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Abstract 
Given the abstract character of much of modern physics and mathematics, and the 
computational tasks demanded by work within the domain of abstract algebra, a general-
purpose computing language capable of expressing and manipulating the carbon atoms of 
modern algebra – permutations – may be useful. We propose an interpreted, structured, 
dynamically typed programming language with Pascal-like syntax for the expression and 
manipulation of permutations within permutation groups. We call the language µPerm. 



Mathematical Background 
Given a set S the Symmetric group Sym(S) is a group whose elements are the bijections 
from S onto itself, the permutations on S. The operator of Sym(S) is composition of 
functions. For our purposes, S will always be finite. 
 
We denote the action of an element g of Sym(S) on s ∈ S as g(s). Given g1, g2 ∈ Sym (S), 
we denote g1(g2(s)) as g1 é g2 (s), s ∈ S. We will sometimes be unconcerned with the 
result of a permutation on a single element of S, in which case we will simply refer to 
g1g2. 



Programming Examples 

µPerm will provide the ability to manipulate permutations using such statements as: 
 
p1 : perm := (1 2) (5 3 4); 
p2 : perm := (3 5 1 2); 
print p1 * p2; -- * denotes composition 
 
Output: 
(1 3 4) 
 
for p in (1 2) (3 4 5) to (1 2 3 5) do 
begin 
   print p; 
end; 
 
The output of the above program is: 
(1 3) (4 5) 
 
because (1 2) (3 4 5) * (1 3) (4 5) is (1 2 3 5). 



Primitive Types 

Common primitive types will be supplied in as simple a form as possible: int, float, 
string. Numeric types will have the four arithmetic operators; strings will admit 
concatenation. 
 
The Permutation Type 

In addition, µPerm introduces its special primitive type, the permutation. Permutation 
objects will be denoted using the keyword perm, as seen above. perm will admit two 
operators: * for composition of permutations, and / for decomposition. Operations 
between perm objects and other primitive types will not be provided. For example, the 
sentence 5 + (1 9) is not a valid µPerm expression. 
 
All operators on objects of primitive type will be left associative, with a possible 
exception noted below. 
 
One syntactic ambiguity that could arise is the interpretation of such strings as (7). Does 
this express the integer 7 or the permutation g with g(7) = 7? µPerm will always interpret 
such expressions as integer expressions. However µPerm will treat (), if encountered, as 
the identity permutation. (We may encounter a syntactic conflict between the identity 
permutation and function calls with no parameters. We will deal with that possibility as it 
comes.) 
 
Another syntactic issue that may arise is the shorthand expression of composition – the 
empty string. Mathematicians are perfectly comfortable notating the composition of (1 3 
5) with (2 4) as (1 3 5) (2 4). This may not be a problem if we can come up with a way 
for the compiler to recognize such statements as being compositional. If we cannot, we 
can fall back on the explicit (1 3 5) * (2 4). 
 
We would like to interpreter in such a way that it assumes the underlying set is only as 
large as the largest integer encountered in a given permutation literal. But it may become 
necessary to force the programmer to specify the size of the permutation group he intends 
to work with. If so, we will introduce a right-associative operator to be applied at the end 
of a permutation literal, such as: 
 
p : perm := (1 3 5)#6; 
 
which will direct the compiler to work within Sym(Z6). 
 
It may become difficult to specify permutation literals using space-separated lists. If this 
becomes the case, we can introduce commas as separators. 
 
Objects of type perm will also admit a built-in functional notation for the purpose of 
applying a permutation g ∈ Sym(S) to s∈ S. The program 
 
p : perm := (1 3 5); 



print p(3); 
print p(4); 
 
will produce the output 
 
5 
4 
 
We will also allow the use of C-like enumerations within a permutation declaration. The 
compiler will assign the smallest unused integer to each enumeration literal it encounters, 
or the programmer may specify values for the compiler to use. Thus the program 
 
p : perm := (1 Milk 3 Eggs => 5 Cheese); 
print p(3); 
print p(Eggs); 
print p; 
 
will produce the output 
 
5 
2 
 
We will consider allowing the programmer to specify a previously declared variable 
identifier in a given permutation literal, and introducing square brackets as a syntactic 
mechanism to get at the value – of any type – of the variable. For example, 
 
h : string := “Hello”; 
pi : float := 3.14159; 
i : int := 2; 
 
p : perm := (h, i, pi, 4); 
 
print p; 
print p[1]; 
print p(p[i])); 
 
Would yield output 
 
(“Hello” 2 3.14159 4) 
 
This may prove overly-complicated and not useful. An alternative is to allow for the 
creation of arrays in which the programmer can store the desired data. 



Language Constructs 
 
 
Control-flow 

µPerm will provide the usual control flow mechanisms: if-then-else, for, while, do-
while. 
 
To visit elements of the underlying set in the order specified by the permutation, a 
programmer might write: 
 
p : perm := (3 4 1 2); 
i : int := 1; 
 
loop  
   visit (p(i)); 
   i := p(1); 
   if i != 1 exit loop; 
end loop; 
 
 
Block-structure 
Programmers will also be able to define functions and procedures. Passing semantics will 
be by-reference. Blocks will be delimited with begin and end keywords, and can be 
named. 
 
 
Compilation / Interpretation 

Our aim is to produce a Java program to interpret µPerm code. 
 



Notes: 
I came about this idea more in the mindset of producing a language for computational 
group theory – particularly the permutation groups, represented using so-called strong-
generating sets. I quickly became sidetracked with the lower-level ideas communicated 
herein, and decided that, given my tardy proposal along with the potential to write a 
decent, moderately-sized language, I had best just get on with the ideas I had. 
 
Time permitting, I would also like to include some higher-level abstractions, such as the 
notion of a symmetry group itself, generators within that group, and so on. Computational 
group theory is a relatively young field, albeit with some mature results, especially 
regarding the computational complexities of representing and working with permutation 
groups. It is my hope that I may be able to implement certain of the simpler algorithms in 
the field (e.g. strong generating set enumeration) using µPerm. 


