
TRAVEL ASSIST SCRIPTING LANGUAGE (TASL)

Language Reference Manual

Yogi Saxena (ys2332@columbia.edu)

1 Introduction

There are several websites that offer a web based interface to get quotes for air fare,
accommodation and other services such as rental cars. The user is required to enter several pieces
information related to his/her travel plans such as dates, destination and quantity. This
information is not stored and the user is required to re enter when he starts a new search. Most of
the users are looking for the cheapest fare for their travel. This may require multiple searches
with a combination of different dates and/or destinations.

The TASL language attempts to provide a simple scripting language that would make it easier for
the travelers to do their search. The user input will be stored and used for periodic searches
carried out at a pre-defined interval. If the results of the search match the user defined criteria
then the results could be stored in a file and/or the user could be alerted via email.

2 Lexemes

2.1 Identifiers

Identifiers refer to or identify function names, data objects, class names etc. They consist of a
string of characters such as one or more uppercase or lower case alphabets and numbers. The
first character of an identifier must start with an alphabet. Upper case and lower case letters are
treated differently. Keywords are reserved identifiers and cannot be re defined.

2.2 Keywords

The following reserved identifiers are used as keywords:

boolean int void if
else function while break

return search repeat email
for float modify delete

reserve

2.3 Numbers

A number is a string of digits and a decimal point. The types of Numbers supported in the
language are Integer and float. An Integer consists of a sequence of digits. A floating point
number consists of an integer part, a decimal point and a fraction part.

Example: 10, 100.00, 250.00

2.4 String
String is a sequence of zero or more characters. String literals are character strings surrounded by
double quotes (“EWR”). String literals can include any valid character, including white-space
characters and character escape sequences.

2.5 Operators

An operator is a token that specifies an operation on at least one operand, and yields some result
(a value, designator, side effect or some combination). Operands are expressions or constants.

The following are the operators used in TASL.

+ - / * =
= = > < & |

3 Data Types

The language defines the following data types:

Numeric: Integer represents date and quantity, float represents price.

True or False: These represent Boolean values.

4 Declarations

4.1 General declaration

All objects must be declared before use. The general syntax of a declaration is as follows:

type-specifier init-declarator-list(opt);

init-declarator-list:

declarator
init_declarator-list, declarator

The type specifiers can be int, float or boolean.

4.2 Arrays

Arrays can be declared with square brackets []. The following is the syntax for declaring an
array.

type-specifier declarator [constant-expression-list(opt)];

the type-specifier can be int or float.

5 Functions

5.1 Function Types

A function has the derived type “function returning type”. The type can be a data type except
array or a function type. A function that does not return any value is referred to as a void
function.

Functions can be defined in the following ways:

1) A function definition can create a function designator, define its parameters and their
types, defined the type of its return value and construct the body of the function.

2) A function declaration specifies the properties of a function defined elsewhere.

5.2 Function Definitions

A function definition includes the body of the function. Function definitions can appear in any
order, and can be referenced in one or more source files. Function definitions cannot be nested.

A function definition has the following syntax:

function-definition:
declaration-specifiers (opt) declarator declaration-list(opt) compound-statement

declaration specifiers
The declaration-specifiers (type qualifier and type-specifier) can be listed in any order.
Type specifiers are: int, float and boolean.

Example:

main () {
search “EWR” “SFO” 10182007 10242007 2
if (Results()) {

email(xyz@columbia.edu);
}

}

boolean function Results() {

if (FARE[0] < desiredValue) {
return true;

}
return false;

}

5.3 Function Declarations

For all functions if the function definition is located after the calling function, the function must
be declared before calling it.

5.4 Function Parameters and Arguments

The functions exchange information by means of parameters and arguments. The term parameter
refers to any declaration within the parentheses following the function name in a function
declaration or definition. The term argument refers to any expression within the parenthesis of a
function call.

The following rules apply to the parameters and arguments:

1) The number of arguments in a function call must be the same as the number of
parameters declared by the function definition.

2) The maximum number of arguments (and corresponding parameters) is 50 for a single
function.

3) Arguments are separated by commas. The comma is not an operator in this context and
the arguments can be evaluated by the compiler in any order.

4) Arguments are passed by value.
5) Modifying a parameter does not modify the corresponding argument passed by the

function call.

5.5 Function invocation and return

Function Call:
A function call can be a single statement followed by a “;”.

Return Statement:
The return statement is used to return from the function at the point the return statement is
specified. Return statements can return a value. The return statement is terminated by a “;”.

5.6 Built-In Functions

5.6.1 print()

Sends the output to the screen

5.6.2 load()

File I/O functions.

5.6.3 email (xxx@yyy.edu)

Emails the results to the supplied email id.

6 Expressions and Operators

6.1 Primary Expressions

Simple expressions are called primary expressions; they denote values. Primary expressions
include previously declared identifiers, constants, string literals and parenthesized expressions.

Primary expressions have the following syntax:

primary expression:
 identifier
 constant
 strings
 (expression)

6.1.1 Identifier

An identifier is a primary expression provided it is declared as designating an object or a function

6.1.2 Constant

A constant is a primary expression. Its type depends on its form (ie either boolean or int or float).

6.1.3 Expression

A parenthesized expression is a primary expression whose type and value are identical to those of
the unadorned expression. The presence of parentheses does not affect whether the expression is
an lvalue.

6.2 Postfix Expressions

Postfix expressions include array references, function calls and postfix increment and decrement
expressions. The operators in postfix expressions have left-to-right associativity. Postfix
expressions have the following syntax:

Postfix-expression:
Primary-expression
postfix-expression ++
postfix-expression [expression]
postfix-expression (argument-expression-list)

6.2.1 Array References

A postfix expression followed by an expression in square brackets in a postfix expression
denoting a subscripted array reference.

array-reference:
 postfix-expression [expression]

6.2.2 Function Calls

A function call is a postfix expression consisting of a function designator followed by parentheses.
The order of evaluation of any expressions in the function parameter list is undefined, but there is
a sequence point before the actual call. The parentheses can contain a list of arguments
(separated by commas) or can be empty.

Function calls have the following syntax:

Function-call:
 Postfix-expression(argument-expression-list(opt))

Argument-expression-list(opt):
 assignment-expression
 argument-expression-list(opt), assignment-
 expression

6.3 Unary Operators

Unary expressions are formed by combining a unary operator with a single operand. All unary
operators are of equal precedence and have right-to-left associativity.
Unary-operator: one of & * + -

6.4 Binary Operators

The binary operators are categorized as follows:

 Multiplicative operators: multiplication (*) and division (/)
 Additive operators: addition (+) and subtraction (-)
 Relational Operators: less than (<), greater then (>)
 Equality operators: equality (==) and inequality (!=)
 Logical Operators: AND (&) and OR (|)

6.4.1 Multiplicative Operators:

The multiplicative operators are *, /. Operands must have the arithmetic type. Operands are
converted, if necessary, according to the usual arithmetic conversion rules.

The * operator performs multiplication and the / operator performs division.

6.4.2 Additive operators:

The additive operators + and – perform addition and subtraction. Operands are converted, if
necessary, according to the usual arithmetic conversion rules.

6.4.3 Relational operators:

The relational operators compare two operands and produce a result of type int. The result is 0 if
the relation is false and 1 if it is true. The operators are: less than (<), greater than (>). Both
operands must have an arithmetic type.

The relational operators associate from left to right.

6.4.4 Equality Operators:

The equality operator, equal (==) and not equal (! =), produce a result of type int, so that the
result is 1 if both operands have the same value and 0 if they do not.

6.4.5 Logical Operators:

The logical operators are AND (&) and OR (|). These operators guarantee left-to-right
evaluation. The result of the expression (of type double) is either 0 (false) or 1 (true). The
operands need not have the same type, but both types must be scalar. If the compiler can make an
evaluation by examining only the left operand, the right operand is not evaluated.

6.5 Assignment Operators

Assignment results in the value of the target variable after the assignment. They can be used as
sub-expressions in larger expressions.

Assignment expression has two operands: a modifiable value on the left and an expression on the
right. A simple assignment consists of the equal sign (=) between the two operands:

Exp1=Exp2;

The value of expression Exp2 is assigned to Exp1. The type is the type of Exp1, and the result is
the value of Exp1 after completion of the operation.

7 Statements

The following types of statements are supported.

 Expression statements
 Compound statements
 Selection statements
 Iteration statements
 Break statements
 search statement
 modify statement
 delete statement
 reserve statement

7.1 Expression statement

Most statements are expression statements, which have the form
expression-statement:

expression(opt);

7.2 Compound statements
Several statements can be combined to form a compound statement. The body of a function is a
compound statement.

compound-statement:
{ declaration-list(opt) statement-list (opt)}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

7.3 Selection statements

The if statement

If expression

then
statement

else (opt)
statement

The statement following the control expression is executed if the value of the control expression
is true. An if statement can be written with an optional else clause that is executed if the control
expression is false.

7.4 The iteration statement
Iteration statements are used for looping.

iteration-statement:
while (expression) statement
for (expression (opt) ; expression (opt); expression (opt)) statement

In the while statement the substatement is executed repeatedly so long as the value of the
expression remains unequal to 0.

In the for statement, the first expression is evaluated once, and thus specifies initialization of the
loop. The second expression must be a arithmetic type and is evaluated before each iteration, and
if it becomes equal to 0 the for is terminated.

7.5 Break statement

The break statement causes the termination of the enclosing while and for statements. The
control is passed to the statement following the terminated statement.

7.6 Return statement
The return statement causes the program control to return to the caller. An optional expression
following the return keyword will cause the function to return the lvalue of the expression of the
caller. If required, the expression is converted, as if by assignment, to the type of function in
which it appears.

7.7 Search statement

The search statement is used to query the database for fares. The following is the syntax:

search origin_Identifier destination_Identifier departure_date return_date quantity

7.8 Modify Statement
The modify statement is used to modify the database for reservations. The following is the
syntax:

modify origin_Identifier destination_Identifier departure_date return_date quantity

7.9 Delete Statement

The delete statement is used to delete the record of a reservation in the database. The following is
the syntax:

delete origin_Identifier destination_Identifier departure_date return_date quantity

7.10 Reserve Statement
The reserve statement is used to insert a reservation in the database. The following is the syntax:

reserve origin_Identifier destination_Identifier departure_date return_date quantity

8 References

[1] C Reference Manual, Dennis and Ritchie

