
TableGen

Language Reference Manual

Andrey Falko (asf2125) Daniel Pestov (dp2297) Del Slane (djs2160)

Timothy Washington (tw2212)

October 18, 2007

1. Introduction

TableGen is an interpreted programming language designed to allow programmers to quickly

generate large tables. TableGen allows experienced users to enter large data more efficiently

than when using graphical spreadsheet applications, especially when data is generated via

algorithmically complex functions.

The three main goals of the TableGen programming language are:

• To provide quick and easy data entry

• To allow the user to refer to data by name

• To offer simple formulation techniques for generating algorithmically complex data

2. Lexical Conventions

All information below assumes the file is being scanned in a “forward” manner: from the

logical start of the file to its end-of-file character.

TableGen has four types of tokens: keywords, identifiers, constants and operators. Tokens

are separated from each other by whitespaces and commas.

(a) Whitespace

Whitespace characters consist of newlines, carriage returns, tabs, and spaces; whites-

pace is any combination of one or more of these characters.

(b) Comments

Single-line comments begin with // and end with newline character.

Multi-line comments begin with /* and end with the first subsequent appearance of */.

(c) Keywords

Keywords are the following sequences of characters:

• foreach

• while

1

• func

• return

• if

• else

• elseif

• str

• num

• list

(d) Identifiers

An identifier is a sequence of characters that represents the name of function or variable.

It begins with any character in the English alphabet (either lowercase or uppercase)

followed by any number of alphanumeric characters or an underscore (‘_’).

(e) Constants

i. Numbers

Numbers are a sequence of digits with an optional decimal point (.). If a number

contains a decimal point, the decimal point is both preceded and followed by at

least one digit.

ii. Strings

A string is a sequence of ASCII characters surrounded by double quotes (‘ ” ’).

If a string is to contain any of the following characters, they must be preceded by

a backslash(‘\’):

" - + \ , =

(f) Declarations

An identifier is “declared” when it is first encountered in a file and is located on the

left side of an assignment operator, and can optionally be given a user-specified type of

either “number” or ”string” by prefixing the identifier with num: or str: respectively.

2

(g) Built-in Functions and Variables

All built-in functions and variables are treated as identifiers, and are prefixed with an

underscore (‘_’).

_row_head and _col_head define the row and column headers respectively.

_rows and _cols are special lists used to define and iterate over rows and columns

respectively. The elements for _row_head become the hash keys for _cols, while the

element for _col_head become the hash keys for _rows. This is done to make setting

and retrieval of data more intuitive. See example section to see why.

For example:

_cols = Monday, Tuesday, Wednesday

foreach col in _cols

do something

_row_next and _col_next are pointers to the next empty row and next empty column

respectively. The pointers point to a coordinate that begins a column for row. For exam-

ple, _col_next in an empty table will point to [0,0]. A subsequent _col_next will

point to [1,0]. If a list is put into _row_next, elements of the list will fill coordinates

from left to right. Likewise, with _col_next elements will fill from top to bottom.

We have the following built in functions:

The following take numerical lists as arguments:

• _sum() — used to calculate row/column sums.

• _avg() — used to calculate the average of given values. It takes a list of elements

to average.

• _var() — used to calculate the variance of given values

• _tail() — returns last element of list

3

• _length() — return length of list

3. Types

TableGen has two types of data—numbers and strings—as well as one native data structure

called a list. Every possible representation of a value is treated as a list, and constants are

treated as a list of length one. Any variable declared explicitly as num is a list containing

one number. Any other item added to such list has to be of type num. Any variable declared

explicitly as str is a list containing one string. Any other item added to such list has to be

of type str.

(a) num

This type is any real number that can be represented by the primitive data types in the

Java 1.5 programming language with pre-defined operations of addition, subtraction,

multiplication and division.

(b) str

This is a string of characters.

(c) list

The list type is similar to the concept of a hash—it can be assigned values to “contain”

that can in turn be accessed by symbolic operations performed on the list. The elements

of a list do not necessarily have to be of the same type (are heterogeneous), and can be

accessed by the non-negative “index” integer corresponding to their position in the list.

4. Expressions and Operators

(a) Primary Expressions

TableGen has the following primary expressions:

i. Identifiers

Identifiers are names of variables which can represent numbers, strings, or lists.

4

ii. Constants

A constant can either be a number or a string.

iii. (expression)

Parentheses can be used to modify the precedence order of operations in expres-

sions.

Example:

3 * (2 - 2)

iv. identifier.expression

The list element operator, the expression after the period is either an index or a key

of the list preceding the dot:

hash.key_x

v. Identifier Followed By Optional List of Expressions Within Parenthesis

This a function call expression. This is an example of it:

aFunc (var1, var2)

(b) Unary Expressions

There is only one unary expression in TableGen.

i. - expression

This denotes that the value of expression after minus sign is negative. The expres-

sion has to be a number. There can be no other numeric expression immediately

before the minus sign. This expression groups from right to left.

(c) Mathematical Operators

Note: mathematical operators are in order by descending precedence.

i. expression * expression

The multiplication operator, operates only on numeric types:

3*4

ii. expression / expression

5

The division operator, operates only on numeric types:

2/5.3

iii. expression + expression

The addition operator, both expressions have to be of the same type. If expressions

are numbers, numerical addition will occur. If expressions are strings, the two

string will be concatenated:

3+4

"Hel" + "lo"

iv. expression - expression

The subtraction operator, both expressions have to be of numeric type:

3-1

(d) Coordinates

The coordinate expression has the form [expression, expression] where both expres-

sions are numeric. Coordinates are pointers to a table cell and are used to retrieve and

modify values of that cell. The first coordinate is the row, and the second coordinate is

the column.

(e) Comparison Operators

The following expressions return 1 when true and 0 when false.

i. expression > expression

“greater than”, both expressions must be of numeric type:

4>2

ii. expression < expression

“less than”, both expressions must be of numeric type:

4<2

iii. expression >= expression

“greater than or equal to”, both expressions must be of numeric type:

6

4>=2

iv. expression <= expression

“less than or equal to”, both expressions must be of numeric type:

4<=2

v. expression == expression

“equals”, expressions can either be strings or numbers and both expressions must

be of the same type. If the expressions are strings, the interpreter will check - in

sequence from left to right - if each ASCII character in the first string is the same as

the corresponding character in the second string. If the expressions are numbers,

the values will be compared for numerical equivalence:

"H" == "h"

4 == 4

vi. expression != expression

This expression is the same as the one directly above with the exception that the

return values are opposite:

"H" != "h"

4 != 4

(f) Logical Operators

i. expression && expression

Expressions can be of any type. This expression returns 1 if both expressions are

non-zero, 0 otherwise. Lists are always non-zero, thus this logical operator will

always return 1 on list comparisons.

ii. expression || expression

Expressions can be of any type. This expression returns 0 if both expressions are

non-zero, 1 otherwise. The same principle applies to lists as in the && operator.

(g) Assignment Operators

7

i. identifier = expression

These expressions are grouped from right to left. The left expression is set to the

value of the right expression.

ii. expression -> coordinate

This expression groups from left to right. The value of the left expression is placed

into the coordinate expression on the right.

iii. string constant > expression

The expression on the left can only be of type string. The expression on the right

can be of any type. The expression of the left is called a key and the expression on

the right is called value. This is used to assign keys to the values in a list. Note that

this does not conflict with the “>” comparison operator because the comparison

operator is not allowed to operate on any string expressions.

5. Statements

(a) Normal Statement

This is an expression followed by newline character.

(b) Block Statement

One or more normal statements that are indented one tab level from the surrounding

sections of code

(c) Conditional statements

The basic conditional statement consists of the if keyword, followed by expression

that evaluates 1 or 0, and statements that are on newlines and under at least one level of

indentation from the if keyword. if block can optionally be followed by any number

of elseif blocks that have the same form. If using elseif, the statement has to be

followed by else block without any expressions attached. Abstract example:

if expression

8

statements

elseif expression

statements

else

statements

(d) return statement

return exits out of a scope (block of code) and optionally returns a value and may

only be defined inside the scope of a function definition. Abstract example:

return expression

The expression after return keyword is optional. If there is nothing to receive the

return value, the value is discarded.

(e) while loop

while expression

block

This is our basic looping mechanism.

(f) foreach loop

foreach identifier in list

statement

foreach loop goes through the list and performs the same set of operations on every

element in the list; it is convenient for iterating through all rows and columns.

(g) Function Declaration

A function declaration declares a block of code that can be executed by a function call.

To define a function, start with the func keyword and follow it with an identifier to

serve as the function’s name, followed by an optional list of function arguments, each

9

having an optional type declaration prefix. After this, place a block of code on the

following line, indented one tab character. Parentheses surrounding the optional list of

arguments are optional. Abstract example:

func identifier list

statement

A more concrete example:

func name (arg1, arg2, arg3)

arg1 - arg2 -> [10,4]

arg3 -> [4,10]

6. Scope Rules

Blocks of code delimit “scope”—the segment of the program in which an identifier may

be referenced. A variable at a lower level of tabular indentation is visible to all levels of

indentation greater that its indentation level but the converse is not true; a variable at a given

level of indentation may not be referenced at a level of indentation less than its own.

Functions must be declared at “global” scope, or no level of tabular indentation. A variable

in a given scope may not be declared as having the same identifier as any identifier currently

in scope.

7. Examples

num:var1 = 1

str:var2 = "one"

list:var = var1, var2

var1 -> 0,0

var2 -> 1,0

var -> 2,0

10

Output:

1 one 1 one

_col_head = m>"Monday", t>"Tuesday", w>"Wednesday", a>"Average", v>"Variance"

_row_head = d>"Daniel", v>"Vladimir", g>"George"

54, 70, 90 -> _row_next

66, 69, 98 -> _row_next

56, 69, 85 -> _row_next

foreach row in _rows

_avg (row.m, row.t, row.w) -> row.a

_var (row.m, row.t, row.w) -> row.v

Output:

Monday Tuesday Wednesday Average Variance

Daniel 54 70 90 71.33 325.33

Vladimir 66 69 98 77.66 312.33

George 56 69 85 70 422

Scoping example:

globalVar = 2

localVar = 3

func compute

localVar = 2

localVar + globalVar -> 0,0

localVar + globalVar -> 0,1

11

Output:

5

4

Function Calls:

convert_time (3, 32, "sec")

Equivalently:

convert_time (min: 32, unit: "sec", hour: 3)

Subroutines are specified like so:

func convert_time (num:hour, num:min, str:unit)

if (unit == "sec")

return (60 * min) + (60 * 60 * hour)

else if (unit == "min")

return 60 * hour + min

else if (unit == "hour")

return hour + (min / 60)

else

exit ("Error: You specified a unit unknown to me.")

A simple program:

list1 = "A", "B", "C", "D"

list2 = "1", "2", "3", "4"

12

list1 -> _row_next

list2 -> _col_next

"", "", "E", "F", list1.2 -> _row_next

Output:

A B C D 1

2

3

4

E F C

Pascal’s Triangle as Table

// Factorial algorithm using a cache to compute factorials.

factCache = 1

func factorial (num:n)

if n <= _length (factCache)

return factCache.n

prod = _tail (factCache) // prod = last element of factCache

while (_length (factCache) <= n)

// Append prod onto end of factCache array.

factCache = factCache, (prod *= _length (factCache))

return prod

func pascalCombination (num:n, num:k)

return factorial (n) / (factorial (k) * factorial (n - k))

max = 10 // Set maximum # of rows to output

13

i = 0

j = 0

while (i <= max)

while (j <= i)

pascalCombination (i, j) -> [i, j]

j++

i++

j = 0

Output:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

8. Preprocessor

#!/usr/bin/perl -w

#

This will be the main TableGen executable and preprocessor.

#

use strict;

my $prog = pop @ARGV;

SWITCH: for (@ARGV) {

14

/--help/ && do { &getHelp; next };

More commandline options are to come. Follow

die "Can’t process request because I do not know what $_ means. \nRun --help for help.\n";

}

sub help {

print "TableGen expects the filename at the end of any commandline sequence: \n".

"TableGen <options> [filename].\n";

Describe any options that you add here. New Print statement for each option.

exit 0;

}

Check input:

if (! -e $prog) {

die "Error: The filename ($prog) of the program you wish to run does not exist.\n";

}

Take program and shove it into memory:

open PROG, $prog or die "Could not open $prog: $!\n";

my @lines = <PROG>;

push @lines, "\n"; # Last element needs to end with a newline for

the preprocessor.

Run proprocess. Pass it as reference because we do not want

to make copies of a potentially bit list of lines.

&preprocess (\@lines);

Subroutines below...

sub preprocess {

my $ref = shift;

my $wscnt = 0;

my $brak = 0;

for (@{$ref}) {

#Place square brackets around coordinates.

if (/->\s*\d+\s*,\s*\d+\s*$/) {

s/(\d+\s*,\s*\d+)/\[$1\]/;

}

#Brackets at begining of tab increase.

{

/ˆ([\t]+)/;

my @ws;

if (!$1) {

#@ws = 0;

} else {

@ws = split //, $1;

}

if (@ws > $wscnt) {

s/ˆ/\{\n/;

15

$brak = $brak + 1;

} elsif (@ws < $wscnt) {

s/ˆ/\n\}\n/;

$brak = $brak + 1;

} else {

Nothing

}

$wscnt = scalar @ws;

}

print "$_";

}

if ($brak % 2) { # The number of brakets is odd.

print "}\n";

}

}

9. Grammar

grammar TableGen;

options {

output=AST;

k=2;

}

ASSIGNMENT_OP : ’=’ ;

BOOL_OPS : ’<’ | ’<=’ | ’>=’ ;

COLON : ’:’ ;

COMMA : ’,’ ;

DECIMAL_POINT : ’.’ ;

DIGIT : ’0’..’9’ ;

ELSE_KEYWORD : ’else’ ;

ELSEIF_KEYWORD : ’elseif’ ;

EQUALS : ’==’ ;

FOREACH_KEYWORD : ’foreach’ ;

FUNC_KEYWORD : ’func’ ;

GREATER_THAN : ’>’ ;

IF_KEYWORD : ’if’ ;

GREATER_THAN : ’>’ ;

16

IN_KEYWORD : ’in’ ;

L_BRACE : ’{’ ;

L_BRACKET : ’[’ ;

L_PAREN : ’(’ ;

LETTER : ’a’..’z’ | ’A’..’Z’ ;

LINE_TERMINATOR

: (’\n’ ’\r’) => ’\n’ ’\r’

| ’\n’

| ’\r’

;

LIST_KEYWORD : ’list’ ;

LOGICAL_OP

: ’&&’

| ’||’

;

MATH_OP

: ’+’

| ’-’

| ’*’

| ’/’

;

PUT_OP : ’->’ ;

QUOTES : ’"’ ;

R_BRACE : ’}’ ;

R_BRACKET : ’]’ ;

R_PAREN : ’)’ ;

RETURN_KEYWORD : ’return’ ;

UNDERSCORE : ’_’ ;

VARTYPE : ’str’ | ’num’ ;

VALID_CHARS : ’\u0020’..’\u007e’ ;

WHILE_KEYWORD : ’while’ ;

WS : (’ ’|’\r’|’\t’|’\u000C’|’\n’) {$channel=HIDDEN;} ;

Identifier : LETTER (LETTER | DIGIT | UNDERSCORE)* ;

17

String_literal : QUOTES LETTER* QUOTES ;

Number_literal

: DIGIT+ (DECIMAL_POINT DIGIT+)? ;

bool_compare : GREATER_THAN | BOOL_OPS ;

coordinate : L_BRACKET Number_literal COMMA Number_literal R_BRACKET ;

literal

: String_literal

| Number_literal

;

expression

: function_call

| literal

| location

;

function_call : Identifier L_PAREN (named_func_param | expression)* R_PAREN ;

named_func_param : Identifier COLON expression ;

location

: Identifier list_element_suffix?

| coordinate

;

list_element_suffix

: DECIMAL_POINT Identifier

;

/******************** STATEMENT TYPES *************************/

// don’t do separate declaration -- if not in scope, make it!

assignment : (VARTYPE COLON)? Identifier ASSIGNMENT_OP (expression | list_element_specification+);

list_element_specification : Identifier GREATER_THAN expression ;

put_into : expression PUT_OP location ;

if_else : IF_KEYWORD block elseif* (ELSE_KEYWORD block)? ;

elseif : ELSEIF_KEYWORD block ;

function_definition : FUNC_KEYWORD func_param* block ;

func_param : (VARTYPE COLON)? Identifier ;

for_loop : FOREACH_KEYWORD assignment bool_expression assignment block ;

18

bool_expression : expression bool_compare expression ;

/******************* HIGH-LEVEL **********************/

program : statement* ;

statement

: (assignment

| put_into

| if_else

| function_definition

| for_loop

| RETURN_KEYWORD (Identifier | literal)

| block

) LINE_TERMINATOR

;

block

: L_BRACE statement* R_BRACE

;

19

