
Graphr

Michael Cole, Paul Dix, Joseph Kamien, Zhe Chen

December 18, 2007

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Requirements . 4
1.3 Readability . 5
1.4 Data Types . 5
1.5 Output . 5

2 Language Tutorial 6

3 Language Reference Manual 12
3.1 Language . 12

3.1.1 Characters . 12
3.1.1.1 Escape Character 12
3.1.1.2 Comments . 12

3.1.2 Identi�ers . 12
3.1.2.1 Keywords . 12
3.1.2.2 Variable Declaration 12
3.1.2.3 Numbers . 13
3.1.2.4 Arrays . 13
3.1.2.5 Associative Arrays 13
3.1.2.6 Strings . 14

3.1.3 Scope . 14
3.1.4 Functions . 14

3.1.4.1 Function De�nition 14
3.1.4.2 Program Startup 15

3.1.5 Operators . 15
3.1.5.1 Pre�x . 15
3.1.5.2 Mathematical 15
3.1.5.3 Boolean . 16
3.1.5.4 Assignment . 17
3.1.5.5 Precedence . 17

3.1.6 Conditional Expressions 18
3.1.6.1 if . 18
3.1.6.2 while . 18

1

CONTENTS 2

3.1.6.3 for . 18
3.1.6.4 foreach . 18

3.2 Library . 19
3.2.1 Input Output Library . 19

3.2.1.1 read_�le . 19
3.2.1.2 write_�le . 19
3.2.1.3 include . 19

3.2.2 Graphics Library . 20
3.2.2.1 Chart . 20
3.2.2.2 Graph . 21

3.2.3 String Library . 22
3.2.3.1 Split . 22
3.2.3.2 Substring . 22

3.2.4 Utility Functions . 22
3.2.4.1 Length . 22
3.2.4.2 Contains . 22
3.2.4.3 Union . 23

4 Project Plan 24
4.1 Design Process . 24

4.1.1 Planning & Speci�cation 24
4.1.2 Development . 24

4.1.2.1 Lexer & Parser 24
4.1.2.2 Static Semantic Analysis 25

4.2 Programming Style Guide . 25
4.2.1 Version Control . 25
4.2.2 Documentation . 25
4.2.3 Naming . 25
4.2.4 Braces . 25
4.2.5 Vertical Display . 26

4.3 Project Timeline . 26
4.4 Member Roles . 27
4.5 Software Development Environment 27

4.5.1 Languages . 27
4.5.2 Tools . 27

4.6 Project Log . 27

5 Architectural Design 29
5.1 Major Components . 29
5.2 Interface Description . 29

6 Test Plan 31
6.1 Test Programs . 31

6.1.1 Employee of the Month Program 31
6.1.2 The Standard Graph Program 33

6.2 Test Suites . 37

CONTENTS 3

6.2.1 String Tests . 37
6.2.2 File I/O Tests . 38
6.2.3 Associative Array Tests 38
6.2.4 Control Flow Tests . 38
6.2.5 Array Tests . 38
6.2.6 Foreach Tests . 38
6.2.7 While Loop Tests . 38
6.2.8 For Loop Tests . 38
6.2.9 Function Tests . 39
6.2.10 Logical Tests . 39
6.2.11 Assignment Tests . 39
6.2.12 Math Tests . 40
6.2.13 Variable Tests . 40
6.2.14 Screen Output Test . 40
6.2.15 Graph Tests . 40
6.2.16 Chart Tests . 40
6.2.17 Include Tests . 41

6.3 Selection of Test Cases . 41
6.4 Automation . 41
6.5 Who Did What . 41

7 Lessons Learned 42
7.1 Joseph Kamien . 42
7.2 Paul Dix . 42
7.3 Zhe Chen . 43
7.4 Michael Cole . 43

A Complete Log 44
A.1 Subversion Log . 44
A.2 Google Code Log . 62

B Code Listing 65
B.1 Joseph Kamien . 65
B.2 Michael Cole . 65
B.3 Paul Dix . 65
B.4 Zhe Chen . 66

Chapter 1

Introduction

Graphr is a language for processing data sets and creating charts and graphs
from that processed data. Built into the language are functions and types for
specifying di�erent kinds of charts, graphs, histograms, and their source data.
The language should be useful in cases where important data must be derived
from earlier data. The language is designed to be readable, expandable, and
dynamic.

1.1 Motivation

The ability to analyze data and draw conclusions is extremely important. It is
di�cult to work with large datasets in current spreadsheet software. In cases
where multiple functions need to be used on one dataset, the list of dependencies
may become unmanageable, and when mistakes are made, debugging is lengthy
and di�cult. Moreover, since functions must be de�ned based on locations
within the dataset, not based on variables which are meant to be represented
by the dataset, it is impossible to reuse functions across multiple datasets. By
allowing the programmer to easily de�ne his or her own parser, it will be much
simpler to use similar functions across myriad large datasets. By allowing the
user to work with functions by variable names, instead of locations within the
dataset, debugging will be much simpler.

1.2 Requirements

Graphr is designed to be easily used by scientists and engineers. Therefore,
in order to support the principles of multilateral cooperation and peer review,
which are hallmarks of the laboratory sciences, the language is designed to be
as platform-independent as possible.

Our interpreter is a Java program, so it is necessary to have the Java
Runtime Environment (JRE) installed in order to successfully translate and

4

CHAPTER 1. INTRODUCTION 5

execute Graphr programs. The latest JRE can be downloaded for free from
java.sun.com.

1.3 Readability

Graphr's syntax should be a human readable language for describing graphs, and
it will be easy for the programmer to specify di�erent mathematical functions.
It is important in many real world applications to clarify the path from source
data to conclusions drawn from that data. The methods and algorithms for
how data �les are parsed are understandable, and this is another important
consideration for readability.

1.4 Data Types

We plan to make the language dynamically typed in order to help programmers
who are not computer scientists understand our language. Therefore, we want
to avoid using cryptic types like integer, �oat, etc which can confuse users who
are unfamiliar with these terms. However, there will be a certain number of
�rst class types in the syntax of the language. These include numbers, regular
expressions, functions, and graphs. Expandable Graphr includes built in func-
tionality for parsing di�erent source data �les like .CSV. However, not all source
data �le types can be built into the language by default. It will be possible for
users of the language to design additional preprocessing modules for parsing �le
types besides CSV. The language will also have a number of built in chart and
graph types. These will de�ne how a graph is drawn and how the data appears
on the graph.

1.5 Output

The goal of the language is to quickly parse through data and create charts and
graphs, so output is very important. Graphr programs are able to output text
to the screen, manipulate text �les stored on the user's �le system, and output
jpeg images of graphs.

Chapter 2

Language Tutorial

2.1 A Simple Example

The �rst and most simple example of a programming language is almost always
the code to produce �Hello World�. Here is the Graphr implementation o� the
simple program to produce �Hello World� world to the console:

puts "Hello World";

As you can see, Graphr can implement this basic program in a single line
of code! Easy isn't it? The function puts �Hello World� prints the string
�Hello World� , which is enclosed in quotes, out to the command line. The ;
indicates the end of the statement, and is mandatory at the end of every Graphr
statement.

Now let's look at an example that actually shows some useful properties of
the Graphr language:

def life(arg1, arg2){

t = true;

if (t){

puts arg1;

puts arg2;

return 4*10+2;

}else {

return "There is no purpose in life";

}

}

a = "The purpose";

b = life(a, "of life is ");

puts b;

In this code snipped, we de�ne a function called life with 2 arguments with
the statement def life(arg1, arg2). The def is needed when a function is �rst

6

CHAPTER 2. LANGUAGE TUTORIAL 7

de�ned. The body of the function is enclosed in { and }. The function is called
near the end with life(a, �of life is�) with the two arguments being a and �of
life is � . As you can see variables are assigned a value with the = operator, and
all variables are dynamically typed, so they do not need to be declared before
use. Notice that t is assigned to a Boolean, while a is assigned to a string, and
b is assigned to the return value of the function life.

Inside the function life, there is an if-else statement checking the value of t,
since t is true, the �rst block of the if-else statement executes, printing out arg1
and arg2, then returning the mathematical expression 4*10+2. The output of
this code is:

The purpose

of life is

42

2.2 Compiling and Running Graphr Code

There are two ways to run Graphr code. The �rst and main method is to write
the code into a .gr �le, for example, code.gr, and then running the Graphr
interpreter to interpret the .gr �le. To invoke the Graphr interpreter on the .gr
�le, use the following command:

java -jar Graphr.jar filename.gr

The alternative method is to pass in the code as an argument to invoking
the interpreter. For example, if you want to run the `Hello World' code from
the very �rst example, we invoke as follows:

java -jar Graphr.jar -e "puts \"Hello World\";"

The -e argument tells the interpreter to interpret the last argument instead
of reading it from a �le. The code should be encapsulated in quotes. You must
be careful, because if you write a quote within your code, the interpreter would
think that it had reached the end of the code. So, whenever you write a a quote,
you must escape it by placing a \ immediately in front of the quote.

2.3 More Examples

def factorial(arg1){

prod = 1;

for (a=1; a <= arg1; a+=1){

prod *= a;

}

return prod;

}

def getMean(array){

CHAPTER 2. LANGUAGE TUTORIAL 8

mean = 0;

size = 0;

foreach(i in array){

mean += i;

size += 1;

}

return mean/size;

}

puts factorial(5);

a = [4, 7, 12, 3, 8];

puts getMean(a);

In this program, we de�ne a factorial function and a mean function. The
factorial function takes in a number and calculates its factorial using a for loop.
An array is declared with the statement a = [4, 7, 12, 3, 8]. In getMean,
a foreach loop is used to grab every value inside the array and add it to mean.
Incrementing by one is done by the += 1 assignment operator. This code
snippet outputs the following:

120

6.8

Next, let's look at some library functions we can make use of:

data = read_file("data.csv");

puts data;

puts substring("This is not a long string", 0, 8);

puts length("This is not a long string");

puts split("1, 3, 3, 7", ",");

foreach(line in data){

puts line;

}

writedata = ["35,22", "72,34", "100,2"];

puts write_file("write.csv", writedata, "w");

The function read_�le(�data.csv�) returns an Array that has each line
of the input �le data.csv as a String inside the Array. The function sub-
string(�This is not a long string�, 0, 8) takes �This is not a long string� and
creates a new String from characters 0-8 of the original String. The function
length(�This is not a String�) returns the length of a String, and �nally,
split(�1, 3, 3, 7�) returns an Array of Strings with each String being a sub-
string of the original String that was split using the token �,�. The function
write_�le(�write.csv�, writedata, �w�) takes the Array of Strings write-
data and writes it to the �le �write.csv�.

The output of this code is:

CHAPTER 2. LANGUAGE TUTORIAL 9

[1,10, 2,20, 3,15]

This is

25

[1, 3, 3, 7]

1,10

2,20

3,15

true

The input �le data.csv:

1,10

2,20

3,15

The output �le write.csv:

35,22

72,34

100,2

Finally, let's take a look at how to create a graph:

data = {

"Graphr" => 10,

"ruby" => 8,

"python" => 5,

"java" => 1

};

args = {

"title" => "Programming languages",

"type" => "createPieChart",

"xLabel" => "ignored",

"yLabel" => "ignored",

"data" => data,

"file" => "test_pie.jpg",

"legend" => true,

"width" => 350,

"height" => 350

};

puts data["Graphr"];

chart(args);

Here we see how Associative Arrays in Graphr are created. In the data
Associative Array, the numbers 10, 8, 5, and 1 are assigned to the key strings
�Graphr�, �ruby�, �python�, and �java�. To access a value based on a key in an
Associative Array, we use grab the value just like we would in a normal array,

CHAPTER 2. LANGUAGE TUTORIAL 10

except instead of the index, we input the key, like data[�Graphr�]. The call
to chart(args) will draw a jpeg �le with the name test_pie.jpg based on the
data and values inside the args Associative Array.

data = [[1, 3], [3, 4], [5, 5], [10, 6], [12, 10]];

graph({

"title" => "Some Random Points",

"type" => "createScatterPlot",

"xLabel" => "the x axis",

"yLabel" => "the y axis",

"legendLabel" => "random stuff",

"data" => data,

"file" => "test_scatter.jpg",

"legend" => true,

"width" => 350,

"height" => 350

});

CHAPTER 2. LANGUAGE TUTORIAL 11

When the graph requires both an x and y axis, we use graph() instead of
chart(). Here, the data is a 2-D array, initialized by initializing an array with
each element as another array initialization. Also, this time we are creating the
Associative Array as the argument to the function graph(). The output jpg is
the following:

Chapter 3

Language Reference Manual

3.1 Language

3.1.1 Characters

3.1.1.1 Escape Character

In order to insert a quote into a string, it is necessary to �escape� the quote by
entering \� instead of simply �.

3.1.1.2 Comments

Comments in source code are ignored by the compiler. In-line comments start
with /* and continue until the �rst */ is encountered (even if the �rst */ is on
a subsequent line). Single-line comments begin with // and continue until the
end of the line.

3.1.2 Identi�ers

3.1.2.1 Keywords

The following keywords are reserved and can not be used.
for if nil else

foreach while return def
true false in or
and puts read_�le write_�le

include

3.1.2.2 Variable Declaration

Variable names start with a character a-z or A-Z then continue with zero or
more of the following characters a-z, A-Z, 0-9, or underscore _. Variable names
are case sensitive.

12

CHAPTER 3. LANGUAGE REFERENCE MANUAL 13

Variables in Graphr are dynamically typed.

3.1.2.3 Numbers

The underlying structure storing numbers has the precision of a double in C.
Here are the number of bits and the possible values a number can store.

64 bits 2.2250738585072014 * (10^-308) to 1.7976931348623157 * (10^+308)
Numbers can be assigned to variables using the following syntax.

some_integer = 12;
some_decimal = 3.2;

Numbers must start with a digit, a number sign, or a decimal. Numbers that
start with a digit can be followed by any number of digits and optional decimal
point and zero or more digits afterward. Numbers that start with a decimal
must have one or more digits following the decimal.

3.1.2.4 Arrays

Arrays are single or multidimensional matrices. They are de�ned by assigning a
set of values separated by commas and bracketed by [] characters to a variable.
The function �length,� originally designed to return the length of strings and
described in section 3.2.4.1, has been overloaded so that, if given an array, it
will return the length of that array. Examples:

my_array = [2, 4, 2];
my_multi_dimensional_array = [[2, 3, 1], [4, 5]];
my_array_holding_di�erent_types = [�hello world�, 23.34, some_variable];

Memory for arrays is allocated at run time. They should start with a minimal
number of elements and increase in size dynamically. Arrays are zero indexed
and elements within an array can be referenced by including an expression that
evaluates to a number within the post�x brackets on an array name. Examples:

puts my_array[2];
puts my_array[some_function_that_returns_a_number()];

3.1.2.5 Associative Arrays

Associative arrays are arrays that have their elements dereferenced by a hashed
value rather than an integer. They are de�ned by assigning a set of key, value
pairs separated by commas and enclosed in curly braces. The key must be a
string, the value can be any type of Graphr data (including strings, numbers,
arrays, and even other associative arrays). Each key value pair is speci�ed with
the key on the left and the value on the right with the two separated by =>.
Examples:

CHAPTER 3. LANGUAGE REFERENCE MANUAL 14

string_assoc_array = {�a string� => �some value�, �another
string� => �another value�};

num_assoc_array = {�one string� => 1, �two string� => 2};
mixed_assoc_array = {�one string� => �one value�, �two num�

=> 2};

The program can access individual values stored in an associative array using
the same syntax as with a regular array.

Example:

puts string_assoc_array[�a string�]; //prints �some value�

3.1.2.6 Strings

Strings are an array of characters surrounded by double quotes. Examples:

my_string = �hello world�;
my_string = �\tThis is indented�;

3.1.3 Scope

Variable scope is static with no global scope. Outside of functions, there is
a main scope. Variables declared in this scope can only be used and a�ected
by expressions in this scope. Functions can only use variables declared within
themselves or those passed to it as arguments. Variables used within a function
cannot be accessed outside that function, although the function can return the
value of a variable. The result is that in our language, calling functions has no
�side e�ects.�

For example, f(1) + f(2) will always equal f(2) + f(1) for any Graphr function
f.

3.1.4 Functions

3.1.4.1 Function De�nition

A function is declared using the def keyword. They are declared like this:

def function_name(parameter-list, ...) { body... }
Function_name is the name of the function. Allowable function

names are the same as those for variables.

Parameter-list is the list of parameters that the function takes separated by
commas. If no parameters are given the parameter list should be de�ned with
an empty set of parenthesis.

All functions must return a value. The value they return is speci�ed by a
return statement within the function body. Examples:

CHAPTER 3. LANGUAGE REFERENCE MANUAL 15

return 3;
return my_associative_array;
return �some string�;

All functions must be declared at the top level and will be accessible as if they
were global variables (even though Graphr itself does not actually have global
variables). The return statement must be the last line in a function, and there
cannot be more than one return statement in the same function. If a return
statement is not provided, the function will automatically return a Boolean with
the value �true.�

3.1.4.2 Program Startup

The entire program is recognized as one expression. It can be stored in a �le with
the .gr extension and or it can be enclosed in quotes and run via the command
line.

3.1.5 Operators

3.1.5.1 Pre�x

Pre�x operators are operators that are attached to the beginning of an expres-
sion.

!operand

Returns the logical NOT operation on the operand. A true operand returns
false, a false operand returns true.

3.1.5.2 Mathematical

There are several mathematical operators which return the result de�ned for
each. If a string is provided for any of the expressions in a mathematical oper-
ation, Graphr will attempt to parse that string as a number.

For example, �5� + 5 would return a number with the value 10.

expression1+expression2

The result of this is the sum of the two expressions.

expression1-expression2

The result of this is the di�erence of the two expressions.

expression1*expression2

The result of this is the product of two expressions.

expression1/expression2

CHAPTER 3. LANGUAGE REFERENCE MANUAL 16

The result of this is the quotient of the two expressions.

expression1%expression2

The result of this is the value of the remainder after dividing expression1 by
expression2. Also called the modulo operator.

3.1.5.3 Boolean

The Boolean operators return either true or false. Everything which does not
evaluate to either false or nil is considered true.

expression1&&expression2

Returns the logical AND operation of expression1 and expression2. Can also be
written:

expression1 and expression2

expression1||expression2

Returns the logical OR operation of expression1 and expression2. Can also be
written:

expression1 or expression2

expression1<expression2

Returns true if expression1 is less than expression2, otherwise the result is false.

expression1>expression2

Returns true if expression1 is greater than expression2, otherwise the result is
false.

expression1<=expression2

Returns true if expression1 is less than or equal to expression2, otherwise the
result is false.

expression1>=expression2

Returns true if expression1 is greater than or equal to expression2, otherwise
the result is false.

expression1==expression2

Returns true if expression1 is equal to expression2, otherwise the result is false.
String equality is based on case sensitive lexical comparison.

expression1!=expression2

Returns true if expression1 is not equal to expression2, otherwise the result is
false.

CHAPTER 3. LANGUAGE REFERENCE MANUAL 17

3.1.5.4 Assignment

An assignment operator stores the value of the right expression into the left
expression. All assignment operators return the value of the right expression.

expression1=expression2

The value of expression2 is stored in expression1.

expression1*=expression2

The value of expression1 times expression2 is stored in expression1.

expression1/=expression2

The value of expression1 divided by expression2 is stored in expression1.

expression1%=expression2

The value of the remainder of expression1 divided by expression2 is stored in
expression1.

expression1+=expression2

The value of expression1 plus expression2 is stored in expression1.

expression1-=expression2

The value of expression1 minus expression2 is stored in expression1.

3.1.5.5 Precedence

The operators have a set order of precedence. Items inside parenthesis are
evaluated �rst and have the highest precedence. The following chart shows the
order of precedence with the items at the top having highest precedence.

Operator Name

! Logical NOT
* / % Multiplicative operators
+ - Additive operators

< > <= >= Inequality comparators
== != Equality comparators
&& and Logical AND
|| or Logical OR

+=, -=, ... Assignment

CHAPTER 3. LANGUAGE REFERENCE MANUAL 18

3.1.6 Conditional Expressions

3.1.6.1 if

The if statement allows for control-�ow manipulation. It consists of the reserved
word �if� followed by an expression inside parenthesis, followed by a block of
code in braces. If the expression within the parenthesis evaluates to true, then
the block of code within braces will be executed, if not then this block of code
will be ignored. An else statement may be placed immediately following the end
of this block of code. The else statement consists of the reserved word �else�
followed by a block of code in braces. If the expression does not evaluate to
true, and an else statement is provided, then the block of code following the
�else� will be executed.

Syntax:

if(expression) {statement1; statement2; statement3;}
or
if(expression) {statement1; statement2; statement3;}
else {statement4; statement5; statement6;}

3.1.6.2 while

The while statement provides an iterative loop.
Syntax:

while(expression1) {statement1; statement2; statement3;}

The block of code {statement1; statement2; statement3;} is executed repeatedly
as long as expression1 is true. The test on expression1 takes place before each
execution of {statement1; statement2; statement3;}.

3.1.6.3 for

The for statement allows for a controlled loop.
Syntax:

for(expression1 ; expression2 ; expression3) expression4...

expression1 is evaluated before the �rst iteration. After each iteration, expres-
sion3 is evaluated. expression1, expression2 or expression3 can be replaced with
nil. If expression2 is nil, it is assumed to be false. expression4 is executed re-
peatedly until the value of expression2 is false. The test on expression2 occurs
before each execution of expression4.

3.1.6.4 foreach

The foreach statement allows for iterating through an array. If the array is
associative, it allows for iterating through the keys of that associative array.

Syntax:

CHAPTER 3. LANGUAGE REFERENCE MANUAL 19

foreach(element in myarray) { ... }
foreach(element in expression) { ... }
foreach(key in associative_array){ ... }

In the above example element represents a new variable that will be in scope
of the foreach block. �in� is a keyword separating the new variable and the
expression or variable on the right hand side.

3.2 Library

Libraries consist of functions to expand the utility of the program. We created
libraries to enable input and output via �les and graphical manipulation.

3.2.1 Input Output Library

The Input Output library contains the functions necessary for reading input
and printing output. This gives the user the ability to take in data from sources
outside of the source code, such as the standard input or other �les. This also
allows the user to write data to �les.

3.2.1.1 read_�le

Declaration:

def read�le(�lename);

Reads from �lename and returns the entire �le in an array with each line of
the �le as a string in the array if successful. If the �le operation is not successful,
then it returns an empty array.

3.2.1.2 write_�le

Declaration:

def write_�lef(�lename, data, writehandle);

Returns true if writing the �le is successful, otherwise, nil. The data argu-
ment consists of an Array of Strings, with each String printed onto a new line.
The writehandle is a String literal that accepts 'a' to append. If the 'a' is not
given, then it will overwrite any existing �le which has the same name.

3.2.1.3 include

Declaration:

def include(�lename);

CHAPTER 3. LANGUAGE REFERENCE MANUAL 20

Returns true if �lename is successfully found. Filename should be a Graphr
header �le or a Graphr source code. Acts as if the entire content of �lename is
copied into the code with brackets around it. If �lename is not found, returns an
empty array. Includes should be placed at the beginning of a Graphr program.
Programs which include other programs cannot themselves be included in any
other program.

3.2.2 Graphics Library

The Graphics Library takes care of creating graphs from a set of data along
with various user inputs for the di�erent components of the graph. There are 2
graph generating functions: chart and graph.

3.2.2.1 Chart

Declaration:

def chart(args);

The function chart() is used to create graphs that only require a one dimen-
sional set of data, such as pie graphs, histograms, etc. It takes an Associative
Array args with the following required attributes:

args = {

"title" => "Name of the Chart Title",

"type" => "Type of the Chart you want to create",

"xLabel" => "Label of the X-Axis",

"yLabel" => "Label of the Y-Axis",

"data" => AssociativeArray, //an Associative Array

"file" => "name of the picture output",

"legend" => Boolean, //of whether to display the legend

"width" => Number, //indicating image width

"height" => Number, //indicating image height

}

The following chart types are accepted by the chart function as value of the
�type� key:

createAreaChart

createBarChart

createBarChart3D

createLineChart

createLineChart3D

createPieChart

CHAPTER 3. LANGUAGE REFERENCE MANUAL 21

createRingChart

createStackedAreaChart

createStackedBarChart

createStackedBarChart3D

createWaterfallChart

3.2.2.2 Graph

Declaration:

def graph(args);

The function graph() creates graphs that require a 2 dimensional set of
data, such as scatterplots. It takes an Associative Array args with the following
required attributes:

args = {

"title" => "Name of the Chart Title",

"type" => "Type of the Chart you want to create",

"xLabel" => "Label of the X-Axis",

"yLabel" => "Label of the Y-Axis",

"legendLabel" => "Label of the legend",

"data" => 2DArray, // A 2-dimensional array containing ordered pairs.

"file" => "name of the picture output",

"legend" => Boolean, //of whether to display the legend

"width" => Number, //indicating image width

"height" => Number, //indicating image height

}

Not charts types use all of the arguments, but you are required to input
them regardless. The following chart types are accepted by the chart function
as value of the �type� key:

createScatterPlot

createTimeSeriesChart

createXYAreaChart

createXYLineChart

createXYStepAreaChart

createXYStepChart

CHAPTER 3. LANGUAGE REFERENCE MANUAL 22

3.2.3 String Library

The String Library consists of simple functions for parsing Strings
which makes it easier to parse through text read in from �les.

3.2.3.1 Split

Declaration:

def split(String, token);

Breaks up String into an Array of Strings splitting based on the argument
token, which is also a String. For example, if token is �,�, if String was �35, 36,
45�, an Array of [�35�, �36�, �45�] would be returned.

3.2.3.2 Substring

Declaration:

def substring(String, start, end);

Returns a String that consists of the characters from start to end of the
original String, where start and end are integers.

3.2.4 Utility Functions

3.2.4.1 Length

Declaration:

def length(String);
def length(Array);

Returns the length of the String. This has been overloaded so that if called
on an array, it will return the number of elements in that array. If called on an
associative array, it returns the number of keys in the array.

3.2.4.2 Contains

Declaration:

def contains(Associative_Array, key_string);

Returns a Boolean indicating whether or not the associative array contains
the key string as one of its keys.

CHAPTER 3. LANGUAGE REFERENCE MANUAL 23

3.2.4.3 Union

The + sign has been overloaded so that if used on arrays, it will return a new
array in which the second array is the �nal element of the �rst array. This also
works for assignment.

Example:

a = [2,3];

b = [456,400];

a += b;

// a now equals [2, 3, [234, 12]]

If used on an associative array, it will return an array which contains the
key/value combinations from each array. If two identical keys point to unique
elements, the key/value combination from the second associative array will be
used, and the key/value combination from the �rst array will be ignored.

Chapter 4

Project Plan

4.1 Design Process

4.1.1 Planning & Speci�cation

For the planning and speci�cation stages in the project, we did almost all of
our work at weekly group meetings at which every team member was present.
We brainstormed di�erent ideas, and weighed the advantages and disadvantages
of each. As a group, we crafted the initial design plan, our proposal, and our
language reference manual.

4.1.2 Development

4.1.2.1 Lexer & Parser

When initially developing our lexer and parser, we did all of our programming
at meetings with every team member present. We would alternate with one
team member typing our grammar, one looking over his shoulder to assist in
immediate debugging, one working on future grammar additions on paper, and
one testing the grammar. This methodology had numerous advantages.

1. It made sure that every team member had an accurate view of the overall
code.

2. It eliminated the possibility of con�icts caused by multiple group members
working on the same �le at the same time.

3. Group members could work without worrying that the work they were
doing had already been done or would be incompatible with work done by
other members.

However, as the length of the parser grew, it became more di�cult to �nd
lengthy blocks of time during which each group member could be present. We
�nished the parser by working on it either as individuals or in pairs.

24

CHAPTER 4. PROJECT PLAN 25

4.1.2.2 Static Semantic Analysis

We began working on this part of the project as individuals. We noticed over
time that this portion of the project was extremely di�cult for one person to
do individually, and we resumed our group work strategy. We �nished this part
of the project at meetings at which every group member was present.

4.2 Programming Style Guide

4.2.1 Version Control

As a group we use Subversion, provided by Google Code (http://code.google.
com/), to automate version control. Each team member will regularly submit
updates to whichever part of the project he his working on, and must appropri-
ately mark changes in the log. A team member must always perform an update
(making sure that he has the latest version) before committing any code to the
repository.

4.2.2 Documentation

We will appropriately comment every element of the code, using Javadoc if
possible.

4.2.3 Naming

Code will be modularized and divided into separate �les whenever possible to
allow multiple people to work on the same aspect of the project at once. Func-
tions and variables will be given names that allow other group members to intuit
their meanings.

4.2.4 Braces

We utilize the brace style used in The C Programming Language by Kernighan
and Ritchie. When describing control �ow, the �rst opening brace will be placed
on the same line as the control statement. The closing brace will be written at
the same indent level as the original opening control-�ow statement.

Example: as opposed to the lines

for(int i = 0; i < 10; i++)

{

print i;

}

or

for(int i = 0; i < 10; i++){

print i;

}

CHAPTER 4. PROJECT PLAN 26

we would write

for(int i = 0; i < 10; i++){

print i;

}

4.2.5 Vertical Display

We will use spacing to make sure that, where appropriate, like values appear as
a vertical chart.

Example:

if (c.containsKey("add_circle")) init_circles();

if (c.containsKey("add_rectangle")) init_rectangles();

if (c.containsKey("add_line")) init_lines();

4.3 Project Timeline

9/13/07

Began to brainstorm ideas for languages; agreed to meet at later time and come
to �nal decision.

9/17/07

Decided to create a language for making charts and graphs, began working on
proposal.

9/25/07

Submitted completed project proposal. Planned a meeting with TA to receive
feedback.

10/13/07

Modi�ed our project based on feedback, largely altering the syntax. Set up
Subversion with Google Code (discussed further in section 4.2.1). Began working
on language reference manual and the initial ANTLR grammar.

10/18/07

Submitted completed LRM.

10/24/07

Finished ANTLR grammar. Began working on graphics package and static
semantic analysis.

CHAPTER 4. PROJECT PLAN 27

11/4/07

Finished rough draft of graphics package.

12/12/07

Finished integrating the charts & graphs package with the rest of our code.

12/18/07

Finished project (static semantic analysis & integration with graphics).

4.4 Member Roles

As explained in the aforementioned section, every member is responsible for
participating in every aspect of the project. However, we do have o�cial dis-
tinctions based on speci�c portions of the project.

Team Member O�cial Role

Michael Cole Grammar, parser, and lexer
Paul Dix Static semantic analysis

Joseph Kamien Testing and documentation
Zhe Chen Integration with Java graphics

4.5 Software Development Environment

4.5.1 Languages

We use ANTLR v3 (http://www.antlr.org/) for generating our lexer and
parser. We use Java v1.5 (http://java.sun.com) for our static semantic anal-
ysis, and we use Ruby v1.8.6 (http://www.ruby-lang.org/) for regression test-
ing.

4.5.2 Tools

We use the Antlrworks v1.1.4 integrated development environment to assist in
generating our lexer and parser. As mentioned in section 4.2.1, we utilized
Subversion provided by Google Code to automatically manage version control.
When working with Java, we used a combination of simple text editors (such
as WordPad and TextMate) and Eclipse (a more sophisticated IDE available at
http://www.eclipse.org/).

4.6 Project Log

We logged our project using the built-in log features provided by Subversion.
Since we were using Google Code, we were also able to use its �issues� feature

CHAPTER 4. PROJECT PLAN 28

to keep track of small changes within our project. Since we did most of our
coding as a group, it was rarely necessary to use this latter feature, since we
could just talk to each other as issues arose. For the complete subversion log,
and the complete Google Code �Issues� log, please see section A on page 44.

Chapter 5

Architectural Design

5.1 Major Components

The major components of our translator are described by the following block
diagram:

For the user's convenience, we have constructed a tool which performs the
above steps and then executes the Java program using the Java Runtime En-
vironment (described as a requirement in section 1.2) installed on the user's
computer.

5.2 Interface Description

Preprocessing Before the Graphr �le is seen by the lexer, the Graphr.java pro-
gram performs preprocessing, handling include statements as necessary.

Lexer This part scans the .gr �le and identi�es di�erent tokens.

Parser This part uses top-down predictive parsing to tell whether the tokens
are actually organized in the form of a valid program. The interface be-
tween the parser and the lexer (the exact format in which tokens are
stored) is handled automatically by the ANTLR tool.

Tree-Walker This part received the abstract syntax tree represented by a
stream of tokens. ANTLR v2 allows the program to jump to di�erent
points in the tree, but ANTLR v3 only supports iterating through the
stream and rewinding the stream (for more information on the software

29

CHAPTER 5. ARCHITECTURAL DESIGN 30

we used, see section 4.5). This would not be an issue if our code executed
everything sequentially, but for loops and control �ow operations, it is
necessary to jump to di�erent parts of the tree. The tree-walker accom-
plishes this by marking certain points in the stream, and rewinding or
fast-forwarding to marked points in the stream as necessary.

Execution This interface sends Java code directly to the Java Runtime En-
vironment (JRE). We require the user to have the JRE installed on the
machine on which he or she runs Graphr code. For more information, see
section 1.2.

Chapter 6

Test Plan

6.1 Test Programs

We used several programs to test the functionality of our project. Here is a
sample of some programs we used.

6.1.1 Employee of the Month Program

This program is designed to read from a data �le, calculate which employee had
the most sales, and display the resulting data in a graph. It requires the �le
�salesdata.csv� to be in the same directory as the Graphr interpreter. Here are
the sample contents of �salesdata.csv�:

April

Bill,30

Ted,15

Bob,20

Here is the code for the program itself:

//reads data from file

filename = "salesdata.csv";

data = read_file(filename);

len = length(data);

puts "Number of employees: " + (len - 1);

//checks file read successfully

if(len > 0){

//parses file

month = data[0];

puts "Calculating graph for month of " + month;

chartdata = {};

31

CHAPTER 6. TEST PLAN 32

maxsales = 0;

sales = 0;

person = "";

for(i = 1; i < len; i+=1){

linestr = data[i];

line = split(linestr,",");

key = line[0];

sales = line[1];

chartdata[key] = sales;

if(sales > maxsales){

person = key;

maxsales = sales;

}

}

puts chartdata;

puts "Employee of the Month: " + person +

" with " + maxsales + " sales!";

//makes chart

a = 3;

chart({

"title" => "Congratulations " + person,

"type" => "createBarChart",

"xLabel" => "Employee",

"yLabel" => "Sales",

"legendLabel" => "",

"data" => chartdata,

"file" => "bar.jpg",

"legend" => false,

"width" => 350,

"height" => 350

});

}

else{

puts "Error reading from file: " + filename;

}

Here is the resulting standard output:
Number of employees: 3
Calculating graph for month of April
[Bill => 30, Bob => 20, Ted => 15]
Employee of the Month: Bill with 30 sales!
Here is the resulting graph created with this dataset:

CHAPTER 6. TEST PLAN 33

6.1.2 The Standard Graph Program

One of the main advantages to a language like Graphr is that it has the ability
to include other Graphr programs. This encourages collaboration by allowing
shared functions to be declared in one �le, and then used in many programs.
This example program shows how the include function can be utilized to create
standard graphs across organizations.

The following Graphr �le should be in the same directory as the Graphr
interpreter and named �graphlib.gr�:

def scatgraph(d, name){

graph({

"title" => "Some Random Points",

"type" => "createScatterPlot",

"xLabel" => "the x axis",

"yLabel" => "the y axis",

CHAPTER 6. TEST PLAN 34

"legendLabel" => "random stuff",

"data" => d,

"file" => name,

"legend" => true,

"width" => 350,

"height" => 350

});

}

def linegraph(d, name){

graph({

"title" => "Some Random Points",

"type" => "createXYLineChart",

"xLabel" => "the x axis",

"yLabel" => "the y axis",

"legendLabel" => "random stuff",

"data" => d,

"file" => name,

"legend" => true,

"width" => 350,

"height" => 350

});

}

Any other Graphr program can include this program, and then call upon
either function. The result is that an organization can create the �graphlib.gr�
�le and allow all of its members to make graphs which have the same formatting.
Here is a sample program which utilizes this feature:

include "graphlib.gr";

data = [[1, 3], [3, 4], [5, 5], [10, 6], [12, 10]];

linegraph(data, "my_linegraph.jpg");

scatgraph(data, "my_scatgraph.jpg");

data = [];

foreach(line in read_file("data.csv")) {

data += split(line, ",");

}

puts "Here is the data:";

puts data;

linegraph(data, "graph_from_file.jpg");

Here is the standard output produced:

Here is the data:

[[1, 10], [2, 20], [3, 15]]

Here are the resulting graphs which are produced:

CHAPTER 6. TEST PLAN 35

CHAPTER 6. TEST PLAN 36

CHAPTER 6. TEST PLAN 37

6.2 Test Suites

We used the following test suites to test our interpreter:

6.2.1 String Tests

'puts length("hello");',

'foreach (sub in split("this, is, a, test string", ", "))

{puts sub;}',

'a = "this, is, a, test string";

foreach (sub in split(a, ", ")) {puts sub;}',

'puts substring("hello world", 0, 3);',

'a = "hello, world"; puts substring(a, 5, length(a));'

CHAPTER 6. TEST PLAN 38

6.2.2 File I/O Tests

"a = read_file(\"test.txt\"); puts a;",

"foreach (line in read_file(\"test.txt\")) {puts line;}",

"a = read_file(\"test.txt\"); a[2] = \"modified line\";

puts write_file(\"modified.txt\", a, \"w\");"

6.2.3 Associative Array Tests

'a = {}; puts a;',

"a = {\"asdf\" => 3, \"foo\" => \"bar\"}; puts a;",

"a = {\"asdf\" => 3, \"foo\" => \"bar\"}; puts a[\"foo\"];",

"a = {\"asdf\" => 3, \"foo\" => \"bar\"}; a[\"foo\"] = \"hello world\";

puts a[\"foo\"];",

"a = \"hello\"; b = {\"foo\" => 3, \"bar\" => a}; puts b;"

6.2.4 Control Flow Tests

"a = true; if (a) {puts \"a was true\";}",

"a = false; if (a) {puts \"we shouldn't get here\";}

else {puts \"a was false\";}"

6.2.5 Array Tests

'a = []; puts a;',

"puts [2, 1, 3, 9, 10];",

"a = [2, 1, 3]; puts a;",

"a = [\"test\", \"stuff\"]; puts a;",

"a = [\"test\", \"stuff\"]; puts a[1];",

"a = [\"test\", \"stuff\"]; a[0] = \"hello world\"; puts a[0];",

'a = ["foo", "bar"]; a += [3, 2]; puts a;'

6.2.6 Foreach Tests

'foreach (i in ["hello", "world"]) {puts i;} puts "done";'

6.2.7 While Loop Tests

"i = 0; while (i < 3) {puts i; i += 1;}",

"t = true; while (t) {puts t; t = false;}"

6.2.8 For Loop Tests

"i = 3; for (i; i < 5; i += 1) { puts i; puts \"hello\";}",

"for (i = 2; i < 5; i += 1)

{puts i; puts \"hi from second\";}"

CHAPTER 6. TEST PLAN 39

6.2.9 Function Tests

'def myfun() {a = "test"; puts a;} myfun();',

"def myfun(arg1, arg2) {puts arg1; puts arg2;}

myfun(\"hello\", \"world\");",

"def myfun()

{puts \"hello from function with no arguments\";}

myfun();",

"def myfun(arg) {puts arg;}

myfun(\"a function with one argument\");",

'def myfun() {puts "in function"; return 3;

puts "this should NOT output";}

a = myfun();

puts "returned value: " + a;',

'def myfun()

{puts "in function";

return 3;

puts "this should NOT output";}

puts myfun() + 3;',

'def myfun(arg) {puts "in function";

return arg + 2;

puts "this should not print!";}

puts "returned value: " + myfun(2);'

6.2.10 Logical Tests

"foo = true; bar = false; test = foo or bar; puts test;",

"foo = true; bar = false; test = foo || bar; puts test;",

"foo = true; bar = true; test = foo and bar; puts test;",

"foo = true; bar = true; test = foo && bar; puts test;",

"foo = 2; bar = 3; test = foo < bar; puts test;",

"foo = 2; bar = 2; test = foo <= bar; puts test;",

"foo = 3; bar = 2; test = foo > bar; puts test;",

"foo = 3; bar = 3; test = foo >= bar; puts test;",

"foo = 4; bar = 4; test = foo == bar; puts test;",

"foo = 4; bar = 4; test = foo != bar; puts test;",

'puts !true;', 'a = false; puts !a;',

't = 1; if (t == 1) {puts "hi";}'

6.2.11 Assignment Tests

"test = 234; puts test;",

"test = 1; test += 2; puts test;",

"test = 2; test -= 1; puts test;",

"test = 6; test /= 2; puts test;",

"test = 8; test *= 2; puts test;",

CHAPTER 6. TEST PLAN 40

"test = \"some string\"; puts test;",

"test = 2 + 3; puts test;"

6.2.12 Math Tests

"a = 3 + 4 + 7; puts a;", "a = 3 * 5; puts a;",

"a = (3 + 4) * 5; puts a;", 'puts 3 % 2;',

'puts "hello" % 5;', 'puts "4" % 2;',

'puts 5 % "3";'

6.2.13 Variable Tests

"a = 7; puts a;",

"a = \"hello from a variable\"; puts a;"

6.2.14 Screen Output Test

"puts \"hello world\";",

"puts 23;",

'puts "hello, " + "world!";',

'puts 3 + 5;'

6.2.15 Graph Tests

'data = [[1, 3], [3, 4], [5, 5], [10, 6], [12, 10]];

graph({"title" => "Some Random Points",

"type" => "createScatterPlot",

"xLabel" => "the x axis",

"yLabel" => "the y axis",

"legendLabel" => "random stuff",

"data" => data,

"file" => "test_scatter.jpg",

"legend" => true,

"width" => 450,

"height" => 450

}); '

6.2.16 Chart Tests

'data = {"Graphr" => 10,

"ruby" => 8,

"python" => 5,

"java" => 1};

puts data;

args = {"title" => "Programming languages",

"type" => "createPieChart", "xLabel" => "ignored",

CHAPTER 6. TEST PLAN 41

"yLabel" => "ignored",

"data" => data,

"file" => "test_pie.jpg",

"legend" => true,

"width" => 450,

"height" => 450

};

puts args;

chart(args);'

6.2.17 Include Tests

"include

\"test_include_variables.gr\";

puts a;",

"include \"test_include_execute.gr\";

puts \"done with the include\";",

"include \"test_include_function.gr\";

included_function(\"called an included function\");"

6.3 Selection of Test Cases

The test cases were chosen so that each case would isolate one particular feature
which our language promises and either succeed or fail based solely on whether or
not that feature actually functions the way we predict it should. We created test
cases which are meant to re�ect what a user is likely to do, and test cases which
are unlikely to ever be implemented, but must technically work according to our
language reference manual. We �xed all bugs in a timely manner, prioritizing the
cases we thought were common ahead of those which we thought were unusual.

6.4 Automation

We wrote a Ruby script which could, on command, execute all test cases or
certain select test cases.

6.5 Who Did What

Joseph Kamien tested the parser, lexer, and tree-walker concurrent with their
development. Paul Dix created the automated Ruby script to assist in testing.

Chapter 7

Lessons Learned

In this chapter, each group member shares his lessons learned and gives advice
for future teams.

7.1 Joseph Kamien

Start early. Prioritize the features you want to add, completing essential features
�rst and then adding additional ones later. When deciding which features to
promise, maintain focus on the objective of your project, and do not try to
include features merely because they seem �cool.� Do not make assumptions
about what the other members of the team are working on; communicate with
them frequently. Examine the code of your fellow group members. If you do
not understand something another group member does with his or her code,
ask about it. There is a chance your team member solved a problem in a
really intelligent way which would not have occurred to you, in which case you
might learn something. In the other case, your team member did something
nonsensical, and this is a chance for you to help. When doing a bug test,
make sure you do a version control update beforehand to make sure that you
are not �nding bugs that have already been �xed. When you have �xed a
bug, commit the code as soon as possible so that other group members are not
frustrated by the same bug that you have already eliminated. Commit your
code to version control before leaving a room, so that if a laptop is somehow
destroyed by a colleague with imprecise knowledge of �uid dynamics, your code
is still preserved.

7.2 Paul Dix

Start earlier. Output and plan the AST you'll produce as you write the lexer
and parser grammar. We should have re-evaluated the graphics package thing
much sooner. Basically we should have planned to revisit each portion of the
language as we progressed. You always plan to do much more than you can

42

CHAPTER 7. LESSONS LEARNED 43

actually get done (I knew this, but every major project is just a reminder).
Writing a dynamically typed language is hard.

7.3 Zhe Chen

Getting good communication between team members is essential. I think in
general our group was pretty good with telling each other what's up with the
current status, and even if things didn't work out, as long as everyone was
aware certain parts needed work, things could be �xed fairly quickly. Also,
it's also crucial to not over state your goals in the beginning, as we were a bit
too ambitious in what we planned to do, and in the end, although we got the
major functionality done, we were not able to implement a lot of the smaller
things we said we'd do. However, because we left our code �exible, a lot of those
things could still be easily implemented if more time is spent, or the user himself
should be able to write them using what we provided. So de�nitely, it's good
that we made our language �exible enough so that even though it only has the
basic functionality right now, the user can use it to make much more complex
programs that do what they want it to do. Also, it's a good idea to look ahead
a bit more. All the code I wrote for the drawing portion of the language ended
up not making it in, as wiring it up would have taken a lot of time, and we
still had to write the libraries that used those drawing tools to create graphs.
We ended using an open source graph drawing library to replace it, as it was
much easier to wire up and had all the functionality already. Had we decided
to go with the open source graph drawing library �rst, we could have saved a
lot of time from designing our own graph drawing tools and spent more time
implementing the extra functionality we had to cut.

7.4 Michael Cole

Like every PLT group before us, we probably should have started earlier. When
writing our LRM, we did not spend nearly enough time working out our lexer
and parser issues. This error in judgment pushed everything else for the project
back by at least two weeks. I have also learned that we should have aimed even
lower than we originally did. We de�nitely bit o� more than we could chew
despite the fact that we were trying to weary of adding extraneous functionality.
I cannot help but feel slightly disappointed that we did not meet all of our
claims in our LRM, despite the fact that we implemented the majority of what
we aspired for in the LRM.

Appendix A

Complete Log

A.1 Subversion Log

Revision: 110
Author: whatisthelemon
Date: 4:29:00 PM, Tuesday, December 18, 2007
Message:
Changed the testing section.
Note that this version describes our language as dynamically scoped. If we

change that, it's ok to revert back to this version of the �nal doc.
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 109
Author: whatisthelemon
Date: 10:32:39 PM, Monday, December 17, 2007
Message:
Added information about our testing
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 108
Author: whatisthelemon
Date: 9:31:45 PM, Monday, December 17, 2007
Message:
Made changes to architectural design section.
�-
Deleted : /trunk/Docs/block_compiler.JPG
Added : /trunk/Docs/block_compiler3.jpg
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 107
Author: whatisthelemon
Date: 1:55:50 PM, Monday, December 17, 2007

44

APPENDIX A. COMPLETE LOG 45

Message:
Adding data �le
�-
Added : /trunk/antlr/data.csv
Revision: 106
Author: whatisthelemon
Date: 1:53:03 PM, Monday, December 17, 2007
Message:
Added �le manip stu� to the demo
�-
Modi�ed : /trunk/antlr/demo.gr
Modi�ed : /trunk/antlr/graphlib.gr
Revision: 105
Author: paulcdix
Date: 1:48:33 PM, Monday, December 17, 2007
Message:
* �xed creating of an array with no elements
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 104
Author: whatisthelemon
Date: 1:42:48 PM, Monday, December 17, 2007
Message:
Added �les for demo.
�-
Added : /trunk/antlr/demo.gr
Added : /trunk/antlr/graphlib.gr
Revision: 103
Author: paulcdix
Date: 1:33:44 PM, Monday, December 17, 2007
Message:
* put addition into GraphrArray
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 102
Author: xionvalkyrie
Date: 12:22:09 AM, Monday, December 17, 2007
Message:
�-
Modi�ed : /trunk/Docs/GraphrTut.pdf
Revision: 101

APPENDIX A. COMPLETE LOG 46

Author: xionvalkyrie
Date: 12:16:45 AM, Monday, December 17, 2007
Message:
Added Slides for tutorial
�-
Added : /trunk/Docs/GraphrTut.pdf
Revision: 100
Author: whatisthelemon
Date: 11:37:55 PM, Sunday, December 16, 2007
Message:
Edited and added Zhe's stu� (changes to the LRM to re�ect our graphics

library).
�-
Modi�ed : /trunk/Docs/�nal.lyx
Deleted : /trunk/Docs/zhelessonslearned1.lyx
Revision: 99
Author: xionvalkyrie
Date: 11:29:33 PM, Sunday, December 16, 2007
Message:
Added graphics Library to the LRM
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 98
Author: whatisthelemon
Date: 10:39:25 PM, Sunday, December 16, 2007
Message:
Added lessons learned to the �nal report, and added the full svn log.
�-
Added : /trunk/Docs/block_compiler.JPG
Modi�ed : /trunk/Docs/�nal.lyx
Added : /trunk/Docs/svn_log.txt
Added : /trunk/Docs/test_pie.jpg
Added : /trunk/Docs/test_scatter.jpg
Revision: 97
Author: xionvalkyrie
Date: 9:39:27 PM, Sunday, December 16, 2007
Message:
�-
Modi�ed : /trunk/antlr/DrawCanvas.java
Modi�ed : /trunk/antlr/writeImage.java
Revision: 96
Author: xionvalkyrie
Date: 9:35:08 PM, Sunday, December 16, 2007
Message:
�-
Added : /trunk/Docs/zhelessonslearned1.lyx

APPENDIX A. COMPLETE LOG 47

Revision: 95
Author: whatisthelemon
Date: 9:31:33 PM, Sunday, December 16, 2007
Message:
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 94
Author: xionvalkyrie
Date: 7:04:12 PM, Sunday, December 16, 2007
Message:
�-
Added : /trunk/antlr/test_pie.jpg
Added : /trunk/antlr/test_scatter.jpg
Revision: 93
Author: whatisthelemon
Date: 6:50:07 PM, Sunday, December 16, 2007
Message:
Spellchecked and edited.
�-
Modi�ed : /trunk/Docs/tut.lyx
Revision: 92
Author: whatisthelemon
Date: 6:49:39 PM, Sunday, December 16, 2007
Message:
Spellchecked and edited Zhe's tutorial part, then added it to document.
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 91
Author: whatisthelemon
Date: 6:27:52 PM, Sunday, December 16, 2007
Message:
Made changes to include more of our coding conventions.
�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 90
Author: xionvalkyrie
Date: 6:26:39 PM, Sunday, December 16, 2007
Message:
Added the tutorial section for the �nal paper.
�-
Added : /trunk/Docs/tut.lyx
Revision: 89
Author: whatisthelemon
Date: 4:42:07 PM, Sunday, December 16, 2007
Message:
Did some �xes to LRM

APPENDIX A. COMPLETE LOG 48

�-
Modi�ed : /trunk/Docs/�nal.lyx
Revision: 88
Author: paulcdix
Date: 4:39:59 PM, Sunday, December 16, 2007
Message:
* �xed a bug with foreach statements that would cause the program to end

after they're done
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 84
Author: paulcdix
Date: 3:58:55 PM, Sunday, December 16, 2007
Message:
* �xed a bug that was introduced earlier that broke hashes
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Revision: 83
Author: paulcdix
Date: 3:57:34 PM, Sunday, December 16, 2007
Message:
* �xed the logical stmt so you can do if (t == 1)
* this removed the ability to do if (3) ... it's stupid, don't do it
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 82
Author: paulcdix
Date: 3:45:40 PM, Sunday, December 16, 2007
Message:
* wired up the == operator
* wired up the != operator
* added a bunch of equals code to the graphr data types
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/GraphrAssociativeArray.java
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb

APPENDIX A. COMPLETE LOG 49

Revision: 80
Author: paulcdix
Date: 3:05:38 PM, Sunday, December 16, 2007
Message:
* wired up the not ! operator
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrBoolean.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 79
Author: paulcdix
Date: 2:48:47 PM, Sunday, December 16, 2007
Message:
* added the mod operation to GraphrString
* �xed mod in GraphrNumber to try to convert the rval to a number if it's

a string and removed a dubug line
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 78
Author: paulcdix
Date: 2:42:48 PM, Sunday, December 16, 2007
Message:
* wired subtract, multiply, divide and mod to strings and numbers
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 76
Author: paulcdix
Date: 2:16:31 PM, Sunday, December 16, 2007
Message:
* added another parenthesis option to logical and add stmts
* �xed while and if to look for logical_stmts
* sacri�ced a kitten to the antlr gods
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g

APPENDIX A. COMPLETE LOG 50

Revision: 71
Author: paulcdix
Date: 2:00:05 PM, Sunday, December 16, 2007
Message:
* wired up return statements in functions
* �xed parsing rules for logical_stmt
* put func_call_stmt into enclosed_stmt to �x add_stmt precendence
* put logical_stmt into enclosed_stmt to �x add_stmt precendence
* made all values that to something other than null or false return true
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 68
Author: blakstar1220
Date: 7:06:10 PM, Saturday, December 15, 2007
Message:
Documentation added. Except for WriteImage and DrawCanvas.
�-
Modi�ed : /trunk/antlr/Graphr.java
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/GraphrAssociativeArray.java
Modi�ed : /trunk/antlr/GraphrBoolean.java
Modi�ed : /trunk/antlr/GraphrCollection.java
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrGraphics.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Revision: 67
Author: paulcdix
Date: 4:29:27 PM, Saturday, December 15, 2007
Message:
* wired up string functions split, length, and substring
* added tests for the new functions
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 66
Author: paulcdix
Date: 6:05:06 PM, Thursday, December 13, 2007
Message:
* wired up the graphics library
* �xed a bug in the graphics library related to some arg named Locale

APPENDIX A. COMPLETE LOG 51

* added a test for chart and graph
*
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrAssociativeArray.java
Modi�ed : /trunk/antlr/GraphrGraphics.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/Manifest.txt
Modi�ed : /trunk/antlr/all_tests.rb
Modi�ed : /trunk/antlr/build_and_test.rb
Revision: 65
Author: blakstar1220
Date: 4:58:07 PM, Thursday, December 13, 2007
Message:
JAR's for JFreeChart
�-
Added : /trunk/antlr/gnujaxp.jar
Added : /trunk/antlr/itext-2.0.6.jar
Added : /trunk/antlr/jcommon-1.0.12.jar
Added : /trunk/antlr/jfreechart-1.0.8a-experimental.jar
Added : /trunk/antlr/jfreechart-1.0.8a-swt.jar
Added : /trunk/antlr/jfreechart-1.0.8a.jar
Added : /trunk/antlr/junit.jar
Added : /trunk/antlr/servlet.jar
Revision: 64
Author: blakstar1220
Date: 4:56:01 PM, Thursday, December 13, 2007
Message:
Charts and graphs added.
�-
Added : /trunk/antlr/GraphrGraphics.java
Revision: 63
Author: paulcdix
Date: 4:30:38 PM, Thursday, December 13, 2007
Message:
* added code to handle addition of numbers and strings better
* made GraphrNumber output a better string on toString()
�-
Modi�ed : /trunk/antlr/Graphr.jar
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Revision: 62
Author: paulcdix
Date: 3:48:22 PM, Thursday, December 13, 2007

APPENDIX A. COMPLETE LOG 52

Message:
* added the hello world script
* added the Mainifest for building a single jar
* added Graphr.java which is the main interpreter class
* removed debugging lines from the Walker
* modi�ed build script to package everything up into a single jar
* and added Graphr.jar which is the binary of the full interpreter
�-
Added : /trunk/antlr/Graphr.jar
Added : /trunk/antlr/Graphr.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Added : /trunk/antlr/Manifest.txt
Modi�ed : /trunk/antlr/build_and_test.rb
Added : /trunk/antlr/hello_world.gr
Revision: 61
Author: paulcdix
Date: 3:00:39 PM, Thursday, December 13, 2007
Message:
* wired up include into the parser and walker
* added tests for include
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Added : /trunk/antlr/test_include_execute.gr
Added : /trunk/antlr/test_include_function.gr
Added : /trunk/antlr/test_include_variables.gr
Revision: 60
Author: xionvalkyrie
Date: 5:30:47 AM, Thursday, December 13, 2007
Message:
Added some comments to the code, also added WriteImageType.java as an

example of how to write an image once you have a hashmap.
�-
Added : /trunk/antlr/WriteImageType.java
Modi�ed : /trunk/antlr/writeImage.java
Revision: 53
Author: whatisthelemon
Date: 2:26:34 AM, Wednesday, December 12, 2007
Message:
Made changes which do not a�ect program, but ensure that we are following

our own coding conventions.
�-
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 52
Author: whatisthelemon

APPENDIX A. COMPLETE LOG 53

Date: 3:51:36 PM, Tuesday, December 11, 2007
Message:
Started to work on our �nal document. Needs sections on Architectural

Design, test plan, Lessons Learned, Appendix, and Language Tutorial. Also,
our White Paper and Language Manual need to be updated and �nalized.

�-
Added : /trunk/Docs/�nal.lyx
Revision: 51
Author: paulcdix
Date: 3:50:15 PM, Tuesday, December 11, 2007
Message:
* added tests for function de�nitions and calls
* wired up function calls in the parser and walker
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/TestGraphr.java
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 50
Author: xionvalkyrie
Date: 3:19:23 PM, Tuesday, December 11, 2007
Message:
�-
Deleted : /trunk/graphics
Revision: 49
Author: xionvalkyrie
Date: 3:19:07 PM, Tuesday, December 11, 2007
Message:
�-
Deleted : /trunk/antlr/WriteImageType.java
Revision: 48
Author: xionvalkyrie
Date: 3:18:42 PM, Tuesday, December 11, 2007
Message:
Added vertical text functionality
�-
Modi�ed : /trunk/antlr/DrawCanvas.java
Added : /trunk/antlr/WriteImageType.java
Modi�ed : /trunk/antlr/writeImage.java
Revision: 47
Author: xionvalkyrie
Date: 2:20:31 PM, Tuesday, December 11, 2007
Message:
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 46

APPENDIX A. COMPLETE LOG 54

Author: paulcdix
Date: 2:13:02 PM, Tuesday, December 11, 2007
Message:
* added tests for �le io
* added parsing rules for �le io
* added functionality to tree grammar for �le io
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Added : /trunk/antlr/test.txt
Revision: 45
Author: xionvalkyrie
Date: 1:29:17 PM, Tuesday, December 11, 2007
Message:
Updated the LRM to re�ect changes in the graphics engine.
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 44
Author: xionvalkyrie
Date: 1:21:25 PM, Tuesday, December 11, 2007
Message:
Completed the interfacing of Graphr Associative Array to the graphics func-

tions, so now we can take a Graphr Associative Array as input and output the
corresponding image �le.

�-
Modi�ed : /trunk/antlr/writeImage.java
Revision: 43
Author: paulcdix
Date: 12:49:53 PM, Tuesday, December 11, 2007
Message:
* wired up hash and array access
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 42
Author: xionvalkyrie
Date: 12:18:10 AM, Tuesday, December 11, 2007
Message:
�-
Added : /trunk/antlr/DrawCanvas.java
Added : /trunk/antlr/writeImage.java
Revision: 41
Author: xionvalkyrie
Date: 12:17:17 AM, Tuesday, December 11, 2007

APPENDIX A. COMPLETE LOG 55

Message:
�-
Modi�ed : /trunk/graphics/src/WriteImageType.java
Modi�ed : /trunk/graphics/src/writeImage.java
Revision: 40
Author: paulcdix
Date: 5:49:52 PM, Sunday, December 09, 2007
Message:
* added the collection interface
* modi�ed hashes so they only take strings as keys
* modi�ed the GraphrAssociativeArray to only accept strings as keys
* did some other stu�
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/GraphrAssociativeArray.java
Added : /trunk/antlr/GraphrCollection.java
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 39
Author: paulcdix
Date: 3:57:38 PM, Sunday, December 09, 2007
Message:
* added the GraphrBoolean class
* added some tests for hashes
* �xed the math operations
* �eshed out methods on the GraphrAssociativeArray class
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrAssociativeArray.java
Added : /trunk/antlr/GraphrBoolean.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Modi�ed : /trunk/antlr/build_and_test.rb
Revision: 38
Author: xionvalkyrie
Date: 2:54:02 AM, Monday, December 03, 2007
Message:
�-
Modi�ed : /trunk/graphics/src/DrawCanvas.java
Modi�ed : /trunk/graphics/src/WriteImageType.java
Added : /trunk/graphics/src/writeImage.java
Revision: 37

APPENDIX A. COMPLETE LOG 56

Author: paulcdix
Date: 5:33:16 PM, Saturday, December 01, 2007
Message:
* �xed the toString method on GraphrArray
* �xed some grammar errors
* added tests for loops and if statements
* wired up loops and if statements
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 36
Author: paulcdix
Date: 11:49:43 AM, Monday, November 26, 2007
Message:
* updated the tree walker
* updated the Graphr data types
* added some tests
�-
Modi�ed : /trunk/antlr/Graphr.g
Modi�ed : /trunk/antlr/GraphrArray.java
Modi�ed : /trunk/antlr/GraphrDataType.java
Modi�ed : /trunk/antlr/GraphrNumber.java
Modi�ed : /trunk/antlr/GraphrString.java
Modi�ed : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/all_tests.rb
Revision: 35
Author: xionvalkyrie
Date: 3:23:14 PM, Sunday, November 25, 2007
Message:
�-
Modi�ed : /trunk/graphics/src/DrawCanvas.java
Modi�ed : /trunk/graphics/src/WriteImageType.java
Revision: 34
Author: xionvalkyrie
Date: 2:34:27 PM, Sunday, November 25, 2007
Message:
�-
Added : /trunk/graphics/src/DrawCanvas.java
Modi�ed : /trunk/graphics/src/WriteImageType.java
Revision: 33
Author: paulcdix
Date: 1:50:19 PM, Sunday, November 25, 2007
Message:
* initial add of GraphrWalker and Graphr java data types

APPENDIX A. COMPLETE LOG 57

* made some changes to the grammar to work for walker
�-
Modi�ed : /trunk/antlr/Graphr.g
Added : /trunk/antlr/GraphrArray.java
Added : /trunk/antlr/GraphrAssociativeArray.java
Added : /trunk/antlr/GraphrDataType.java
Added : /trunk/antlr/GraphrNumber.java
Added : /trunk/antlr/GraphrString.java
Added : /trunk/antlr/GraphrWalker.g
Modi�ed : /trunk/antlr/TestGraphr.java
Modi�ed : /trunk/antlr/all_tests.rb
Modi�ed : /trunk/antlr/build_and_test.rb
Revision: 32
Author: paulcdix
Date: 12:10:38 AM, Monday, November 19, 2007
Message:
* added the build and test script
* added the java test harness
* rewrote most of Graphr.g to generate a workable AST
* added the jar �les needed for build scripts
* added all_tests.rb (a ruby script containing some tests)
�-
Modi�ed : /trunk/antlr/Graphr.g
Added : /trunk/antlr/TestGraphr.java
Added : /trunk/antlr/all_tests.rb
Added : /trunk/antlr/antlr-2.7.7.jar
Added : /trunk/antlr/antlr-3.0.1.jar
Added : /trunk/antlr/build_and_test.rb
Added : /trunk/antlr/stringtemplate.jar
Revision: 31
Author: xionvalkyrie
Date: 12:44:18 AM, Monday, November 05, 2007
Message:
11-04-07
Added graphics
�-
Added : /trunk/graphics
Added : /trunk/graphics/.classpath
Added : /trunk/graphics/.project
Added : /trunk/graphics/bin
Added : /trunk/graphics/bin/WriteImageType.class
Added : /trunk/graphics/src
Added : /trunk/graphics/src/WriteImageType.java
Added : /trunk/graphics/test.PNG
Revision: 30
Author: blakstar1220

APPENDIX A. COMPLETE LOG 58

Date: 3:53:37 PM, Wednesday, October 24, 2007
Message:
Updated Grammar. All issues handled except for exponents...
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 29
Author: blakstar1220
Date: 11:08:20 PM, Tuesday, October 23, 2007
Message:
Almost completed parser. Things to �x/add:
1. Functionality of testLiterals for identi�ers.
2. The dangling else problem
3. Exponentiation rule not implemented.
4. General structure of the tree. (Paul must decide this)
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 28
Author: blakstar1220
Date: 1:26:05 PM, Monday, October 22, 2007
Message:
First iteration of the scanner. Problems with assignment and if statements.
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 27
Author: paulcdix
Date: 9:32:55 PM, Wednesday, October 17, 2007
Message:
* changed IO function names a little bit
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 26
Author: paulcdix
Date: 9:28:36 PM, Wednesday, October 17, 2007
Message:
* added the section on the graphics
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 25
Author: xionvalkyrie
Date: 8:33:07 PM, Wednesday, October 17, 2007
Message:
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 24
Author: xionvalkyrie
Date: 8:30:12 PM, Wednesday, October 17, 2007

APPENDIX A. COMPLETE LOG 59

Message:
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 23
Author: xionvalkyrie
Date: 8:23:10 PM, Wednesday, October 17, 2007
Message:
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 22
Author: paulcdix
Date: 7:53:08 PM, Wednesday, October 17, 2007
Message:
* added information on variable scope
* added info on function scope
* added foreach
* started library section
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 21
Author: whatisthelemon
Date: 5:38:14 PM, Tuesday, October 16, 2007
Message:
Since we aren't sure if we will include regular expressions, I moved the regexp

stu� into a di�erent �le.
�-
Modi�ed : /trunk/Docs/lrm.lyx
Added : /trunk/Docs/regexp.lyx
Revision: 20
Author: xionvalkyrie
Date: 5:10:17 PM, Monday, October 15, 2007
Message:
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 19
Author: whatisthelemon
Date: 4:59:04 PM, Monday, October 15, 2007
Message:
Changed the formatting. Fixed some typos. Used quotation environment

whenever describing example syntax. More stu� needs to be done for regular
expressions (we need to explain order of precedence).

�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 18
Author: whatisthelemon
Date: 3:58:26 PM, Monday, October 15, 2007

APPENDIX A. COMPLETE LOG 60

Message:
Updated up to regular expressions.
�-
Modi�ed : /trunk/Docs/lrm.lyx
Revision: 17
Author: xionvalkyrie
Date: 3:54:45 PM, Monday, October 15, 2007
Message:
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 16
Author: xionvalkyrie
Date: 2:16:20 PM, Monday, October 15, 2007
Message:
Fixed assignment_expr
Left side must be an identi�er_expr
No longer recursive to itself
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 15
Author: paulcdix
Date: 2:16:08 PM, Monday, October 15, 2007
Message:
* added the lyx �le and modi�ed the tex �le a little.
�-
Added : /trunk/Docs/lrm.lyx
Modi�ed : /trunk/Docs/lrm.tex
Revision: 14
Author: whatisthelemon
Date: 4:15:28 PM, Sunday, October 14, 2007
Message:
Added more. Still have a lot more to do. We have to decide how exactly

we're dealing with functions. The old lrm talked a lot about graph objects, but
a graph is something �nal that's printed to the user in a way that may or may
not be interactive. We should think more in terms of objects for representing
data internally, like rows, columns, and tables.

�-
Modi�ed : /trunk/Docs/lrm.tex
Revision: 13
Author: whatisthelemon
Date: 3:42:12 PM, Sunday, October 14, 2007
Message:
Started porting to latex, still have a long way to go.
�-
Added : /trunk/Docs/lrm.tex
Revision: 12

APPENDIX A. COMPLETE LOG 61

Author: blakstar1220
Date: 6:34:17 PM, Saturday, October 13, 2007
Message:
Updated G �le. Full of bugs.
�-
Modi�ed : /trunk/antlr/Graphr.g
Revision: 11
Author: whatisthelemon
Date: 6:33:03 PM, Saturday, October 13, 2007
Message:
Made changes regarding expressions. We tried to get rid of the hard ones.
�-
Modi�ed : /trunk/Docs/ReferenceManual.rtf
Revision: 10
Author: whatisthelemon
Date: 4:06:40 PM, Saturday, October 13, 2007
Message:
Edited a bunch of stu� since statements are evaluated, not just expressions.
�-
Modi�ed : /trunk/Docs/ReferenceManual.rtf
Revision: 9
Author: paulcdix
Date: 3:54:54 PM, Saturday, October 13, 2007
Message:
* added the initial version of the graphr gramamar!
�-
Added : /trunk/antlr
Added : /trunk/antlr/Graphr.g
Revision: 8
Author: xionvalkyrie
Date: 2:11:18 PM, Saturday, October 13, 2007
Message:
�-
Modi�ed : /trunk/Docs/ReferenceManual.rtf
Revision: 7
Author: whatisthelemon
Date: 2:04:42 PM, Saturday, October 13, 2007
Message:
Removed part about keeping newlines in whitespace.
�-
Modi�ed : /trunk/Docs/ReferenceManual.rtf
Revision: 6
Author: paulcdix
Date: 2:02:31 PM, Saturday, October 13, 2007
Message:
* removed the odt and pdfs of the ref manual

APPENDIX A. COMPLETE LOG 62

�-
Deleted : /trunk/Docs/ReferenceManual.odt
Deleted : /trunk/Docs/ReferenceManual.pdf
Revision: 5
Author: xionvalkyrie
Date: 1:59:06 PM, Saturday, October 13, 2007
Message:
�-
Added : /trunk/Docs/ReferenceManual.rtf
Revision: 4
Author: xionvalkyrie
Date: 1:57:55 PM, Saturday, October 13, 2007
Message:
�-
Added : /trunk/Docs/ReferenceManual.odt
Revision: 3
Author: xionvalkyrie
Date: 1:57:07 PM, Saturday, October 13, 2007
Message:
�-
Added : /trunk/Docs/ReferenceManual.pdf
Revision: 2
Author: xionvalkyrie
Date: 1:55:18 PM, Saturday, October 13, 2007
Message:
�-
Added : /trunk/Docs
Revision: 1
Author:
Date: 12:21:17 PM, Saturday, October 13, 2007
Message:
Initial directory structure.
�-
Added : /branches
Added : /tags
Added : /trunk

A.2 Google Code Log

Issue 1: [Vote for this issue and get email change noti�cations] read_�le return
1 of 4 Next � 1 person starred this issue and may be noti�ed of changes. Back to
list Status: Fixed Owner: whatisthelemon Closed: Today Type-Defect Priority-
High

Add a comment and make changes below Reported by whatisthelemon, To-
day (4 hours ago)

APPENDIX A. COMPLETE LOG 63

We say that read_�le() will return nil if the �le does note exist. Hence the
following code:

x = read_�le("input.txt") // input.txt does not exist if(x){ puts "Read �le
successful"; }

should output nothing, but it outputs "Read �le successful"
Delete comment Comment 1 by whatisthelemon, Today (4 hours ago)
This has been changed so that it read_�le() will return an empty array if

the �le does not exist.
Delete comment Comment 2 by whatisthelemon, Today (3 hours ago)
(No comment was entered for this change.)
Status: Fixed Delete comment Comment 3 by whatisthelemon, Today (3

hours ago)
(No comment was entered for this change.)
Status: Started Delete comment Comment 4 by whatisthelemon, Today (2

hours ago)
(No comment was entered for this change.)
Status: Fixed
Issue 2: [Vote for this issue and get email change noti�cations] Comparison

Expressions � Prev 2 of 4 Next � 1 person starred this issue and may be noti�ed
of changes. Back to list Status: Veri�ed Owner: whatisthelemon Closed: Today
Type-Defect Priority-High

Add a comment and make changes below Reported by whatisthelemon, To-
day (4 hours ago)

Does not seem to properly evaluate comparisons.
The following code:
t = 1; if(t == 1){ puts t; } else{ puts 0; }
should print "1" but instead it prints "0".
Same problem occurs if I try t > 0 or t < 5 (it should print 1 but it prints

0).
Delete comment Comment 1 by whatisthelemon, Today (3 hours ago)
It's been resolved for all such comparisons.
Issue 3: [Vote for this issue and get email change noti�cations] Return does

not end function call � Prev 3 of 4 Next � 1 person starred this issue and may
be noti�ed of changes. Back to list Status: WontFix Owner: whatisthelemon
Closed: Today Type-Defect Priority-High

Add a comment and make changes below Reported by whatisthelemon, To-
day (4 hours ago)

The following code:
def myfun(){ t = true; if(t){ return 1; } puts "I have not returned"; }
x = myfun(); puts x;
Should print 1 and nothing else. Instead, it prints: I have not returned 1
Getting to a return statement seems to return the proper value, but does

not end the function call.
This can cause a serious problem because it can result in more than one

return statement being called.
The following code causes an EmptyStackException:

APPENDIX A. COMPLETE LOG 64

def myfun(){ t = true; if(t){ return 1; } return 2; }
x = myfun(); puts x;
The following code works as expected:
def myfun(){ t = true; if(t){ return 1; } else{ puts "I have not returned"; }

}
x = myfun(); puts x;
Delete comment Comment 1 by whatisthelemon, Today (3 hours ago)
No function should have more than one return statement (it is a bad pro-

gramming practice according to my 1007 teacher Prof. Cannon). We're making
it a requirement that each function can have only one return statement.

Status: WontFix
Issue 4: [Vote for this issue and get email change noti�cations] foreach loop

terminates program � Prev 4 of 4 1 person starred this issue and may be noti�ed
of changes. Back to list Status: Fixed Owner: whatisthelemon Closed: Today
Type-Defect Priority-Medium

Add a comment and make changes below Reported by whatisthelemon, To-
day (3 hours ago)

When reaching the end of a foreach loop, the program terminates. Other
loops appear to be working �ne.

Delete comment Comment 1 by whatisthelemon, Today (2 hours ago)
Small typo in code. Works now.
Status: Fixed

Appendix B

Code Listing

This is a complete listing of code which the team generated, organized by person.
We do not include code generated automatically by ANTLR, only our original
.g �les. All �les listed are available on our our Subversion repository, which can
be accessed at http://graphr.googlecode.com/svn/trunk/antlr/.

B.1 Joseph Kamien

As the tester and documenter, Joseph Kamien has no original �les to call his own
other than the documentation (including this report) and the aforementioned
test cases and programs. He worked with the other team members to constantly
attempt to break their code as it was being developed.

B.2 Michael Cole

Michael Cole was the main creator of our lexer and parser.
He is the main author of the following �les:

Graphr.g

GraphrGraphics.java

B.3 Paul Dix

Paul Dix was the main creator of our tree-walker.
He is the main author of the following �les:

GraphrWalker.g

build_and_test.rb

all_tests.rb

65

APPENDIX B. CODE LISTING 66

GraphrDataType.java

GraphrNumber.java

GraphrString.java

GraphrCollection.java

GraphrArray.java

GraphrAssociativeArray.java

Graphr.java

B.4 Zhe Chen

Zhe Chen was the main creator of our graphics package.
He is the main author of the following �les:

DrawCanvas.java

WriteImage.java

