
NPSL-2D Language Reference Manual
Glenn Barney (gb2174@columbia.edu)
October 18, 2007

NPSL-2D is a simulation modeling language for 2D Newtonian physics. It is built around
the customization of forces that act on Shape (rectangle or circle) objects. A simulation is
coded then run, translated to a visual display for the user.

1. Lexical Conventions

Tokens:
Tokens consist of Identifiers, Keywords, Constants, and Operators.

Whitespace : Spaces (or blanks), all tabs, (‘\t’) and line terminators (treated as ‘\r’ ‘\n’ for
DOS or ‘\n’ for UNIX machines) are considered white space. They exist solely as token
separators.

Comments
Multi line comments are supported, and begin with “/*” and end with “*/”. Comments can
not be nested.

Identifiers
Identifier is a sequence of characters containing any letter or digit, but must start with a
letter. Identifiers are case sensitive.

Constants
Constants are either integers (any series of digits), floats (syntax explained later), the boolean
value true or false, or string constants (syntax also explained later).

Keywords (explained in the document, capital words are internal types or objects)
int float bool string false
true Point Line Circle Rect
Force at_tick interval foreach_shape foreach_touching_shape
shape touching function World Logger
void if else return for
while break

Expressions
Expressions evaluate to some value at the end of their execution. They are generally
evaluated from operators but can be as simple as the value true. Here is a list of valid
expressions:

lvalue
function-call
unary operator expression (see operator list)

binary operator expression (see operator list)
assignment expression (example : x = 5;)
type definition

Statements and Flow control

A statement controls logic flow and occur in order. A statement list is one or many
statements, or nothing:

statement-list :
statement; | statement-list | e;

General statements.
-Type declaration and definition :

type <identifier>; //declaration
type <identifier> = rval;

rval : constant
| expression evaluating to type;

Braces {} are found in the follwing conditions :
-to mark a begin end block for conditional statements (if, while, etc)
-to mark a begin end block for a function
-to mark a begin end block for a foreach section

Braces are not supported for general insertion arbitrarily into code.

Conditional (can be nested) :
if (expression) {

statement-list
}
else { statement-list}

While statement :
while (expression) {

statement-list
}

For statement :
for (expression1; expression2; expression3) {

statement-list;
}

A for statement executes first executes expression1. Then it repeatedly executes the
statement list followed by expression3 as long as expression2 is true.

while and for also support the break statement, which exits the while or for loop :
break;

The return statement returns from a function call :
return; or return (expression);

2. Memory Management, Scope, Constructors and Functions

Any constructor C can access any object if it was declared and defined before C’s
constructor starts. Objects created in NPSL-2D are all of global scope and are only
destroyed at the end of the program. The language has no support for multiple threading
and therefore objects in the main memory of the program are only accessible by the thread
running the simulation. Functions can take objects of both basic and complex types as
parameters; they will be able to directly access these objects through the passed reference. In
this sense, function scope acts like a goto statement, with the same scope as the code that
called the function.

All points and shapes are treated in units on a Cartesian coordinate system starting with
point 0,0 in the bottom right. x direction increases to the right and y direction increases up1.

Functions are defined as follows:

function <return type> <identifier>(<ParamType> <param identifier>, <ParamType>
<param identifier>….) {

statement 1;
statement 2;
….
statement n;
return <type>;

}

More formally :
function return-type identifier (arg-list) body
arg-list :

type identifier
| type identifier, ag-list

body :
statement-list

Return types can be one of any basic or complex built in type, or void. Parameter types can
be one of any basic or complex built in type, including the type Shape. Functions may have
side effects as parameters are passed by reference, but no function can pass another function
as a parameter; there are no function closures in NPSL-2D.

1 This is in contrast to the original proposal document. I will use a AffineTransform in Java
in the translation layer to display pixels with the bottom left being the origin.

3. Types
Basic types

<data type> :
int | bool | float | string

Basic types all initialize to default values if declared but not defined. Integers, floats,
initialize to 0. Booleans initialize to false, and strings initialize to the empty string “”;

Integers – declared with keyword int.
Consist of a series of Digits

Booleans – declared with keyword bool
Consist of either the keyword “false” or “true”.

Floats – declared with keyword float
Floats are floating point numbers. They are an optional integer number followed by either a
fractional or exponential part, or both, and are computed base 10. Exponent part is “E” or
“e” followed by an optionally signed integer. So these are valid floats (in order):

-Integer, decimal point, fraction, exponent
-Integer, decimal, fraction
-Integer, decimal, exponent
-Integer, decimal
-Integer, exponent
-Decimal, fractional
-Decimal, exponent.

Strings – declared with keyword string
The String type is used to store character strings, and is primarily used for logging purposes
and for use as keys when defining shape instance properties (such as coefficients of friction).
The default value of a string upon declaration is the empty string, "". A string can be
initialized by setting it to a constant, and you can use the backslash character as an escape to
include the newline character or quote character in your string.

String example; // example is the empty string
example = “test\n”;

Declarations and Definitions
Variables can be declared with the type and then the identifier :
<type> identifier;
And can be both declared and defined at the same time:
<type> identifier = value;

Value must be a literal of the same type, or an expression that evaluates to that type.

For Primitive data types:
int identifier = (<int> | expression evaluating to <int>) //int x = 4;
float identifier = (<float> | expression evaluating to <float>); //float y = 3.452e10
boolean identifier = (<bool> | expression evaluating to <bool>); bool isTrue = true;

Other legal statements are :
 int z = 3 + 2;
float k = 3 + 3.34;
bool test = true & false;

Built in Complex Types

<complex type> :
Point | Line | Shape | Circle | Rect | Force

The general format for constructing a complex type is :
<type> identifier {

field1 = defined variable or constant;
field2 = defined variable or constant;
….
//for each type that is an optional or required for construction

}
And the general form for accessing fields in complex objects is the dot notation:

log(indentifier.field1);

Point
A Point is a pair of integers, declared with the keyword Point. A Point must be constructed
with two arguments, x and y, both integers.

Point <identifier> {
x = int;
y = int;

}

pont myPont {
x = 1;
y = 2;

}

The default value for Points declared but not initialized is 0,0. To access x and y use
myPoint.x and myPoint.y respectively.

Line
A Line is simply a set of two Points. To define a Line, create two Point objects and use these
to create your Line. Both Points are required. Be careful when using undefined Points in your
Line object as they will initialize to 0,0, creating a valid, but perhaps unexpected Line.

Line <identifier> {
point1 = Point;

point2 = Point;
}
Point firstPoint { x =1; y =2; };
Point secondPoint {x = 2; y =3; };

Line myLine { point1=firstPoint; point2=secondPoint };

A Line can represent a Point if both point1 and poin2 have the same x and y values. Line also
has the member functions:

float length() which returns a float value of the length of the Line.
float slope() which returns a float value : rise over run. Returns 0 if Line is a point.

Shape Types
There are two basic shape types supported, Circles and Rectangles. The names of these
types are Circle and Rect. They both derive from abstract type Shape which cannot be
defined or declared. A Circle or Shape can be treated as a Shape through functions or
through the automatic iterator keywords foreach_shape and foreach_touching_shape, which are
only accessible inside a force, inside a at_tick block.

ex : function int comapreShapes(Shape first, Shape second);

Shape fields can also be accessed from the Shape object, as described in the “Shape fields”
chart.

Shapes

Declare and define a shape of type Circle or Rect with the following syntax. Optional fields
below are marked with default. Shapes must be declared and defined at the same time, there
is no declaration only syntax for shapes. If you must declare a shape without any detail,
initialize all the parameters to zero and set them later through access. Like any other float to
int access, an implicit int to float cast will occur if you set any of these parameters to
integers. xCoord and yCoord are the center of the Shape.

Shapes can be accessed in

Circle <identifier>{
mass = float;
free = bool; --optional; default to true
radius = int;
xCoord = int;
yCoord = int;
color = color type; --optional; default to grey
velocity = float; --optional; default to 0
direction = float; --optional; default to 0

}

Rect <identifier>{

mass = float;
free = bool; --optional; default to true
width = int;
height = int;
xCoord = int;
yCoord = int;
xTopLeft = int; -- optional set to xCoord – ½ width
yTopLeft = int; --optional set to yCoord – ½ height
xBottomRight = int; -- optional set to xCoord + ½ width
yBottomRight = int; --optional set to yCoord + ½ height
color = color type; --optional;default to grey
velocity = float; --optional; default to 0
direction = float; --optional; default to 0

}

Shape fields
Common to all Shape objects
Name Type Purpose Required / default
mass float Weight in “units” (eg kg) of

the Shape
required

free bool True if not tied to background def : true
xCoord int x coord of center point required
yCoord int y coord of center point required
color Color color of Shape when drawn def : grey (so sad)
velocity float current speed of Shape def: 0
direction float current direction of velocity def: 0

Specific to Circle
Name Type Purpose Required / default
radius int radius of circle required

Specific to Rect
Name Type Purpose Required / default
width int width of rectangle required
height int height of rectangle reqired
xTopLeft int x coord of top left corner def: xCoord – ½ width
yTopLeft int y coord of top left corner def: yCoord - ½ height
xBottomRight int x coord of bottom right corner def: xCoord + ½ width
yBottomRight int y coord of bottom right corner def: xCoord + ½ height

Accessors for Circle’s and Rect’s member fields are used with the dot function. For
example, assume a Circle name myCircle was declared and defined. Then you can say :

 int width = myCircle.mass;
myCircle.height = 2.45;

Forces
Forces act on a shape at each tick. The foreach keyword is used here, and it is the only time it
is used. There are two types of forces, global forces and object forces, but it’s really up to
the user to implement a force by having the force act at each tick. For example, we can
create member variables unique to a Force before the at_tick statement. These variables can
be referenced later in other forces. To define a force use the following syntax :

Force <identifier> {
statement 1; //variable declaration
statement 2; //variable declaration

at_tick <int when>? < interval>?2{
statement 1;
statement 2;
….

}
}

There are two util functions for a “force” to break a force up into X and Y component. You
can pass it a magnitude and a direction, and this beaks up the vector into a X and Y
magnitude (positive if in the +x or +y direction, negative in the –x or –y direction) They
return new forces and are :

function int getXPart(float magnitude, float direction);
function int getYPart(float magnitude, float direction);

Note these functions cast the result to an int, they are like a dx and dy on a point.

For example you can call
Force myForce { //initialized} ;
Force xComponent = myForce.getXpart();

The at_tick <int when> < interval> section is the main area where forces are applied, and
they can act on two sets of Shapes. The first set of Shapes is the entire set in the world, this
set is maintained by the compiler and accessed as shape under the foreach_shape block. The
second set is the set of Shapes that the current shape is touching, this is accessed as touching
under the foreach_touching_shape block. Any statement that is legal can be executed in the
foreach block, and statements can access other forces.

foreach_shape {
 shape.y = shape.y - 9.8; (* apply gravity *)
 }

2 ? here means one or zero times, the value when and interval is optional

Every shape has a list of Shapes it is touching at the current tick. This list can be accessed
only through the foreach_touching keyword, which lets you iterate on the touching Shape
list. Access to the individual Shape in the loop is accessed through the “touching” keyword.
They are used as so

foreach_touching_shape {
touching.mass = 4;
float x;
float y;
if (touching instanceof Circle) {

print touching.radius;
}

}

If an integer number is provided after the “at_tick” phrase, then a force will only act at that
specific tick number. So for example at_tick 40 will have the force act once and only once at
tick 40 (time = 40 seconds). If no integer is provided, then the constant force acts on every
tick. Gravity is an example of such a constant force.

If both the when and interval numbers are present then the force acts every “when” ticks.
So at_tick 4 interval would mean the force acts every 4 ticks.

Note on internal representation of force application: The language directly supports the
mechanism for changing the location of a Shape by having the programmer move the x and
y components of the object inside the force action. NPSL-2D runtime will apply all
calculations effecting xCoord and yCoord on each tick for every Shape. It will then attempt
to move every Shape in the world from its original xCoord and yCoord position to its new
xCoord and yCoord position at the same time. If there is a collision then this will be
calculated - the Shape can clearly end up in a different location then the pure forces intended
after one tick has passed.

Shape Interaction
Every Shape can keep track of user defined numeric variables that relate one object to
another under a specific force. We call these variables values, but they can be used for any
reason. To set a value on a Shape, call the Shape setValue() member function. Pass in the
force it relates to, the unique name for this value relative to this Shape, the second object
that it is relative to, and finally the float value to set.

void setValue (Force f, string name, Shape s, float value);

To get a value on a Shape, call getValue(), passing in the same parameters as getValue() for
retrieval.

float getValue(Force f, string name, Shape s);

If you set a unique value (that is a force, name, and shape pair tuple) to a new value, it will
overwrite the old value.

We can also store data from one force into a specific coefficient (named so after the
coefficient of friction) in a Shape, so that shape can use that force for other force
calculations. This function is called as a Shape member function named setCoefficient().
Pass the unique name for this coefficient relative to this Shape, the second object that it is
relative to, and finally the float value to set.

void setCoefficient (string name, Shape s, float value);

To get a value on a Shape, call getCoefficient(), passing in the same parameters as
setCoefficient for retrieval.

float setCoefficient(string name, Shape s);

If you set a unique coefficient (that is a name, and shape pair tuple) to a new coefficient, it
will overwrite the old coefficient.

Compile time checking ensures that every Shape be constructed with it’s basic elements, and
every object force that is referenced in a setCoefficient() call exists. However it does NOT
ensure that a coefficient exists and if a getCoefficient() call can not find your value then the
code will throw a runtime exception.

Collisions and the Built in Elastic Coefficient.
In order to support collisions, the runtime will automatically have objects in fully elastic
collision by default. This means objects will lose no kinetic energy on collision. In order to
have inelastic collisions, the user must make the call :

shape.setElasticityCoef(Shape s, float val).

This call is commutative; that is
 shape1.getElasticityCoef(shape2) == shape2.getElasticityCoef(shape1).

When one call is made both elasticity coefficients are set. The runtime will use these
coefficients to effect the dx and dy between ticks representing the loss of kinetic energy in a
collision.

4.Operators
Mathematical numeric operators act on floats and ints. For binary operators, if a float and int
are mixed as parameters, then an int is automatically cast into a float. If an int is stored to a
float, it is also implicitly automatically cast to a float. However floats are not cast back into ints
for loss of precision. For that reason the statement int x = 3 + 2.3 is illegal. The variable x
must be declared as a float.

Unary Mathematical Numeric operators
Operator Function Associativity

- Negation N/A
(Open Parenthesis – Grouping operator Left to right relative to

close parenthesis
) Close Parenthesis –grouping operator Left to right relative to

open parenthesis
Binary Mathematical NumericOoperators (operates on float and int)

+ Addition Left to right
- Minus Left to right
* Multiplication Left to right
/ Division Left to right

Binary Mathematical Relational Operators
< Less than Left to right
> Greater than Left to right
= Assign Right to left
==, != Equal to, not equal to (int only) Left to right

Binary Boolean Logical Operator
& Logical And Left to right
| Logical OR Left to right

Binary Point
==, != Equal to, if both x and y are equal, not equal

if either one or both are different
Left to right

Binary Line
==, != Equal to, if both point1 and point2 are equal,

not equal if one or both are different
Left to right

Unary String operators
Operator Function Associativity

[x] Character substring – returns a substring with the
character at index x

N/A

[x, y] Character substring – returns a substring with the
characters starting at index x and ending at index y

N/A

String Comparison (operates on magnitude of force component only)
< Alphabetically Less than Left to right
> Alphabetically Greater than Left to right
= Assign Right to left
==, != Equal to (compares on string contents), not equal

on string constants
Left to right

String Access Operators
+ Concatenation – returns a new string Left to right

Object (Shape) operators
instanceof Run time type checking – returns true of left-hand Left to right

side same type as right-hand side, otherwise false

5.Constants

Built in constants:

Name Type Value
PI float 3.14159265
LEFT float 0
UP float PI / 2
RIGHT float PI
DOWN float 3* PI / 2

Type Color, built in constant type.
Color.black - The color black.
Color.blue - The color blue.
Color.cyan - The color cyan.
Color.darkGray - The color dark gray.
Color.gray - The color gray.
Color.green - The color green.
Color.lightGray - The color light gray.
Color.magenta- The color magenta.
Color.orange - The color orange.
Color.pink - The color pink.
Color.red - The color red.
Color.white - The color white.
Color.yellow - The color yellow.

Built in functions
Math basic built in functions exist :
function float cos (float radian) ; //returns cosine of radian
function float sin (float radian) ; //returns sin of radian
function float tan Funciton (float radian); //returns tangent of radian

function float arcsin (float radian); //retunrs arcsin of radian
function float arccos (float radian); //retunrs arccos of radian
function float arctan (float radian); //retunrs arctan of radian

Special static world objects:
World – Sets the view of the world for the user and manipulates the speed of the
simulations. Funcions available on it :

setBounds(int x, int y) : This function must be called sometime before the end of the
program, and before the simulate function(). It set’s the viewable screen size in units. The x

and y size is dependent on the size of the objects you define. A good way to think of the
parameters to this function is each unit is a meter, and objects under gravity accelerate at 9.8
meters per second. However this is just one use case, it is up to user to define his objects in
units relative to the bounds.

simulate() : This function is optional, as it must be called at the last line of the program. If
you don’t write it the compiler will insert it for you.

speedUp(float speed) : Speeds up the simulation by the float factor speed. As a default,
one tick happens every second. For example, passing 4 to speedUp causes four ticks to pass
every second.

slowDown(float speed) : Slows the simulation by the float factor speed. As a default, one
tick happens every second. For example, passing 4 to slowDown causes one tick to pass
every four seconds.

Logger – has the Logger.log(string) function, which logs a string to a console. All basic
types, float, int, and bool are cast to strings for logging purposes only so that the function
call below works:

int test = 4;
Logger.log(test); //prints 4 to log

Logger has one other function, setOutput. You can set the name of the log file here if you
do not wish to log to console (the default).

Logger.setOutput(“myFile.txt”);

6.Example
Here’s an example of how a dependent force hierarchy would be used, including coefficients.
Note how much of the interaction is dependent on the user and how they define the force.

//assume user defines function to compute the line intersection of two Shapes,
//returning a Line. (Can be a line object with the same end and begin point (a //point) if
Shape is touching at just a point
function Line intersect(Shape shape1, Shape shape2) (){…};

//also assume user defines a function that returns an x component of a force
//given a magnitude and direction

World.setBounds(800,600);

Circle ball{
mass = 5;
free = true;
radius = 2;
xCoord = 400;
yCoord = 300;

}

Rect ground {
mass = 100;
free = false;
xCoord= 400;
YCoord = 50;
width = 200;
height = 100;
}

ball.setCoefficient(“friction”, ground, .35);

Force gravity {
float direction = DOWN;
float acceleration = 9.8;

at_tick {
foreach_shape {
//from v = ½ at^2 + vi*t)
shape.yCoord = shape.yCoord 9.8; // apply gravity
}

}
}

Force normal {

at_tick {
//going to calculate the force normal, friction, and force down
//the plane assuming that the touching shape is fixed
foreach_shape {
 foreach_touching_shape {

//the normal force is gravity * cos (theta) where theta
 //is the angle between the resting surface and the x axis

float angle; //angle from x axis is arctan slope
float forceNormalSize;
float forceNormalDirection;

float slope = intersect(shape, touching).slope;
angle = arctan(slope);
forceNormalSize = gravity.acceleration * cos(angle);
forceNormalDirection = gravity.direction +PI+ angle;

//store this value

shape.setValue (normal, “normSize”,
touching, forceNormalSize);
shape.setValue (normal, “normDir”,
touching, forceNormalDirection);

//apply the force;
shape.xCoord = shape.xCoord + getXPart(forceNormalSize,

forceNormalDirection);

shape.yCoord = shape.yCoord + getYPart(forceNormalSize,
forceNormalDirection);

}
}

}
}

Force down_slope {

at_tick {
//calculate the force force down assuming touching shape is fixed
foreach_shape {
 foreach_touching_shape {

//the down force is gravity * sin (theta) where theta
 //is the angle between the resting surface and the x axis

float angle; //angle from x axis is arctan slope
float forceDownSize;
float forceDownDirection;

float slope = intersect(shape, touching).slope;
angle = arctan(slope);
forceDownSize = gravity.acceleration * sin(angle);
 forceDownDirection = gravity.direction +3*PI/2+ angle;

//store this value
shape.setValue (down_slope, “downSize”,

touching, forceDownSize);
shape.setValue (down_slope, “downDir”,

touching, forceDownDirection);

//apply the force;
shape.xCoord = shape.xCoord + getXPart(forceDownSize,

forceDownDirection);

shape.yCoord = shape.yCoord + getYPart(forceDownSize,
forceDownDirection);

}

}
}

}

Force friction {

at_tick {
//calculate the force friction assuming the touching shape is fixed
foreach_shape {
 foreach_touching_shape {

//the friction force is mu * force normal
 //is the angle between the resting surface and the x axis

float angle; //angle from x axis is arctan slope
float forceFrictionSize;
float forceFrictionDirection;

float slope = intersect(shape, touching).slope;
angle = arctan(slope);
forceFrictionSize = gravity.accelration * cos(angle) *
shape.getCoefficient(“friction”, touching);
forceFrictionDirection = gravity.direction +PI/2+ angle;

//store this value
shape.setValue (friction, “frictionSize”,

touching, forceFrictionSize);
shape.setValue (friction, “frictionDir”,

touching, forceFrictionDirection);

//apply the force;
shape.xCoord = shape.xCoord + getXPart(forceFrictionSize,

forceFrictionDirection);

shape.yCoord = shape.yCoord + getYPart(forceFrictionSize,
forceFrictionDirection);

}
}

}
}

World.simulate();

Note with this example above, there is no kinetic energy used. The system could check the
velocity of the shape object in the foreach_shape block and then apply a kinetic coefficient
of friction vs a static one, it is all up to the language user.

