
Version 0.1 - 1 -

Status: Draft 9/25/2007

COMS W4115

Programming Languages and Translators

Department of Computer Science

Columbia University, New York

Concept Proposal

Binary Data Processing Language

(BDPL)
 1

Aditi Rajoriya (ar2630)

Akshay Pundle (ap2503)

Preethi Narayan (pn2156)

Bharadwaj Vellore Ramesh (vrb2102)

1
 The BDPL language is not a successor to BCPL, like it might seem from the abbreviation of the name.

Version 0.1 - 2 -

Status: Draft 9/25/2007

So, what is BDPL?

The purpose of the Binary Data Processing Language is to provide the machinery to

programmers to develop applications that parse, extracts and processes information from binary

files in a facile manner. The language aims to model binary input files as a data type with a

specified layout, and provide mechanisms to exploit these data types to quickly and painlessly

extract various pieces of information from any binary file format.

Why BDPL?

Programming languages normally deal with file in only the ASCII or UNICODE formats. Each file

is treated as a sequence of characters alpha-numeric and non-printable characters. However,

binary files are not normally processed with ease by such languages. Existing languages that

provide support to use system functions to read and write binary files only typically require the

programmer to process raw data from memory buffers into which data is read into from the file.

Increasingly, with the proliferation of multimedia in multiple formats, the need is felt for tools that

will enable format interchange and multi-format data packaging for distribution through various

media. This provides an excellent case for a language that allows the representation of binary file

formats in a manner that allows ease of reading and writing files without the programmer having

to get into the nitty-gritty’s of bit-level operations. The objective of BDPL is exactly this – to

provide a high-level language scheme to access and modify binary data elements. In fact, BDPL

hopes to go a step further. The BDPL programmer will have the ability to incorporate entire

parsing algorithms in data types.

Why wouldn’t I just use ‘C’ language bit-fields?

‘C’ language bit-fields allow several of the same features that BDPL hopes to offer to a

programmer – they make variable-length bit sequence easy to read and modify, as well as

allowing some basic arithmetic and logical operations on those fields. However, BDPL offers the

following features which surpass the abilities of bit-fields.

� Optional fields: Many binary file formats allow certain fields to be present depending upon

need. The presence of fields is usually indicated by a flag elsewhere in the file. BDPL

allows specification of such conditions in files using the OPTIONAL – ON construct.

� Repeating fields: There are frequently contents of a binary file that are in identical formats

repeated several times over. BDPL allows a programmer to model this by supporting

loops inside data types.

Version 0.1 - 3 -

Status: Draft 9/25/2007

� Run-time size determination: The sizes of chunks of data in a binary file are often

variable and specified or implied elsewhere in the file. BDPL allows the programmer the

flexibility to cover for these possibilities by having variable-based array-size

determination.

� Exception handling: Various errors are expected when handling files – errors related to

file sizes, for instance. The fundamental file operations in BDPL have in-built error

reporting.

Aside from these operations, BDPL allows integer arithmetic as well as logical operations to be

performed on various data elements. Floating-point operations are not supported. Character

processing is supported and made simple. Character arrays can be used to process strings.

File Read and write operations allow data to be read and written as desired.

Specifically, for what on earth might I possibly use this?

� Header formation/packetization algorithms

� Packet parsers

� File format interchange programs

� CRC calculation

� String search

� String insertion

� Pattern search

How do I use the language?

Binary files have a fairly typical construction, although each binary file format is described in

different ways, with these ways differing largely in notation, and to a smaller extent, in the data

types that span the contents of the file. Below are three examples from varied domains that

illustrate this.

Version 0.1 - 4 -

Status: Draft 9/25/2007

Figure 1 The ELF File format – Section Header Description

Figure 2 Format of MPEG streams in DVD

ID3v2/file identifier "ID3"

ID3v2 version $03 00

ID3v2 flags %abc00000

ID3v2 size 4 * %0xxxxxxx

Figure 3 Format of Tags in various audio files – These contain lyrics and album artwork

The BDPL language allows the construction of data types that model these specifications

verbatim. These data types can then be used to instantiate variables into which contents of the

file can be read. There will also be some basic schemes provided to Set and Get a critical

element of any binary processing function, the current ‘pos’, or index into the offset within the file

Version 0.1 - 5 -

Status: Draft 9/25/2007

which is currently being processed. A single read operation populates the contents of the

variable, and allows access to them via a familiar ‘C’-style syntax. The programmer is spared the

trouble innumerable shift and mask operations that are normally required to reach parts of bit-

streams. Functions are supported, and follow a syntactic style closely resembling the ‘C’

programming language.

You could then extract the symbol table from an elf file to walk through its contents, insert lyrics

and album artwork into audio files, rip DVDs and build a variety of other tools.

Enough of the marketing. Show me some real stuff.

The following snippet of annotated BDPL source code attempts to illustrate several of the

syntactic and semantic elements of the language.

Every program must comprise two sections:

1. A data definition section which defines a template for the file.

2. A method section which is procedural in nature and comprises blocks of instructions

which operates on the data extracted into variables of the above data types.

Primitive Data Types

BITFIELD -> an array of bits of non-zero length

CHAR -> 8-bit character type

INT -> Integer

FLOAT -> Float

User Defined Types

ARRAYS

STRUCT -> Ordered aggregation of primitive types, STRUCTS, and arrays of these types.

The following is an instance.

STRUCT Data

{

 BITFIELD[8] Signature VALID {0xFF}

 BITFIELD[8] Length;

CHAR[Length] Data;

};

ENUMERATION encryption_scheme {none,aes,des,tdes,};

Version 0.1 - 6 -

Status: Draft 9/25/2007

STRUCT File

{

 STRUCT Header

 {

 BITFIELD[8*4] Signature VALID {0xDEADBEEF};

 BITFIELD[2] encryption_scheme VALID {1,2,4};

 BITFIELD[13] Length range 0b0000000000000 0b1000000000000 ;

 };

 encryption_scheme es; // 2 bits

 Data[*] data_array; // Read the rest of the (valid) input into data array

 CHAR[*] Extra; // If anything is left, read it into extra

};

Method Section

The method section is the algorithmic part of the language. This section comprises of a series of

c-style statements (arithmetic, bitwise operation, while loops, conditionals).

 One of the main operations provided by this language is the automatic mapping of a file to the

defined data type. The method section can invoke a command “READ” to start reading a file (or

portions of a file) into a defined data type. This causes a validation scheme to be run to check for

compliance with the expected format. If the file is not in expected format, an error will be

generated. Methods for error recovery may be written to be executed whenever non-compliances

are detected at parsing. These methods will be associated with data fields or STRUCTs .

For any data type, MIN and MAX value ranges may be specified. Alternately, permitted bit-values

as well as set of these values may be specified to check that the file is constructed as per the

expected standard. This might be useful when validating the headers of packets in a file or in the

file itself.

//start of the method section

File input_file;

READ (“/home/aa.jpg”,input_file);

PRINT (input_file.Header.Signature);

// This is a comment.

// The basic types are:

// FLAG

// BITFIELD

// CHAR

// INTEGER

// FLOAT

STRUCT tdpu

{

 UIMSBF BITFIELD[8] packet_length;

 FLAG crc_present;

 CHAR[] packet_short_name;

 UIMBSF BITFIELD[32] crc optional on crc_present;

 UIMBSF sub_packet_count;

 STRUCT sub_packet[sub_packet_count]

 {

 UIMBSF BITFIELD[4] packet_counter;

 UIMBSF BITFIELD[12] sub_packet_length;

 UIMBSF BITFIELD[sub_packet_length] sub_packet_data;

 };

}

There are basic

binary data types

Keywords are in capitalized

alphabetical characters so that

they are easy to distinguish

STRUCT is a construct facilitating creation of

user-defined types. The order of elements in

a frame is significant

Data type declarations could be

preceded by type specifiers - UIMSBF

means Unsigned Integer Most

Significant Bit First

Optional fields can be specified along with the

flag type field which indicates presence or

absence.

Version 0.1 - 7 -

Status: Draft 9/25/2007

 File source;

 File dest;

 STRUCT tdpu packet = READ(“/home/music.mp3,source);

 FOR(i=0;i<packet->sub_packet_count;i++)

 {

 IF(packet->encryption_status = aes_encrypted)

 {

 Decrypt(packet->sub_packet[i]);

 Dest_packet_buffer = WRITE packet->sub_packet[i];

 }

 }

 IF(packet->crc_present)

 check_crc();

