
Haskell Computer Algebra System

Rob Tougher

December 15, 2007

Rob Tougher Haskell Computer Algebra System



Outline

I Tutorial

I Implementation

I Looking Back

Rob Tougher Haskell Computer Algebra System



Tutorial: Language Summary

HCAS is a subset of Haskell, plus support for computer algebra.

I Purely functional language

I Construction of mathematical expressions

I Navigation of mathematical expressions

Rob Tougher Haskell Computer Algebra System



Tutorial: Running HCAS

$ echo "main = 7" | ./hcasi
7
$

Rob Tougher Haskell Computer Algebra System



Tutorial: Hello World!

The HCAS Hello World program:

main = "Hello World!"

Output: “Hello World!”

Rob Tougher Haskell Computer Algebra System



Tutorial: Basic Data Types

I Number – integer and floating point types for numbers

I Character – single printable character

I List – contains zero or more elements

I String – list of characters

Rob Tougher Haskell Computer Algebra System



Tutorial: Numbers

Numbers represent integers or floating point types:

main = 7.5

Output: 7.5

Rob Tougher Haskell Computer Algebra System



Tutorial: Strings

Strings represent a list of characters:

main = "Hello World!"

Output: “Hello World!”

Rob Tougher Haskell Computer Algebra System



Tutorial: Lists

Lists represent zero or more items:

main = [1,2,3,4,5]

Output: [1,2,3,4,5]

Rob Tougher Haskell Computer Algebra System



Tutorial: Operators

I Math operators – addition, subtraction, multiplication, etc.
For basic math.

I List operators – the “++” operator concatenates two lists.

Rob Tougher Haskell Computer Algebra System



Tutorial: Math Operators

Math operators follow normal rules of associativity and precedence:

main = 2 + 3 * 4

Output: 14

Rob Tougher Haskell Computer Algebra System



Tutorial: List Operators

The concatenation operator lets you concatenate two lists:

main = [1,2,3] ++ [4,5]

Output: [1,2,3,4,5]

Rob Tougher Haskell Computer Algebra System



Tutorial: Functions

Functions represent callable HCAS expressions:

I Zero or more input arguments.

I Applicative-order evaluation.

I Strict evaluation

Rob Tougher Haskell Computer Algebra System



Tutorial: Calling a Function, No Arguments

Calling a function with zero arguments:

foo = 7
main = foo

Output: 7

Rob Tougher Haskell Computer Algebra System



Tutorial: Calling a Function, w/ Arguments

Calling a function with one or more arguments:

add(x, y) = x + y
main = add(3,4)

Output: 7

Rob Tougher Haskell Computer Algebra System



Tutorial: Function List Patterns

The colon operator in a function argument creates a list pattern:

reverse(x:xs) = reverse(xs) ++ [x]
reverse([]) = []
main = reverse("Hello World!")

Output: “!dlroW olleH”

Rob Tougher Haskell Computer Algebra System



Tutorial: Math Expression Data Type

If an identifier does not match a function name, it represents a
mathematical expression:

main = x + y

Output: x + y

Rob Tougher Haskell Computer Algebra System



Tutorial: Math Expression Data Type

A math expression is stored as a tree, using the normal rules of
precedence and associativity:

main = a*b + c - d

-

+

*

a b

c

d

Rob Tougher Haskell Computer Algebra System



Tutorial: Function Math Patterns

You can put any math operators in a function argument. These
create math patterns:

printType(x+y) = "addition"
printType(x-y) = "subtraction"
main = printType(a*b+c)

Output: “addition”
(In the call to printType, x refers to “a*b” and y refers to “c”.)

+

*

a b

c

Rob Tougher Haskell Computer Algebra System



Tutorial: Let Expressions

Let expressions create a new scope:

main =
let

x = 7
y = 8
add(a,b) = a+b

in
add(x,y)

Output: 15

Rob Tougher Haskell Computer Algebra System



Tutorial: Derivative Example

main = derivative(3*x^2+2*x)

derivative(a+b) = derivative(a) + derivative(b)

derivative(a-b) = derivative(a) - derivative(b)

derivative(c*x^e) = c*e*simplify(x^(e-1))

derivative(c*x) = c

derivative(x) = 0

simplify(x^1) = x

simplify(x^0) = 1

simplify(x+0) = x

simplify(0+x) = x

simplify(x+y) = simplify(x) + simplify(y)

simplify(x-y) = simplify(x) - simplify(y)

simplify(x) = x

Output: 6*x+2

Rob Tougher Haskell Computer Algebra System



Tutorial: Questions?

Any questions on the language?

Rob Tougher Haskell Computer Algebra System



Implementation: Technologies

I Haskell – the entire interpreter is written in Haskell, using the
Glasgow Haskell Compiler, v 6.6.1.

I HUnit – a unit testing framework, similar to JUnit and NUnit.

I Parsec – a monadic parsing library for top-down parsing.

Rob Tougher Haskell Computer Algebra System



Implementation: Haskell Modules

I AST.hs – contains the abstract syntax tree.

I Parser.hs – contains the parsing code. Takes an input string,
and returns an AST.

I Interpreter.hs – contains the interpreter code.

I MainInterpreter.hs – contains the main bootup code (reading
from stdin, writing to stdout).

Rob Tougher Haskell Computer Algebra System



Implementation: AST.hs

data Block = Block [Statement]
data Statement = Function String [Expression] Expression
data Expression =

-- Strings and lists.
List [Expression]
| Concat Expression Expression
| ListPattern [Expression]
| CharValue Char

-- Function-related items
| Call String [Expression]
| Let Block Expression
...

Rob Tougher Haskell Computer Algebra System



Implementation: Parser.hs

identifier :: Parser String
identifier =

do {
c <- letter;
cs <- many (identifierChar);
return (c:cs);

}

identifierChar =
do {

(alphaNum <|> char ’_’);
}

Rob Tougher Haskell Computer Algebra System



Implementation: Interpreter.hs

interpret :: [Block] -> Expression -> Expression

interpret _ (Number n) = (Number n)

interpret blocks (Let block expr) =

(interpret ([block] ++ blocks) expr)

interpret blocks (Addition left right) =

(addition left’ right’)

where

left’ = (interpret blocks left)

right’ = (interpret blocks right)

addition (Number n1) (Number n2) = (Number (n1 + n2))

addition left’’ right’’ = (Addition left’’ right’’)

Rob Tougher Haskell Computer Algebra System



Implementation: MainInterpreter.hs

main =

do {

script <- getContents;

case (parse file "" script) of

(Right parsed) ->

do {

interpreted <- return (interpretFile parsed);

putStrLn (showHCAS interpreted);

}

(Left err) ->

do {

putStrLn (show err);

}

}

Rob Tougher Haskell Computer Algebra System



Implementation: Unit Testing

Unit testing used to verify functionality. Three types of tests:

I Haskell unit tests

I HCAS boolean unit tests

I HCAS expected vs. actual unit tests

Rob Tougher Haskell Computer Algebra System



Implementation: Haskell Unit Tests

Haskell unit tests are writing using Haskell:

testNum2 = TestCase (

do {

expected <- return (Number 1.3);

(Right actual) <- return (parse numberAtom "" "1.3");

assertEqual "testNum2" expected actual;

}

)

Rob Tougher Haskell Computer Algebra System



Implementation: HCAS Boolean Unit Tests

HCAS boolean tests are HCAS scripts that must return a boolean
true value:

main = 7 == 1 + 2 + 4

Output: True

Rob Tougher Haskell Computer Algebra System



Implementation: HCAS Expected vs. Actual Unit Tests

HCAS expected vs. actual tests have an HCAS script and expected
output file for each test:

addition.hcas
addition_expected.txt
subtraction.hcas
subtraction_expected.txt
functioncall.hcas
functioncall_expected.txt
...

Rob Tougher Haskell Computer Algebra System



Implementation: Questions?

Any questions on the implementation?

Rob Tougher Haskell Computer Algebra System



Looking Back

I Haskell works well for parsing. Parsec is fun.

I Professor is right – get started early.

I I wish I wrote a compiler (instead of an interpreter). I missed
out on generation of IR and assembly code.

I If I had more time, I would add static typing.

Rob Tougher Haskell Computer Algebra System



Questions?

Any final questions?

Rob Tougher Haskell Computer Algebra System


