Perdix Language Reference Manual

Orr Bibring Justin Prosco Bing Wu
ob2135Q@columbia.edu jp2415Qcolumbia.edu bw2236Qcolumbia.edu

Angelika Zavou
az2172@Q@columbia.edu

October 18, 2007

Contents
1 Introduction
2 Anatomy of a Perdix Program

3 Lexical Conventions

3.1 Tokens oL e e e
3.2 Constants e
3.2.1 Imteger Constants. e
3.2.2 String Literalso
3.3 Identifiers L
3.4 Keywords e
3.4.1 Perdix Keywords
3.4.2 iptables Keywords
3.5 Punctuation e
3.6 Comments e e

4 Data Types

N P
4.2 String e e
4.3 file . . e

5 Expressions

5.1 Arithmetic Expressions
5.2 Conditional Expressions
5.3 Assignment Expressions
5.4 Logical EXpressions L e e

6 Operators

6.1 Arithmetic Operators e
6.2 Relational Operators e
6.3 Equality Operators e

6.4 Logical Operators. e

10

6.5 Precedence e

Statements
T1 Start . ..o
7.2 Variable Declaration
7.3 Assignment Statement oL
T4 Open e
7.4.1 File Permission Modes Lo
7.5 Condition e
7.6 Printo e e
T.7 Close . . . o
Scope

Appendix: Perdix Grammar

Appendix: Example Programs

10.1 Example 1. o o o o e e e
10.2 Example 2 oL e e e e
10.3 Example 3 L e
10.4 Example 4 L e

10.5 Example 5. L e

10
10
10
10
11
11
11
11

11

12

13

17

Perdix Language Reference Manual 4

1 Introduction

This document is a reference manual for Perdix, a high-level query language for the analysis of Linux
iptables firewall logs.

2 Anatomy of a Perdix Program

Every Perdix program must have the same basic structure. The program begins with a start statement
and the body of the program is contained within braces. File and variable initialization is done at the
top of the program body and are followed by conditional query statements and result print options.
Finally, input and output files are closed.

start ()
{

variable declarations and initialization
file open operations

conditional statement { print optiomns }
conditional statement { print options }

file close operations

3 Lexical Conventions

3.1 Tokens

Tokens area divided into the following classes:

Constants

Identifiers

Keywords

Operators

Any non-printable character such as a space, tab, new line, and form feed are considered whitespace.
Whitespace is discarded by the compiler, but is available to the programmer to make a script more
human readable. Whitespace is not used to dictate the scope of variables or program flow, but is used
to separate tokens.

Perdix Language Reference Manual

3.2 Constants
3.2.1 Integer Constants

An integer constant is a sequence of digits. All integers are positive base 10 numbers and do not need
to be enclosed in double quotation marks when being defined.

3.2.2 String Literals

String literals are arbitrary length sequences of characters enclosed in double quotation marks. If a
string literal contains double quotation marks, then they are written twice as shown below:

string test = "The ""double quotes"" are also part of the string"

3.3 Identifiers

Identifiers refer to user-defined variable names. An identifier must begin with a letter or underscore
and can contain a series of letters, underscores, or numbers so long as the name of the variable does
not match one of the reserved words. Identifiers may contain either uppercase, lowercase, or mixed
case letters. All identifiers in Perdix are case sensitive.

3.4 Keywords

Keywords are reserved words within the Perdix language that cannot be used as identifier names.

3.4.1 Perdix Keywords

The following are keywords in the Perdix language:

cond int file string
start open print close

3.4.2 iptables Keywords

The following are keywords that are used to reference fields within an iptables log file:

e date: the timestamp of the packet

e target: the target rule chain such as ACCEPT, REJECT, etc.
e mac: the MAC address of the adapter

e src: the source IP address of the packet

e srcport: the source port of the packet

e dst: the destination IP address of the packet

e dstport: the destination port of the packet

Perdix Language Reference Manual 6

e in: the interface the packet came in on

e out: the interface the packet was sent

e protocol: the protocol of the packet

e tos: the type of service

e tcp_flags: the flags set in the TCP header of the packet
e ip_flags: the flags set in the IP header

e ttl: the packet time to live

e window: the window size of the packet

e state: the connection state

3.5 Punctuation
There is a limited amount of punctuation defined in the Perdix grammar:

e Semicolon (;) : signifies the end of a Perdix statement

e Comma (,): separates the output arguments passed to print function

e Colon (:): used in functions to separate a file identifier argument from other arguments
e Double Quotation Marks (“”): indicate a string literal

e Braces ({ }) : define the body of a Perdix statement

e Parentheses (()): used to contain the arguments passed to built-in functions. They can also be
used to enforce precedence in conditional statements.

e Pound (#): signifies the beginning of a programmer comment

3.6 Comments

Comments are a single line beginning with the # character. Anything following a # character up to the
newline character is assumed to be a comment and will be discarded by the compiler. Multiline
comments are not allowed, as each line must begin with the # character. An example of this is shown
below:

This is a comment
This is the second line of the comment
int f=5; # Comment at the end of a line

4 Data Types

4.1 int

The int type is used to declare integer variables. Due to the nature of iptables log files, there is no need
for negative values, as there should never be a negative integer value in an iptables log file. Constant
values assigned to variable of this type do not need to be enclosed in double quotation marks.

Perdix Language Reference Manual 7

4.2 string

The string data type is used to define string literals. Variables of this type can be assigned a value of
any arbitrary length character string as long as it is enclosed in double quotation marks.

4.3 file

The file data type is a special type of string that is used to represent file variables. The value of a file
variable should be an operating system-specific path to a file, including the file name, enclosed in
double quotation marks. Therefore, file data types are defined with string literal values.

5 Expressions

Expressions are combinations of values, variables and operators that are evaluated according to the
particular rules of precedence and associativity defined in the Perdix language. Common locations for
expressions are in the cond () statement as well as in the initialization of variables. There are four
types of expressions found in Perdix, arithmetic expressions, conditional expressions, assignment
expressions and logical expressions.

5.1 Arithmetic Expressions

Arithmetic expressions can be used in Perdix utilizing the addition and subtraction operators. These
expressions can occur during an integer identifier initialization. A common use of arithmetic
expressions is to assign a variable the modified value of another previously defined variable as shown
below:

int varl 200;
int var2 = varl + 30;

5.2 Conditional Expressions

Conditional expressions are relational expressions that involve the use of the >, <, >=, <=, ==, or |1=
operators. The lvalue of all conditional expressions will be one of the iptables keywords, as a
conditional statement implies putting a constraint on the query for a particular field within a log file.

Conditional expressions do not return a value. Rather, the lvalue of the statement is changed at
runtime to the value of the field specified on the current input line. For instance, if the current line of
the log file being read has a src value of 7192.168.100.1” then a conditional statement including the
line src== will be changed to ”192.168.100.1” at run-time for this line.

If the boolean expression result is true, then the current line of the input log file will be included in the
query results. If the statement evaluates to false at run time, the current line of the input log file is not
included in the query results.

Examples of conditional expressions are:

dst == "192.168.100.1";
dstport >= 80;

Perdix Language Reference Manual 8

5.3 Assignment Expressions

Perdix programmers have the ability to define variables at the top of every program. All variable
declarations must immediately follow the open brace (“{”) after the start() statement of a program.
Variables must follow the naming conventions of identifiers. Additionally, variables may not be
assigned to another variable if the second variable has not yet been initialized with a value.

Examples of assignment expressions are:

variablel
variablel

80;
variable2;

5.4 Logical Expressions

Logical expressions are a sequence of one or more conditional expressions that are tied together by one
of the logical operators. To include all conditional statements, the logical AND operator is used. To
include one or more conditional statement, the logical OR operator is used. Finally, to negate all the
conditions specified from a query, the NOT operator is used.

An example of a logical expression is:

(dst == "192.168.100.1" && dstport == 80) || !(protocol == "udp")

6 Operators

There are three classes of operators available in Perdix: arithmetic, relational, equality and logical.
When expressions involving operators are evaluated at run time, a return value of true means the
current line from the input file should be included in the output of the query. If the statements
evaluate to false, then the the query does not return those lines that produced the false result.

6.1 Arithmetic Operators

Perdix contains addition and subtraction arithmetic operators:

o Addition: lvalue + rvalue
The result of expressions using this operator will be the sum of the lvalue and rvalue.

e Subtraction: lvalue - rvalue
The result of expressions using this operator will be the lvalue minus the rvalue.

6.2 Relational Operators

Perdix contains the following relational operators:

o Greater Than: [value > rvalue
Evaluates to true when the lvalue is strictly greater than the rvalue.

Perdix Language Reference Manual 9

e Less Than: lvalue < rvalue
Evaluates to true when the Ivalue is strictly less than the value of the rvalue.

e Greater Than or Equal: lvalue >= rvalue
Evaluates to true when the lvalue is greater than or equal to the rvalue.

e Less Than or Equal: lvalue <= rvalue
Evaluates to true when the lvalue is less than or equal to the rvalue.

6.3 Equality Operators
The following equality operators are defined in Perdix:

e Equal : lvalue == rvalue
Evaluates to true when the lvalue equals the rvalue.

e Not Equal: lvalue = rvalue
Evaluates to true when the lvalue does not equal the rvalue.

6.4 Logical Operators

Logical operators are also defined in order to add or subtract results from the returned queries. These
operators evaluate to a boolean value of 1 (true) if the constraints specified are matched, and 0 (false)
if they are not. The following logical operators are defined:

e Logical And (&&) : conditional_expression && conditional_expression
Evaluates to true when both the lvalue and rvalue are true

e Logical Or (||): conditional_expression || conditional_expression
Evaluates to true when either the lvalue and rvalue are true

e Negation (!): !(conditional_expression)
This operator negates the rvalue of the statement it precedes. If the statement after the negation
operator evaluated to true, then its negation will be false. Likewise, if the statement after the
negation operator evaluated to false then the output will be true. It should be noted that the
rvalue must be enclosed in parentheses for clarification.

6.5 Precedence

All statements in Perdix are evaluated from left to right and are left-associative. Parentheses may be
used in logical expressions to force precedence.

The precedence of operators are organized in the table below from highest to lowest.

| Precedence | Operators | Description | Associativity
1 () Parentheses left to right
2 + - Addition and Subtraction left to right
3 = Assignment left to right
4 >, < ,<=,<=,==,!= | Relational and Equality Operators | left to right
5 ! Logical Not left to right
6 && | Logical And, Or left to right

Perdix Language Reference Manual 10

7 Statements

This section describes the statements that are defined in Perdix. Since the language does not allow for
user-defined functions, the built-in functions available to programmers are described below.

7.1 Start

start() { perdix_body }

The start () statement signifies the start of a Perdix program. All Perdix programs begin with this
statement as the first line (comments excluded). This statement should only appear once in any Perdix
program. The perdix_body contains the body of the script.

7.2 Variable Declaration

Variable declarations are assignment statements that occur at the top of the peridx_body. Variable
names must begin with a letter or underscore and can contain a series of letters, underscores, or
numbers so long as the name of the variable is not one of the Perdix reserved words.

Variables must be given a data type and also initialized during declaration and cannot be referenced
until doing so. Initialization must occur in the same line where the variable is initially declared. The
syntax for this is the same as the syntax for an assignment statement, but with an added data type
declaration:

<data type> <identifier> = <string literal, number, identifier, arithmetic expression>;

Variables may not be assigned to another variable if the second variable has not yet been defined with
a value. In addition, only one variable can be declared per line. Some examples of variable declaration
are:

int variablel = 20;
string variable2 = "192.168.100.100";
int variable3d = variablel;

7.3 Assignment Statement

<identifier> = <string literal, number, identifier, arithmetic expression>;

Variables are assigned values by using the assignment operator. A variable may be defined as either a
number, string literal, another previously defined variable or using an arithmetic expression.

Perdix Language Reference Manual 11

7.4 Open

open(file: file_perm);

The open() statement opens an existing file. This statement takes two arguments, both of which are
required. The first argument is a file identifier, specifying the path of the file to be opened. The file
variable should be defined before using it within an open statement. The second argument is a file
permission mode. The arguments must be separated by a colon.

7.4.1 File Permission Modes

There are two file permission modes in Perdix, “read” and “write.” These modes use the values r and
w respectively. While they are not keywords, the built-in functions that use these modes specifically
check whether or not they have been supplied as an argument to the function call. Only a single
permission mode can be supplied to a function at a time.

7.5 Condition

cond(file: conditional_statements) { print(file: iptables_keywords); }

All query statements in Perdix are defined with the cond() statement. This statement takes a file to
read from as the first argument and then a query statement as the second argument. The file argument
is required, but the conditional _statement argument is optional. Directly following a cond ()
statement is a set of curly braces in which a print() statement is enclosed. The print statement
specifies how the matches from the query statement in the file should be displayed.

7.6 Print

print(file: iptables_keywords);

The print statement defines how the output of a cond() statement should be displayed. The print
statement takes two arguments, a file to write the output to and a comma-separated list of keywords,
which choose the fields that are displayed on the output. Both arguments are optional, and if none are
specified, the default behavior is to print all fields to standard output. Again, the colon must also be
included even if both arguments are left out.

7.7 Close

close(file);

The close() statement closes a file. This statement takes a single, required argument, the file
identifier to close.

Perdix Language Reference Manual 12

8 Scope

All Perdix programs are contained within a single file and contained within a single start () statement
block (as defined by the left and right braces). All variables defined are within the same scope.
Variables defined at the top of a Perdix program can be used in any statement that accepts variables
as arguments.

Perdix Language Reference Manual

9 Appendix: Perdix Grammar

The following code is the Perdix grammar that has been designed for use in an ANTLR v2
environment.

Y e ettt T S S */
/* PERDIX LEXER */
Y e et */

class PerdixLexer extends Lexer;
options {
k = 2;
testLiterals = false;
exportVocab = Perdix;
charVocabulary = ’\3’..°\377°;}

/* Punctuation */

LPAREN : ’(’;
RPAREN : ’)7;
LBRACE : ’{’;
RBRACE : ’}’;
DOT: ’.7;
COMMA : °,7;
DQUOTE : *"’;
SEMI : 7;7;
COLON : ’:’;

/* Operators */

NOT: *!7;
AND: "&&";

DR: n | I n ;

EQ . n==u;

NEQ : "!=";

GT : ’>7;

GEQ L1l ;

LT : ’<’;

LEQ : Il<=l| ;

ASSIGN : ’=’;

PLUS :’+7;

MINUS: ’-’;

protected LETTER: (’a’..’z’ | ’A’..°Z’°);

protected DIGIT: ’0’..°97;

/* Identifiers */

ID options {testLiterals = true;}
(LETTER |°_’) (LETTER | DIGIT | ’_’)=*;

/* Number */

NUMBER : (DIGIT)+;

Perdix Language Reference Manual

/*String*/

LITERAL: 2"21 (2"21 2no | ~(ns | 5\p?))*x 2"
/*Whitespacex/

WS: (> 7 | ’\t’)+ {$setType(Token.SKIP);};

NEWLINE : C\n’ | C\r’ ’\n’) => ’\r’ ’\n’ | ’\r’) {

$setType(Token.SKIP); newline();};

/*single-line comment*/
COMMENT: ’#’ (“(’\n’[’\r’))*
{$setType (Token.SKIP) ;};

g e e */
/% PERDIX PARSER */
R */

class PerdixParser extends Parser;

options {k = 3;
buildAST = true;
exportVocab = Perdix;

}

tokens{

/* Keywords for the fields included in each line in iptables log file */
DATE="date";
TARGET="target";
MAC="mac";

SRC="src";
SRCPORT="srcport";
DST="dst";
DSTPORT="dstport";
IN="in";

0UT="out";
PROTOCOL="protocol";
TOS="tos";
TCP_FLAGS="tcp_flags";
IP_FLAGS="ip_flags";
TTL="tt1l";
WINDOW="window";
STATE="state"

/* Structure of Perdix programs */
program: main EOF! ;

/* Start function */
main: "start"! LPAREN! RPAREN! body;

body: LBRACE! stmt RBRACE!;

14

Perdix Language Reference Manual 15

stmt: (var_decl)+ (open_func)+ (condition_func)+ (close_func)+ ;

/* —-—-— STATEMENTS ---- %/
/* Open Statement */
open_func: "open"! LPAREN! ID COLON! file_perm RPAREN! SEMI! ;

/* Close Statement */
close_func: "close"! LPAREN! ID RPAREN! SEMI!;
file_perm: "r" | "w";

/* Conditional Statement */
condition_func: "cond" LPAREN! ID COLON (selection_body)? RPAREN! LBRACE! print_func RBRACE!;
selection_body: select_condition;

/* Print Statement */
print_func: "print"! LPAREN! print_body RPAREN! SEMI!;
print_body: file_id (arg_stmt)? (COMMA arg_stmt)*;

file_id: COLON | (ID COLON) ;
arg_stmt: iptables_stropt | iptables_intopt ;

/* Variable Declaration */
var_decl: intdecl | stringdecl ;

/* Integer */

intdecl: "int"! ID int_tail SEMI!;

int_tail: ASSIGN! int_initial ;

int_initial: (NUMBER|ID) ((PLUS|MINUS) (NUMBER|ID))x*;

/* String */
stringdecl: type ID string_tail SEMI!;
string_tail: ASSIGN! LITERAL;

type: "string" | "file" ;

/* ---- EXPRESSIONS ---- */
/* Logical Expressions*/
select_condition: logic_expr ((AND|OR) logic_expr)*;

logic_expr: (NOT)? (
(LPAREN! select_condition RPAREN!) => LPAREN select_condition RPAREN
| relat_expr);

/* Conditional Expressions*/
relat_expr: (iptables_stropt general_op (ID|LITERAL))
| (iptables_intopt oper arithm_expr);

/* Arithmetic Expressions */
arithm_expr: arith_factor ((PLUS | MINUS) arith_factor)x*;

arith_factor : ID
| NUMBER

Perdix Language Reference Manual

| (LPAREN! logic_expr RPAREN!);

str_factor : ID
| LITERAL;

iptables_stropt: DATE | TARGET | MAC | SRC | DST | IN | OUT |
PROTOCOL | TOS | TCP_FLAGS | IP_FLAGS | TTL | WINDOW |
iptables_intopt: SRCPORT | DSTPORT;

/* ———— OPERATORS ---- */
//logical operators
cond_op: NOT | AND | OR;

/* Operators that apply only to integers */
int_op: GT | GEQ | LT | LEQ ;

/* Operators that apply to all data types */
general_op: EQ | NEQ ;

/* All operators except logical */
oper: int_op
| general_op;

STATE;

16

Perdix Language Reference Manual

10 Appendix: Example Programs

This appendix provides example programs in the Perdix language. This section should be used as a
reference for available functionality.

10.1 Example 1

This prints /var/log/syslog to the screen.

start ()

{
file in = "/var/log/syslog";
open(input:r);

cond(input:) { print(:); }

close(input);

10.2 Example 2

This prints all entries from /var/log/syslog that have source ip = 192.168.100.1 to the screen.

start

{
string ipl = "192.168.100.1";
file input = "/var/log/syslog";

open(input:r);
cond(input: src==ipl) { print(:); }

close(input);

10.3 Example 3

This code prints all entries in /var/log/syslog that have source ip = 192.168.100.1 to an output file
/tmp/output.

start)

{
string ipl = "192.168.100.1";
file input = "/var/log/syslog";
file output = "/tmp/output";

open(input:r);

17

Perdix Language Reference Manual

open (output:w) ;
cond(input: src==ipl) { print(output:); }

close(input);
close(output) ;

10.4 Example 4

This code prints destination addresses of entries that have source ip = 192.168.100.1 in the file

/var/log/syslog to the screen.

start ()

{

string ipl = "192.168.100.1";

file input = "/var/log/syslog";

open(input:r);
cond(input: src==ipl) { print(:dst); }

close(input);

10.5 Example 5

18

This code prints only source addresses and source ports to the file /tmp/output, where the destination
address is 192.168.100.1 on port 80.

start ()

{

string ipl "192.168.100.1";
file input = "/var/log/syslog";
file output = "/tmp/output";

open(input:r);
open (output:w) ;

cond(input: dst==ipl && dstport==80) { print(output:src,srcport); }

close(input) ;
close(output);

