
Physicalc:

A Language for (simple) Scientific Computation

Brian Foo, bwf2101@columia.edu
Changlong Jiang, cj2214@columbia.edu

Ici Li, il2117@columbia.edu
Stuart Sierra, ss2806@columbia.edu

Language Reference Manual – October 18, 2007

Contents

1 Introduction 2

2 Prior Art 3

3 Conventions in This Document 3

4 Program Sources 3
4.1 Encoding . 3
4.2 Comments . 3
4.3 Whitespace . 3
4.4 Line Breaks and Semicolons . 3
4.5 Identifiers . 3
4.6 Reserved Words . 4

5 Fundamental Types 4
5.1 Numbers . 4
5.2 Strings . 4
5.3 Lists . 4
5.4 Vectors . 5
5.5 Booleans . 5

6 Definitions 5
6.1 Note on Definitions Using Expressions . 5
6.2 Quantities . 5

6.2.1 Base Quantities . 5
6.2.2 Derived Quantities . 6

6.3 Units . 6
6.3.1 Base Units . 6

1

6.3.2 Derived Units . 6
6.4 Constants . 7
6.5 Functions . 7
6.6 Aliases . 7

7 Expressions 8
7.1 Arithmetical Expressions . 8
7.2 Combining Numbers and Units . 9
7.3 List Member Access . 9
7.4 Function Calls . 10
7.5 Relational Operators . 10
7.6 Logical Operators . 10
7.7 Unit Conversion . 11
7.8 Restricted Expressions . 11

8 Statements 11
8.1 Loading Source Files . 11
8.2 Assignment . 11
8.3 Return . 12
8.4 If/Then/Else . 12
8.5 While Loops . 12
8.6 For Loops . 13
8.7 Control Statements Within Loops . 13

9 Built-In Functions 13
9.1 print() . 13
9.2 nprint() . 13
9.3 toString() . 14
9.4 stripUnits() . 14
9.5 toPrecision() . 14
9.6 toInt() . 14
9.7 read() . 14
9.8 readline() . 14
9.9 exit() . 14

10 References 15

11 Grammar 16

1 Introduction

Physicalc is a simple programming language for scientific computation, designed for students study-
ing beginning and intermediate-level physics, chemistry, or other sciences. It has a plain-English
syntax inspired by basic, and a mathematical model that can perform operations using scientific
units. It is intended as an educational tool.

2

2 Prior Art

• Units[8], a command-line program included in early unix systems and gnu/Linux, provides
conversion factors between various units.

• Calchemy[1] is software for the Palm OS that combines a scientific calculator with unit con-
version and dimensional analysis. It is based on an earlier Windows program called unicalc.

• The Google Calculator[2] performs arithmetic on numbers including unit conversions.

• JScience[4] is a Java library for scientific computation including units.

3 Conventions in This Document

In this document, text in monospace type indicates a keyword or literal syntax. Text in italic type
indicates a placeholder for some other piece of source code.

4 Program Sources

4.1 Encoding

Physicalc accepts source files encoded in plain 7-bit ascii. High bit characters are not allowed.
Line breaks may be encoded in dos \r\n, unix \n, or Macintosh \r style. Ascii characters with
decimal value less than 9, i.e. the control characters, are not allowed.

4.2 Comments

Comments begin with a hash character (#) and continue to the end of the line. Comments may be
placed on the same line as source code. The line break is not considered part of the comment text.

4.3 Whitespace

Whitespace characters—spaces, tabs, and form feed characters—may used to separate tokens in
the input but are discarded during parsing.

4.4 Line Breaks and Semicolons

Line breaks are significant in Physicalc syntax. Line breaks serve as statement terminators. In the
syntax rules that follow, all line breaks shown are mandatory.

To put multiple statements on a single line of source code, semicolons may be used in place
of line breaks. Semicolons may be used anywhere a line break would normally be used, including
between the parts of compound statements such as if/elsif/else.

Any number of consecutive line breaks and/or semicolons is read as a single terminator.

4.5 Identifiers

All identifiers begin with a letter or underscore, followed by zero or more letters, digits, and under-
scores. Identifiers are case-sensitive.

3

4.6 Reserved Words

The following words are reserved as keywords and may not be used as identifiers: alias and break
constant do done else elsif false for from function if in loop next not or quantity
return set step then to true unit while

Additionally, Physicalc defines several built-in functions (Section 9) which may not be redefined.

5 Fundamental Types

5.1 Numbers

All numbers in Physicalc are treated as arbitrary-precision decimals. There is no distinction among
integers, rationals, and reals. All arithmetical calculations are decimal-accurate to a reasonable
degree of precision. Floating-point arithmetic is never used.

Literal numbers may be written in source code as integers or as decimals using C-style floating
point number syntax. A number has three parts:

1. An integer part composed of digits;

2. A decimal part composed of a . (period) character followed by digits;

3. An exponent beginning with the letter e (or E), followed by an optional + or - sign, followed
by digits.

All parts are optional, but either the integer or decimal part must be present.

5.2 Strings

Strings are sequences of ascii characters. Literal strings may be written in source code by placing
them between double-quotation (") characters. A literal " character is written in a string as two
consecutive " characters, so the string

The “big” bus

could be written as

"The ""big"" bus"

C-style character escapes (\n, \t, etc.) are not supported. Line breaks are permitted inside strings.

5.3 Lists

Lists are one-dimensional, variable-length, zero-indexed arrays of objects. Lists are heterogeneous—
they may contain any combination of different object types. Lists are automatically resized.

A list literal may be written in source code by enclosing the entire list in square brackets ([and])
and separating individual elements with commas. Whitespace, but not line breaks, is permitted
between list elements; it is ignored. Nested lists are allowed. The elements in a list literal may be
expressions; those expressions are evaluated and their results are stored in the list.

4

5.4 Vectors

Vectors are two-dimensional x, y component pairs. The components of a vector must be numbers,
optionally including units (see Section 6.3). If the components of a vector include units, both
components must have units of the same quantity (see Section 6.2).

Literal vectors may be written in source code by enclosing the entire vector in curly brackets
({ and }) and separating the components with commas. Whitespace is permitted between vector
components. The components in a vector literal may be expressions; those expressions are evaluated
and their results are stored in the vector.

Nested vectors, vectors with more than two dimensions, and matrices are not supported.

5.5 Booleans

Boolean values are the literal identifiers true and false. These are global built-in constants and
may not be redefined. In statements that use boolean expressions, any value that is not exactly
equal to false is considered true. For example, the empty list and the number zero are both “true”
in a boolean context.

6 Definitions

A typical Physicalc program consists primarily of definitions. There are five types of definitions:
quantities, units, constants, functions, and aliases.

A definition permanently associates some identifier with an object. All definitions must occur
at the top level of program scope; they may not be nested. Defintions are present in the running
program from the point at which they are defined until the program terminates. Defined identifiers
have global scope, and may not be overridden by local variables with the same name. An identifier,
once defined, may be redefined, but this will cause the interpreter to print a warning message.

6.1 Note on Definitions Using Expressions

Some of the definition types below take the form identifier=expression . In these cases, the = is not
an operator; it is part of the syntax. The expression that follows the = symbol is evaluated once,
at the time the definition is read, and its result is stored in the identifier .

6.2 Quantities

Quantities are part of the Physicalc system for handling calculations involving scientific units. A
quantity represents a physical property which can be measured or calculated, independent of the
system of units used to measure it. Examples of quantities are mass, length, time, velocity, and
force.

6.2.1 Base Quantities

Base quantities are fundamental quantities that are not mathematically derived from other quanti-
ties. The SI unit system has seven base quantities: length, time, mass, electric current, temperature,
amount of substance, and luminous intensity.[3] Other unit systems might have different base quan-
tities.

5

Base quantities are defined with the keyword quantity, followed by an identifier for the quantity.

Syntax: quantity identifier

6.2.2 Derived Quantities

Derived quantities are defined by mathematical relationships to existing quantities. An example of
a derived quantity in the SI system is velocity, defined as distance divided by time.

Syntax: quantity identifier = expression

where expression is a restricted expression on previously defined quantities. See Section 7.8 for the
meaning of “restricted expression.”

An identifier that has been defined as a base quantity may not be subsequently redefined as a
derived quantity; to do so is an error.

6.3 Units

A unit is a concrete standard of measurement for some physical quantity.

6.3.1 Base Units

Base units are units for base quantities. Examples of base units in the SI system are meters for
length, seconds for time, and kilograms for mass.[6] Base units are defined by associating them with
a quantity.

Syntax: unit identifier1 for identifier2

where identifier2 is a previously-defined quantity and identifier1 is the name of the new unit.

6.3.2 Derived Units

Derived units are defined in terms of mathematical relationships to other units. An example of a
derived unit in the SI system is the Coulomb, defined as seconds multiplied by Amperes.[7] Derived
units are defined in Physicalc with expressions involving other units.

Syntax: unit identifier = expression

where expression is a restricted expression on previously defined units. See Section 7.8 for the
meaning of “restricted expression.”

A derived unit may also be defined as a conversion factor from another unit for the same
quantity. Typically, this type of derived unit will have a definition expression consisting of a
base unit multipied by some constant number. In this way, conversion factors between different
systems of measurement may be defined. Those conversion factors may be used for automatic unit
conversion with the in operator (Section 7.7).

An identifier that has been defined as a base unit may not be subsequently redefined as a derived
unit; to do so is an error.

6

6.4 Constants

Constants are static identifiers that hold any type of value. They have global scope and may not
be changed by assignment. Constants may be changed by redefining them, but this produces a
warning.

Syntax: constant identifier = expression

where expression is any expression.

6.5 Functions

Functions are named subroutines which receive input and return output. All function parameters
are passed by value; i.e. a copy of the parameter is made and the function operates on the copy.
Functions cannot modify any objects in their calling environment, nor can they define new global
objects.

The first line of a function definition consists of the keyword function, an identifier, and a
parameter list enclosed in parentheses. The body of the function, a sequence of statements, follows.
The function definition ends with the keyword done.

Syntax: function identifier(parameter list)
statements

done

The indentation of statements is for easier reading and has no significance in the syntax. The
parameter list consists of zero or more identifiers, separated by commas. The parentheses around
the parameter list are mandatory, even if the parameter list is empty. Whitespace, but not line
breaks, is allowed in the parameter list. Functions taking a variable number of parameters are not
supported, but this can be achieved in practice by passing a list as one of the parameters.

Within the body of a function, a return statement (Section 8.3) terminates the function and
returns its argument as the value of the function. The body of a function may refer to identifiers
not yet defined, but those identifiers must be defined before the function is called or an error will
result. See Section 7.4 for the syntax of function calls.

6.6 Aliases

To allow for multiple names for the same object, aliases may be defined. An alias is an identifier
that may be used in place of another identifier. Aliases are alternate names for an object rather
than true references. Aliases are subject to the same redefinition constraints as other definitions.

Syntax: alias identifier1 for identifier2

defines identifier1 as a new alias for identifier2, a previously-defined identifier. Subsequent uses of
identifier1 will be read as if they were identifier2. It is an error if identifier2 is not already defined.

7

Operator Description Associativity
() Grouping N/A

identifier[] List subscript left
identifier() Function call left

{ } Vector Literal N/A
[] List Literal N/A
- Unary minus right
^ Exponentiation right

* / Multiplication/Division left
+ - Addition/Subtraction left

> < >= <= Relational Comparison left
= != Equality Comparison left
not Logical NOT right
and Logical AND left
or Logical OR left
in Unit Conversion left
, Comma separating expressions left

Highest precedence is on the top line of the table.

Figure 1: Operator Precedence

7 Expressions

Expressions consist of operators, function calls, literals, and identifiers. An expression, when evalu-
ated, returns a value. Operator precedence is summarized in Figure 1. The types of expressions are
described below. Expressions may contain whitespace, which is ignored, but they may not contain
line breaks.

7.1 Arithmetical Expressions

Arithmetical expressions consist of the unary negation operator (-), parentheses (), and binary
operators for addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^)

The unary negation operator takes one argument on the right, and returns its opposite. There
is no unary plus operator, because it serves no purpose that the authors can imagine.

Binary operators take one argument on the left and one argument on the right. The caret
operator (^) performs exponentiation, raising its left argument to the value of its right argument.
The operator ^ has highest precedence, followed by unary -, followed by binary * and /, followed
by binary + and -.

Parentheses are used for grouping expressions and specifying precedence explicitly. An expres-
sion inside parentheses is always evaluated before other expressions. Parentheses may be nested
to any level (within the bounds of computer memory) and the inner-most parenthetical expression
will be evaluated first.

Arithmetic may be performed on numbers, vectors, and units. All arithmetical operators are
supported when the operands are both numbers. All operations except exponentiation are supported
between two vectors. A vector may be multiplied or divided by a number, and a number may be

8

Right Operand
Number Vector Unit String List

Number + - * / ^ * * /
Left Vector * / + - * / * /

Operand Unit * / ^ * /
String +
List +

Figure 2: Permitted Binary Operations by Operand Type

multiplied by a vector, but a number may not be divided by a vector. Units may be multiplied
and divided with other units, numbers, and vectors, but may not be added or subtracted (see
Section 7.2). Units may be raised to a numerical exponent. Finally, concatenation is supported for
strings and lists using the binary + operator. Figure 2 summarizes the supported binary operations.

7.2 Combining Numbers and Units

Mathematically, numbers with units are said to be “multiplied” by a symbol representing the unit.
In Physicalc, this is taken literally. Units are identifiers, and a number with units is simply an
expression of the form “number*identifier ” where identifier has been defined as a unit. Units
are preserved in calculations and results. Limited handling of units as algebraic expressions is
supported, so an expression such as “three meters per second multiplied by ten seconds” could be
written

3 * meter / second * 10 * second

and would return the correct result of thirty meters as 30*meter. Calculations requiring unit
conversions might not always return the desired units in the result; the in operator (Section 7.7)
forces conversion to the correct units.

7.3 List Member Access

Once a list has been stored in a variable, its elements may be accessed using bracketed indexes.

Syntax: identifier[expression]

where expression must evaluate to an integer, which is used as an index into the list stored in
identifier . An attempt to access an index beyond the end of the list produces an error.

Bracketed indexes are only permitted on identifiers, not on literal lists nor on expressions that
return a list. Items in nested lists may be accessed with multiple consecutive bracket expressions,
so if the variable x contained the list

[a, b, [c, d], e]

the element d could be referenced as x[2][1].

9

7.4 Function Calls

Built-in or user-defined functions are called with the name of the function, an opening parenthesis,
an argument list, and a closing parenthesis. No space is permitted between the function name and
the opening parenthesis. The parentheses are mandatory even if the argument list is empty.

Syntax: identifier(argument list)

The argument list is a sequence of expressions, separated by commas. The number of arguments
in the argument list of the function call must match the number of arguments in the function
definition.

When a function is called, the expressions in the argument list are evaluated. A new local scope
is created, and the values of the arguments are bound to the named parameters from the function
definition.

7.5 Relational Operators

Numbers, and only numbers, may be compared with the standard relational operators >, <, >=, and
<=. These operators all return a boolean value.

Any two objects may be compared with the equality operator, =, which returns true if its left
operand is of the same type and has the same value as its right operand, and false otherwise. Two
vectors are equal if both of their components are equal. Two units are equal if they are the same
unit.

The not-equals operator, !=, returns true if its operands are not equal under the definition of
equality used for =, and false otherwise.

7.6 Logical Operators

Logical operators work on boolean values and expresions.

Syntax: not expression

returns true if expression is false and returns false if expression is true.

Syntax: expression1 and expression2

returns true if both expression1 and expression2 are true. This operator “short-circuits”—if expres-
sion1 is false, it returns false without evaluating expression2.

Syntax: expression1 or expression2

returns true if expression1 is true, expression2 is true, or both are true. This operator “short-
circuits”—if expression1 is true, it returns true without evaluating expression2.

10

7.7 Unit Conversion

The special binary in operator is used to convert values from one set of units to another.

Syntax: expression1 in expression2

where expression1 is an expression that evaluates to a number or vector with units, and expression2

evaluates to units. The in operator searches through the set of defined relationships among units
and quantities to find the correct conversion factor, applies that conversion, and returns the result
number or vector in the requested units. It is an error if expression1 and expression2 do not have
the same quantity, or if a valid conversion factor between the units of expression1 and the units of
expression2 cannot be found.

7.8 Restricted Expressions

Some definitions (Section 6) refer to “restricted expressions.” These are expressions involving only
numbers, identifiers, parentheses, and the arithmetical operators +, -, *, /, and ^. Some restricted
expressions are described as “on” a type, such as units or quantities. In those cases, the restricted
expression is futher limited to using identifiers only of that type.

8 Statements

Statements are source code constructs which do not return a value. An expression may be used as
a statement by itself; its return value is discarded.

8.1 Loading Source Files

The special load statement reads in additional source files.

Syntax: load string

The string is interpreted as a path on the local filesystem, relative to the current working directory,
to a file containing Physicalc source code. That file is read and its contents are executed as if they
had been included in the current program at the point of the load statement. Any definitions in
the loaded file will become part of the running program.

If the file cannot be found or cannot be read, an error results. load is only allowed at the
top-level of a program source file; it may not appear inside functions or other statements.

8.2 Assignment

Syntax: set identifier = expression

An assignment statement evaluates expression , then binds its value to the local variable named
identifier . If identifier is currently undefined, a new local variable is created with scope correspond-
ing to the current function body. It is an error if identifier is already defined as a global object,
i.e. a measure, unit, function, or constant.

Assignment statements may be used outside of a function body, but doing so does not create a
global variable. Global variables are not supported, only global constants.

11

8.3 Return

Syntax: return expression

A return statement may only appear inside the body of a function; a return statement found
outside of a function body is an error. When a return statement is executed, expression is evaluated
and its value is returned as the value of the function.

8.4 If/Then/Else

An if/then/else block begins with the keyword if, followed by an boolean expression, followed by
the keyword then and a terminator (line break or semicolon). After then comes a sequence of one
or more statements, then any number of elsif blocks, then an optional else block, then finally
the keyword done.

Syntax: if expression1 then
statements1

elsif expression2 then
statements2

. . . additional elsif blocks . . .
else

statements3

done

The indentation of the statement blocks is for easier reading and is not significant in the syntax.
First, expression1 is evaluated. If it returns true, statements1 are executed. After completing
statements1, control passes to the statement following the done keyword.

If expression1 returns false, expression2 is evaluated. If expression2 returns true, statements2 are
executed, then control passes to the statement following the done keyword. Additional elsif blocks
may specify additional test expressions and statements to execute. If all of the test expressions
return false, and if the optional final else block is present, statements3 are executed.

An if/then/else block might not execute any statements at all if there is no else block. An
if/then/else block never executes more than one group of statements. Once the first test expression
returns true, its associated statement block is executed and all other test expressions and statement
blocks are skipped.

8.5 While Loops

Syntax: while expression do
statements

done

While loops evaluate a group of statements as long as a given conditional expression remains
true. The conditional expression is evaluated before the statement body on every iteration of the
loop. If it returns true, the statements are executed. The first time it returns false, control passes
to the statement following the done keyword.

12

8.6 For Loops

Syntax: for identifier from expression1 to expression2 step expression3 do
statements

done

At the beginning of a for loop, expression1, expression2, and expression3 are all evaluated
immediately. All three must evaluate to positive numbers, optionally including units; it is an error
if they do not. The result of expression1 is assigned to the local variable identifier . If identifier is
undefined, a new local variable is created with scope corresponding to the current function body. It
is an error if identifier is already defined as a global. The statements are executed, after which the
value of expression3 is added to the value in identifier , and that new value is stored in identifier .
Then the value of identifier is compared to the value of expression2. If identifier is greater than
the value of expression2, control passes to the statement following the done keyword. If identifier is
less than or equal to the value of expression2, statements are executed again. This process repeats
until identifier is greater than the value of expression2 or a break or return statement is executed.

8.7 Control Statements Within Loops

Within any loop structure there are two special statements which affect the execution of the loop.
The break statement will immediately terminate the execution of the loop and transfer control to
the statement following the loop’s done keyword.

The next statement will immediately return control to the top of the loop. In the case of while
loops, the loop test is applied as if the loop had reached the end of its statement block. In the case
of for loops, the counter variable is incremented and the test is applied as if the loop had reached
the end of its statement block.

Additionally, a loop used inside of a function body may contain a return statement, which will
immediately break out of the loop and return from the function.

9 Built-In Functions

Physicalc provides a some built-in functions, which have the same syntax as normal function calls
but carry out operations which could not be implemented with normal Physicalc code.

9.1 print()

The print() function takes a single argument, which may be any object, and prints it to the
output stream, followed by a line break. Printing a string prints its contents without the enclosing
" characters. Lists, vectors, units, and numbers are automatically converted to strings with the
toString() function before being printed. Printing multiple objects with a single call to print()
requires converting them to strings and concatenating those strings.

9.2 nprint()

The nprint() function acts like print() but does not print a line break.

13

9.3 toString()

The toString() function converts its argument, which may be any object, to a string. If the
argument is already a string, it is simply returned. Other types of arguments are converted to a
string that matches their literal syntax.

9.4 stripUnits()

The stripUnits() function takes an argument of a number with units and removes all units, leaving
just the bare number. If a bare unit without any numbers is passed to the function, it returns the
number one.

9.5 toPrecision()

The toPrecision() function takes two arguments, a number n and an integer i, and rounds n to
have i significant digits. Rounding is performed using the unbiased “round-to-even” method.[5] If
the number includes units, those units are preserved in the result.

9.6 toInt()

The toInt() rounds its argument to the nearest integer, using the same “round-to-even” method
as toPrecision(). If the number includes units, those units are preserved in the result.

9.7 read()

The read() function takes no arguments. It reads a single value from the input stream, ignoring
all preceeding whitespace and continuing up to the first whitespace character. The value is parsed
as an expression of numbers and units and returned to the caller.

9.8 readline()

The readline() function, which takes no arguments, reads a line from the input stream up to the
first linebreak character and returns it as a string.

9.9 exit()

The exit() function, which takes no arguments, immediately terminates the Physicalc program.

14

10 References

[1] Calchemy, http://www.calchemy.com/

[2] Google Calculator, http://www.google.com/help/calculator.html

[3] “International System of Units.” Wikipedia, http://en.wikipedia.org/wiki/Si_units

[4] JScience, http://jscience.org/

[5] “Rounding numbers.” Wikipedia, http://en.wikipedia.org/wiki/Rounding_numbers

[6] “SI base unit.” Wikipedia, http://en.wikipedia.org/wiki/SI_base_unit

[7] “SI derived unit.” Wikipedia, http://en.wikipedia.org/wiki/SI_derived_unit

[8] Units, GNU Project, http://www.gnu.org/software/units/units.html

15

11 Grammar

/* ***
* grammar.g : the lexer and the parser, in ANTLR grammar for Physicalc
*
* ANTLR Parser Generator Version 2.7.7 (2006-11-01)
*
* @author Changlong Jiang, cj2214@columbia.edu
* @author Stuart Sierra, ss2806@colmbia.edu
*
* @version 1.0
* ***/

header {
package physicalc;

}

/* **
* LEXER *
* ** */
class PhysiLexer extends Lexer;

options {
charVocabulary = ’\11’..’\177’; // Plain 7-bit ASCII
testLiterals = false;
k = 2; // for >= or <= operators

}

protected DIGIT : ’0’..’9’;
protected LETTER : ’a’..’z’ | ’A’..’Z’;

/** Identifiers must begin with a letter or underscore, which may be
* followed by any combination of letters, digits, and underscores. */
ID options { testLiterals = true; }

: (LETTER | ’_’) (LETTER | DIGIT | ’_’)*;

/** Whitespace is ignored. */
WHITESPACE : (’ ’ | ’\t’ | ’\f’)+ { $setType(Token.SKIP); };

/** Line breaks are significant as statement separators, but are not
* tokens on their own. */
protected NEWLINE : (’\n’ | (’\r’ ’\n’) => ’\r’ ’\n’ | ’\r’)

{ newline(); } ;

16

/** Comments begin with ’#’ and go to the end of the line. Since line
* breaks are used as statement separators, the comment text does NOT
* include the newline. */
COMMENT : ’#’ (~(’\n’ | ’\r’))*

{ $setType(Token.SKIP); } ;

/** Statements are terminated by (any number of) newlines or
* semicolons. */
TERMINATOR : (NEWLINE | ’;’)+;

/** There is no syntactic distinction among integers, decimal numbers,
* and numbers with exponents. They’re all just numbers. */
NUMBER : ((DIGIT)+ (’.’ (DIGIT)*)?

| ’.’ (DIGIT)+
)
((’e’|’E’) (’+’|’-’)? (DIGIT)+)?
;

/** Strings are surrounded by double quotation marks. A double
* quotation character may be inside a string by using two double
* quotation marks in a row. */
STRING : ’"’!

(~(’"’)
| (’"’!’"’)
)*

’"’!
;

PLUS : ’+’;
MINUS : ’-’;
TIMES : ’*’;
DIVIDE : ’/’;
CARET : ’^’;
LPAREN : ’(’;
RPAREN : ’)’;
LBRACKET : ’[’;
RBRACKET : ’]’;
LBRACE : ’{’;
RBRACE : ’}’;
COMMA : ’,’;
EQ : ’=’; // we use ’set’ for assignment
NEQ : "!=";
RELOP : ’>’ | ’<’ | ">=" | "<=" ;

17

/* **
* PARSER *
* ** */
class PhysiParser extends Parser;

options {
k = 2;
buildAST = true;

}

tokens { /* used in the abstract syntax tree */
BLOCK;
FUNCALL;
IF;
LIST;
PARAMS;
SUBSCRIPT;
UMINUS;
VECTOR;

}

program : (load | def | stmt)+;

/** Load statement: load the file at the path given. */
load : "load"^ STRING TERMINATOR!;

/* **
* Definitions
* ** */

/** Definitions. */
def : (quantity_def | unit_def | constant_def | alias_def | function_def)

TERMINATOR;

quantity_def : "quantity"^ ID (EQ! expr)?;

unit_def : "unit"^ ID ("for"! ID | EQ! expr);

constant_def : "constant"^ ID EQ! expr;

alias_def : "alias"^ ID "for"! ID;

function_def : "function"^ ID LPAREN! params RPAREN! TERMINATOR!
block "done";

/** Parameter list for function definitions. */

18

params : (ID)? (COMMA! ID)*
{#params = #([PARAMS, "PARAMS"], params); } ;

/* **
* Statements
* ** */

/** Statements. */
stmt : simple_stmt | compound_stmt;

/** A block of one or more statements. */
block : (stmt)+

{#block = #([BLOCK, "BLOCK"], block); } ;

/** Simple statement: A single-line statement that must end with a
* TERMINATOR. An expression by itself can be a statement.*/
simple_stmt :

(expr
| "return"^ expr
| "next"^
| "break"^
| "set"^ ID EQ! expr
)
TERMINATOR! ;

/** Compound statement: a multi-part statement like if/then/else or
* while. Compound statements always end with "done". */
compound_stmt : (if_stmt | while_stmt | for_stmt) "done"! TERMINATOR!;

/** If/then/else. These rules transfrom an if/elsif/else sequence
* into nested IF trees. Each IF subtree has 3 arguments: (1) a test
* expression, (2) a "then" block, and (3) an optional "else"
* block. */
if_stmt :

"if"! expr "then"! TERMINATOR! block
elsif_stmt
{#if_stmt = #([IF,"IF"], if_stmt); } ;

elsif_stmt : "elsif"! expr "then"! TERMINATOR! block (elsif_stmt)
{#elsif_stmt = #([IF,"IF"], elsif_stmt); }
| else_stmt ;

else_stmt : "else"! TERMINATOR! block
| /* nothing */ ;

19

/** "while" loops. */
while_stmt : "while"^ expr "do"! TERMINATOR! block;

/** "for" loops. */
for_stmt : "for"^ ID "from"! expr "to"! expr "step"! expr "do"! TERMINATOR!

block ;

/* **
* Expressions
* ** */

/** A list of expressions, separated by commas. Used in literal lists
* and function calls. */
expr_list : expr (COMMA! expr)* ;

/** Expressions */
expr: in_expr;

/* Every binary operator is can repeat infinitely with a ’*’ closure.
*
* This parses expressions like "a < b < c" as "(< (< a b) c)", which
* makes no sense.
*
* However, changing the ’*’ to a ’?’ means that anything after the
* first operator gets ignored, which is clearly wrong. Better let
* the back-end decide if "(< (< a b) c)" is reasonable. */

in_expr : or_expr ("in"^ or_expr)*;

or_expr : and_expr ("or"^ and_expr)*;

and_expr : not_expr ("and"^ not_expr)*;

not_expr : ("not"^)? eq_expr; /* ’not’ expressions cannot be chained */

eq_expr : neq_expr (EQ^ neq_expr)*;

neq_expr : rel_expr (NEQ^ rel_expr)*;

rel_expr : add_expr (RELOP^ add_expr)*;

add_expr : mul_expr ((PLUS^ | MINUS^) mul_expr)*;

mul_expr : exp_expr ((TIMES^ | DIVIDE^) exp_expr)*;

20

/** Exponentiation: tail-recursion makes it right-associative. */
exp_expr : uminus_expr (CARET^ exp_expr)?;

/** Unary negation operator. Unary plus ("+") is not included because
* it’s meaningless. */
uminus_expr :

MINUS! atom
{#uminus_expr = #([UMINUS, "UMINUS"], uminus_expr); }
| atom;

/** atomic expressions (highest precedence) */
atom

: ID
| NUMBER
| STRING
| list_literal
| vector_literal
| subscript_expr
| funcall_expr
| LPAREN! expr RPAREN!
;

/** Literal list (in square brackets) */
list_literal : LBRACKET! expr_list RBRACKET!

{#list_literal = #([LIST,"LIST"], list_literal); };

/** Literal vector (in curly brackets, must have exactly 2 elements. */
vector_literal : LBRACE! expr COMMA! expr RBRACE!

{#vector_literal = #([VECTOR,"VECTOR"], vector_literal); };

/** Array/list subscripts like "a[b]". Back-end is responsible for
* checking that the subscript evaluates to an integer. Chained
* subscript expressions like a[b][c] are allowed, but the first token
* (the ’a’) must be an identifier. */
subscript_expr : ID (LBRACKET! expr RBRACKET!)+

{#subscript_expr = #([SUBSCRIPT, "SUBSCRIPT"], subscript_expr); };

/** Function calls */
funcall_expr : ID LPAREN! expr_list RPAREN!

{#funcall_expr = #([FUNCALL, "FUNCALL"], funcall_expr); };

21

