3.2808399")));

 }

 @Test public void combineWithNumbers() {
assertEquals(" Should combine numbers and units when multiplying.",

 " 3 * meter",
 three.mul(meter).toString());

assertEquals(" Should combine numbers and units when multiplying.",
 " 3 * meter",
 meter.mul(three).toString());

 }

 @Test public void exponent() {
assertEquals(" Should accept units raised to an integer power.",

 " meter ^ 3",
 meter.pow(three).toString());

assertEquals(" Should accept units raised to a negative power.",
 " meter ^ −3",
 meter.pow(three.neg()).toString());

assertEquals(" Should accept units raised to a fractional power.",
 " meter ^ 0.75",
 meter.pow(three.div(four)).toString());

 }

 @Test(expected=TypeError.class)
 public void unitAsPower() {

meter.pow(second);
 }

 @Test public void multiply() {
assertEquals(" Should combine units when multiplying them.",

 " meter * second",
 meter.mul(second).toString());

 }

Dec 08, 07 11:26 Page 1/2UnitTest.java

 @Test public void divide() {
assertEquals(" Should combine units when dividing them.",

 " meter / second",
 meter.div(second).toString());

 }

 /** The suite() method is required for compatibility with older
 * JUnit versions. */
 public static junit.framework.Test suite() {
 return new JUnit4TestAdapter(UnitTest.class);
 }
}

Dec 08, 07 11:26 Page 2/2UnitTest.java

Printed by Stuart Sierra

Tuesday December 18, 2007 87/119test/UnitTest.java

unit second
unit minute = 60 * second
unit hour = 60 * minute

set x = 1 * hour
print(x)

Dec 16, 07 21:50 Page 1/1UnitTime.in
3600.0*second

Dec 16, 07 21:50 Page 1/1UnitTime.out

Printed by Stuart Sierra

Tuesday December 18, 2007 88/119test/examples/UnitTime.in, test/examples/UnitTime.out

unit meter
alias m for meter
set x = 3*m
print(x)

Dec 08, 07 13:32 Page 1/1alias.in
3.0*meter

Dec 16, 07 21:45 Page 1/1alias.out

Printed by Stuart Sierra

Tuesday December 18, 2007 89/119test/examples/alias.in, test/examples/alias.out

constant x = 100
print(x)

Dec 08, 07 13:15 Page 1/1const1.in
100.0

Dec 16, 07 21:45 Page 1/1const1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 90/119test/examples/const1.in, test/examples/const1.out

set a = 1;
set b = 10;
set c = 2;
for i from a to b step c do
print(i)
 if (i >= 5) then
 exit()
 done
done

Dec 08, 07 13:54 Page 1/1exit.in
1.0
3.0
5.0

Dec 16, 07 21:45 Page 1/1exit.out

Printed by Stuart Sierra

Tuesday December 18, 2007 91/119test/examples/exit.in, test/examples/exit.out

for i from 1 to 5 step 1 do
print(i)
done

Dec 08, 07 12:37 Page 1/1for1.in
1.0
2.0
3.0
4.0
5.0

Dec 16, 07 21:45 Page 1/1for1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 92/119test/examples/for1.in, test/examples/for1.out

for i from 1 to 10 step 2 do
print(i)
done

Dec 08, 07 12:42 Page 1/1for2.in
1.0
3.0
5.0
7.0
9.0

Dec 16, 07 21:45 Page 1/1for2.out

Printed by Stuart Sierra

Tuesday December 18, 2007 93/119test/examples/for2.in, test/examples/for2.out

function foo(a, b)
print(a + b)

done

foo(2, 4)

Dec 08, 07 14:21 Page 1/1funcTest.in
6.0

Dec 16, 07 21:45 Page 1/1funcTest.out

Printed by Stuart Sierra

Tuesday December 18, 2007 94/119test/examples/funcTest.in, test/examples/funcTest.out

unit meter
set a = 3*meter
print(getNumber(a))

Dec 08, 07 12:48 Page 1/1getNumber.in
3.0

Dec 16, 07 21:45 Page 1/1getNumber.out

Printed by Stuart Sierra

Tuesday December 18, 2007 95/119test/examples/getNumber.in, test/examples/getNumber.out

unit meter
set a = 3*meter
print(getUnit(a))

Dec 08, 07 12:44 Page 1/1getUnit.in
meter

Dec 08, 07 12:46 Page 1/1getUnit.out

Printed by Stuart Sierra

Tuesday December 18, 2007 96/119test/examples/getUnit.in, test/examples/getUnit.out

unit inch
unit foot = 12*inch
print(36*inch in foot)

Dec 08, 07 12:36 Page 1/1in.in
3.0*foot

Dec 16, 07 21:45 Page 1/1in.out

Printed by Stuart Sierra

Tuesday December 18, 2007 97/119test/examples/in.in, test/examples/in.out

unit second
unit minute = 60 * second
unit hour = 60 * minute
unit day = 24 * hour
unit year = 365 * day

set x = 1 * year
print(x)

unit meter
unit kilogram
unit newton = meter * kilogram / second ^ 2

set Pi = 3.1415926
set omiga = 2 * Pi/ x

set G = 6.67 * 10^−11*newton * meter ^ 2/ kilogram^2
set r = 1.50 * 10^11 meter
set m = r^3 * omiga^2 / G
print(m)

Dec 15, 07 22:53 Page 1/1mathexample1.in
3.1536E7*second
2.01E30*kilogram

Dec 16, 07 21:48 Page 1/1mathexample1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 98/119test/examples/mathexample1.in, test/examples/mathexample1.out

nprint("foo")
nprint("bar")
print("123")

Dec 08, 07 12:27 Page 1/1nprint.in
foobar123

Dec 08, 07 12:27 Page 1/1nprint.out

Printed by Stuart Sierra

Tuesday December 18, 2007 99/119test/examples/nprint.in, test/examples/nprint.out

Calculate Factorial
This program is testing Looping function
Test Program written by Changlong Jiang cj2214@columbia.edu
Date 12/15/2007

use For Loops
set y=1
for x from 1 to 10 step 1 do
set y = y*x
done
print("use For Loop")
print(y)

use While Loops
set y=1
set z=1
while y <= 10 do
set z = z * y
set y = y+1
done
print("use While Loop")
print(z)

#use IF
print("use While Loop and If")
set y=1
set z=1
while y <= 10 do
set z = z * y
 if y>9 then
 print("y=",y," ","greater than 9, stop")
 return y;
 elsif y>6 then
 print("y=",y," ","greater than 6, continue")
 print("result=",z)
 else
 print("y=",y," ","less and equal than 6,continue")
 print("result=",z)
 done
set y = y+1
done

Dec 16, 07 12:44 Page 1/1phy1.in
use For Loop
3628800.0
use While Loop
3628800.0
use While Loop and If
y=1.0 less and equal than 6,continue
result=1.0
y=2.0 less and equal than 6,continue
result=2.0
y=3.0 less and equal than 6,continue
result=6.0
y=4.0 less and equal than 6,continue
result=24.0
y=5.0 less and equal than 6,continue
result=120.0
y=6.0 less and equal than 6,continue
result=720.0
y=7.0 greater than 6, continue
result=5040.0
y=8.0 greater than 6, continue
result=40320.0
y=9.0 greater than 6, continue
result=362880.0
y=10.0 greater than 9, stop

Dec 16, 07 21:45 Page 1/1phy1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 100/119test/examples/phy1.in, test/examples/phy1.out

Calculate Factorial
This program is testing function and logical operation
Test Program written by Changlong Jiang cj2214@columbia.edu
Date 12/15/2007

#this is function for factorial number
function factorial(x)
 print("x=",x)
 set y=1
 set z=1
 while y <= x do
 set z = z * y
 set y = y+1
 done
 nprint(x,"!=")
 print(z)
done

print("use function to calculate factorial")
factorial(6)

this is function to find the biggest number
function findbiggest(x,y,z)
 print("x=",x," ","y=",y," ","z=",z)
 if x>=y and y>=z then
 print("x is biggest")
 done
 if x>=y or y>=z then
 print("x is not smallest")
 done
 if not(y>=x) then
 print("y is smaller than x")
 done
done

set x = [7,5,3]
findbiggest(x[0],x[1],x[2])

Dec 16, 07 12:44 Page 1/1phy2.in
use function to calculate factorial
x=6.0
6.0!=720.0
x=7.0 y=5.0 z=3.0
x is biggest
x is not smallest
y is smaller than x

Dec 16, 07 21:46 Page 1/1phy2.out

Printed by Stuart Sierra

Tuesday December 18, 2007 101/119test/examples/phy2.in, test/examples/phy2.out

This is for Sun Mass Calculation
Estimate the mass of the sun given the Earth’s distance from the sun
r=1.50*10^11 meter
Assume the Earch follows a circular orbit
Universal Gravitational consatant G=6.67*10^(−11)*Newton*meter^2/kilogram^2
source from http://zebu.uoregon.edu/~probs/mech/grav
test program written by Changlong Jiang : cj2214@columbia.edu
Date 12/15/2007

define the unit
unit second
unit minute = 60 * second
unit hour = 60 * minute
unit day = 24 * hour
unit year = 365 * day

unit meter
alias m for meter
unit kilogram
unit newton = m * kilogram / second ^ 2

define the variable and calculate
set x = 1 * year
set Pi = 3.1415926
set omiga = 2 * Pi/x
set G = 6.67E−11 * newton * (1*m ^2) / (1 *kilogram ^ 2)
set r = 1.50E11 * m
set mass = (1*r^3) * (1*omiga^2)/G

#print result
print(mass)

Dec 15, 07 22:53 Page 1/1phy3.in
2.0086045922465554E30*kilogram

Dec 16, 07 21:46 Page 1/1phy3.out

Printed by Stuart Sierra

Tuesday December 18, 2007 102/119test/examples/phy3.in, test/examples/phy3.out

#This is for Calculate the radius of orbit of the Moon
#Universal Gravitational consatant G=6.67*10^(−11)*Newton*meter^2/kilogram^2
#Earth Mass is 5.98E24 * kilogram
#Source from http://zebu.uoregon.edu/~probs/mech/grav/distmoon
#Test Program written by Changlong Jiang : cj2214@columbia.edu
#Date 12/15/2007

#load the pre−defined unit
load "si.phy"

#set variable
set x = 29.53 * day

nprint("seconds:",x)
print()
#print(x in hour)
set y = 29.53 * 24 * 3600*second
print("Number is:", getNumber(y))
print("Unit is:",getUnit(y))
print("hours:",y in hour)

set Pi = 3.1415926
set G = 6.67E−11 * newton * (1*meter ^ 2) /(1*kilogram^2)

set masse = 5.98E24 * kilogram
set r = ((x*(1*G*(1*masse))^(1/2))/(2*Pi))^(2/3)
print(r)
print("Number is:", getNumber(r))
print("Unit is:",getUnit(r))

Dec 16, 07 12:44 Page 1/1phy4.in
seconds:2551392.0*second
Number is:2551392.0
Unit is:second
hours:708.72*hour
4.036521081066972E8*meter^1.0
Number is:4.036521081066972E8
Unit is:meter^1.0

Dec 16, 07 21:46 Page 1/1phy4.out

Printed by Stuart Sierra

Tuesday December 18, 2007 103/119test/examples/phy4.in, test/examples/phy4.out

print("Hello, World!")

Dec 08, 07 11:26 Page 1/1print1.in
Hello, World!

Dec 08, 07 11:26 Page 1/1print1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 104/119test/examples/print1.in, test/examples/print1.out

set x = 42
print(x)

Dec 08, 07 11:41 Page 1/1set1.in
42.0

Dec 16, 07 21:46 Page 1/1set1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 105/119test/examples/set1.in, test/examples/set1.out

set a = 4.1
print(toInt(a))
set a = 4.9
print(toInt(a))
set a = 4.5
print(toInt(a))

Dec 08, 07 11:56 Page 1/1toInt.in
4.0
4.0
4.0

Dec 16, 07 21:46 Page 1/1toInt.out

Printed by Stuart Sierra

Tuesday December 18, 2007 106/119test/examples/toInt.in, test/examples/toInt.out

set n = 42
set s = toString(n)
print(s + "abc")

Dec 08, 07 12:06 Page 1/1toString.in
42.0abc

Dec 16, 07 21:46 Page 1/1toString.out

Printed by Stuart Sierra

Tuesday December 18, 2007 107/119test/examples/toString.in, test/examples/toString.out

print(−4)
print(−(3*2))
print(−3*2)
set x = 42
print(−x)

Dec 08, 07 12:23 Page 1/1unary.in
−4.0
−6.0
−6.0
−42.0

Dec 16, 07 21:46 Page 1/1unary.out

Printed by Stuart Sierra

Tuesday December 18, 2007 108/119test/examples/unary.in, test/examples/unary.out

unit meter
print(3*meter)

Dec 08, 07 11:26 Page 1/1unit1.in
3.0*meter

Dec 16, 07 21:46 Page 1/1unit1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 109/119test/examples/unit1.in, test/examples/unit1.out

unit inch
unit foot = 12*inch
print(3*foot)

Dec 08, 07 12:32 Page 1/1unit2.in
36.0*inch

Dec 16, 07 21:51 Page 1/1unit2.out

Printed by Stuart Sierra

Tuesday December 18, 2007 110/119test/examples/unit2.in, test/examples/unit2.out

unit mile
unit hour
unit mph = mile / hour
print(55*mph)

Dec 08, 07 14:58 Page 1/1unit3.in
55.0*mile*hour^−1

Dec 16, 07 21:46 Page 1/1unit3.out

Printed by Stuart Sierra

Tuesday December 18, 2007 111/119test/examples/unit3.in, test/examples/unit3.out

unit feet
unit mile = 5280 * feet
unit second
unit hour = 3600 * second
unit mph = mile / hour

set x = 55*mph
print(x)

Dec 08, 07 15:01 Page 1/1unit4.in
80.6666667*feet/second

Dec 08, 07 15:01 Page 1/1unit4.out

Printed by Stuart Sierra

Tuesday December 18, 2007 112/119test/examples/unit4.in, test/examples/unit4.out

unit meter
unit second
unit mpss = meter / second ^ 2
print(9.8*mpss)

Dec 09, 07 17:31 Page 1/1unit5.in
9.8*meter/second^2

Dec 12, 07 21:01 Page 1/1unit5.out

Printed by Stuart Sierra

Tuesday December 18, 2007 113/119test/examples/unit5.in, test/examples/unit5.out

unit meter
unit second
unit kilogram
unit newton = kilogram * meter / second ^ 2
print(100*newton)

Dec 12, 07 20:59 Page 1/1unit6.in
100*kilogram*meter/second^2

Dec 12, 07 20:59 Page 1/1unit6.out

Printed by Stuart Sierra

Tuesday December 18, 2007 114/119test/examples/unit6.in, test/examples/unit6.out

unit meter
unit second
unit kilogram
unit newton = meter * kilogram / second ^ 2
set y = 2 * newton * (1* second ^2)
print(y)

Dec 14, 07 0:37 Page 1/1unit7.in
2.0*meter*kilogram

Dec 16, 07 21:51 Page 1/1unit7.out

Printed by Stuart Sierra

Tuesday December 18, 2007 115/119test/examples/unit7.in, test/examples/unit7.out

while true do
print("a")
print("b")
print("c")
break
done

Dec 08, 07 11:26 Page 1/1while1.in
a
b
c

Dec 08, 07 11:26 Page 1/1while1.out

Printed by Stuart Sierra

Tuesday December 18, 2007 116/119test/examples/while1.in, test/examples/while1.out

set x = 0
while x < 5 do
print(x)
set x = x + 1
done

Dec 08, 07 11:43 Page 1/1while2.in
0.0
1.0
2.0
3.0
4.0

Dec 16, 07 21:46 Page 1/1while2.out

Printed by Stuart Sierra

Tuesday December 18, 2007 117/119test/examples/while2.in, test/examples/while2.out

set x = 0
while true do
 if x >= 5 then
 break
 done
 print(x)
 set x = x + 1
done

Dec 08, 07 11:44 Page 1/1while3.in
0.0
1.0
2.0
3.0
4.0

Dec 16, 07 21:46 Page 1/1while3.out

Printed by Stuart Sierra

Tuesday December 18, 2007 118/119test/examples/while3.in, test/examples/while3.out

set x = 0
while x < 6 do
 print(x)
 if x = 3 then
 set x = 5
 next
 done
 print(x)
 set x = x + 1
done

Dec 08, 07 11:48 Page 1/1while4.in
0.0
0.0
1.0
1.0
2.0
2.0
3.0
5.0
5.0

Dec 16, 07 21:46 Page 1/1while4.out

Printed by Stuart Sierra

Tuesday December 18, 2007 119/119test/examples/while4.in, test/examples/while4.out

