
Haskell Computer Algebra System (HCAS) Proposal

Rob Tougher (rt2301@columbia.edu)

September 19, 2007

For the class project I would like to implement a simple computer algebra system, HCAS.
HCAS will be a purely functional programming language that provides a set of basic opera-
tions for constructing and manipulating algebraic expressions. Simply put, you can think of
HCAS as a subset of Haskell, plus support for computer algebra.

HCAS will have three main features:

• Purely Functional Language. HCAS will be a purely functional subset of Haskell.
There will be functions, recursion (and tail recursion if needed), lists, strings, pattern
matches for function arguments, etc. No variables, sequencing of operations, or other
items from imperative programming languages.

• Construction of Mathematical Expressions. HCAS will allow you to construct
mathematical expressions using an intuitive syntax. You will be able to define math-
ematical expressions inline. That is, if you write the expression x + y − z, this will
automatically be constructed as a math expression.

• Navigation of Mathematical Expressions. HCAS will use the concept of pattern
matching in function arguments to allow you to navigate mathematical expressions.
Consider the following simple function:

printType l e f t ∗ r i g h t =
” M u l t i p l i c a t i o n ”

printType l e f t+r i g h t =
” Addit ion ”

This function has two definitions, one for addition and one for multiplication. The
version that gets executed at runtime is chosen based on the expression argument that
you pass in. So if you call the function as “(printType x*y+z)”, the version for addition
will be called, because addition binds the loosest. In the body of the function “left”
will refer to “x*y”, and “right” will refer to “z”.

1

When I’m finished with my interpreter I’d like to be able to run the following programs:

−− −−
−− Should p r i n t ” Addit ion ”
−− −−
main =

(printType x∗y+z)

printType l e f t ∗ r i g h t =
” M u l t i p l i c a t i o n ”

printType l e f t+r i g h t =
” Addit ion ”

−− −−
−− Should r e s u l t in (m∗a + m∗b − m∗c)
−− −−
main =

(d i s t r i b u t e m a+b−c)

d i s t r i b u t e m l e f t+r i g h t =
(d i s t r i b u t e m l e f t) + (d i s t r i b u t e m r i g h t)

d i s t r i b u t e m l e f t−r i g h t =
(d i s t r i b u t e m l e f t) − (d i s t r i b u t e m r i g h t)

d i s t r i b u t e m p =
m∗p

−− −−
−− Should r e s u l t in ” desreveR ”
−− −−
main =

(r e v e r s e ” Reversed ”)

r e v e r s e x : xs = (r e v e r s e xs) ++ [x]
r e v e r s e [] = []

2

