
BELLOWS LANGUAGE REFERENCE MANUAL

RICK HANSON

1. Introduction

Bellows is a file format description language that is designed to be utilized by calling programs
which want to access the contents of some object file described by a Bellows program. Such
a program resembles, and can be thought of as, a description of the object file’s format. The
Bellows compiler will convert the source into an executable which will be able to read any object
file that conforms to the format, and which will output the object file’s contents as tagged XML.

The object files are flat (line-oriented, ASCII text) and typically contain a multi-line (vertical)
list of multi-line records, usually preceded by the number of such records. There are also
conditional elements: those records or data items which are present in the object file under a
condition described in the file format. This condition holds according to the value of some
previous data item in the object file.

1.1. An Example. The following is an example Bellows program, paired with an example object
file.

Bellows Source File Object File

mytimefile::Name

’Version 42’

title::String

#item::Integer

each item

begintime::String endtime::String moreflag::NumBool

if moreflag == 1

more1::Float more2::Float more3::Float more4::Float

fi

chae

lastupdatedby::String

Version 42

Table_of_items

3

6:00 9:00 0

2:03 12:45 1

0.000 42.000 1.000 2.000

9:33 10:12 0

Rick

The Bellows source can be read as follows. The object file in question is called mytimefile.
The first line of the object file contains the literal string Version 42. The second line of the
object file contains a string which we call title, i.e. we assign this string to the variable title;
in the case of the object file given, the string Table_of_items will be assigned to title. The
third line of the object file contains an integer which we call #item.

Lines in the object file immediately after the third line are groups of lines which correspond
to records described by the each/chae block in the Bellows source. The identifier after the

Date: Fri 28 Sep 2007.
For CS4115 PLT, Fall 2007.

1

2 RICK HANSON

each keyword, in this case item, is the name of the record; the number of such records can be
obtained by inspecting the value of the variable which has the name of the record prepended by
the # character, in this case #item which has the value of 3.

The record description, in the each/chae block, says that an item record can have one or two
lines. If the third field of the record’s first line (denoted by the field name moreflag) is equal
to (==) 1, then the record has a second line; otherwise it’s a one-liner.

Finally, the last line of the Bellows source says that we assign the string on the line immediately
after the three item records, namely Rick, to the variable name lastupdatedby.

It turns out that the example object file indeed conforms to the format described by the exam-
ple Bellows source file, and so the Bellows executable will return the following XML output
(corresponding to the object file’s contents).

<mytimefile>

<literal>Version 42</literal>

<title>Table_of_items</title>

<items>

<item>

<begintime>6:00</begintime>

<endtime>9:00</endtime>

<moreflag>0</moreflag>

</item>

<item>

<begintime>2:03</begintime>

<endtime>12:45</endtime>

<moreflag>1</moreflag>

<more1>0.000</more1>

<more2>42.000</more2>

<more3>1.000</more3>

<more4>2.000</more4>

</item>

<item>

<begintime>9:33</begintime>

<endtime>10:12</endtime>

<moreflag>0</moreflag>

</item>

</items>

<lastupdatedby>Rick</lastupdatedby>

</mytimefile>

1.2. Exception Handling. When the contents of the object file fail to conform to the format
description of the Bellows source file associated to it, the Bellows program should either return
the last legal match1 of identifier (tag) to object file data item, or return the first item in the
object file (by line and column number) which fails to conform to the Bellows format, and return
the associated tag name and type. Alternatively, the implementation can output legal matches

1We might want to define here what legal match means—just arm-waving for now.

BELLOWS LANGUAGE REFERENCE MANUAL 3

(in the XML file) up to the point of a non-match and halt, flushing the output buffer—the user
should then be able to conclude precisely where the data mismatch error occurs.

2. Lexical Conventions

2.1. The End of the Line. Bellows source files themselves are line-oriented to reflect the line-
orientation of the object files which Bellows programs read. This makes easier the human
consumption of the Bellows source file. For these reasons, we define a special token which
represents the end of a line of source code.

EOL : ((’\r’)? ’\n’ {newline();})+ ;

2.2. Whitespace. Whitespace is defined to be either a space character or a tab character, except
for such characters delimited between matched pairs of single quotes (as those characters would
be part of a string literal). Whitespace will be discarded by the scanner.

WS : (’ ’ | ’\t’)+ {$setType(Token.SKIP);} ;

2.3. Intrinsic Operators. Bellows has binary predicate operators which are designed to be used
in the test portion of the conditional construct. Bellows also has a binary type declarator ::,
which stands for “has type”. For instance, a usage such as varname::Integer means that
varname has type Integer.

GT : ’>’ ;

GTE : ">=" ;

LT : ’<’ ;

LTE : "<=" ;

EQ : "==" ;

NEQ : "!=" ;

HAS_TYPE : "::" ;

2.4. Keywords. Keywords are a special subset of the set of finite strings of alphanumeric char-
acters and are reserved by the compiler for special purposes.

IF : "if" ;

FI : "fi" ;

EACH : "each" ;

CHAE : "chae" ;

NAME : "Name" ;

STRING : "String" ;

INTEGER : "Integer";

FLOAT : "Float" ;

NUMBOOL : "NumBool" ;

4 RICK HANSON

2.5. Identifiers. An identifier is a variable name which, in the Bellows source, is denoted by
a string of alphanumeric characters (starting with a letter), and optionally preceded by the #
character.

protected HASH : ’#’ ;

protected LETTER : (’a’..’z’ | ’A’..’Z’) ;

protected DIGIT : ’0’..’9’ ;

ID

options { testLiterals=true; }

: (HASH)? LETTER (LETTER | DIGIT)* ;

2.6. Literals. String literals are denoted by a sequence of characters between a pair of single
quotes, e.g. ’Version 42’. Numeric literals are a sequence of number characters (i.e. 0, 1, 2,
. . . , 9), followed by an optional sequence of number characters preceded by a period.

NUMBER_LITERAL : (DIGIT)+ (’.’ (DIGIT)+)? ;

STRING_LITERAL : ’\’’ (˜(’\r’ | ’\n’ | ’\’’))* ’\’’ ;

EOL : ((’\r’)? ’\n’ {newline();})+ ;

3. Grammar and Semantics

A Bellows program starts with a name line, which names the object file and has the format
objectfilename::Name, followed by the object file’s format specifications.

program : name_line (format_spec)+ ;

name_line : ID HAS_TYPE NAME EOL ;

A format specification is either a simple data line, which contains a space-separated list of
identifiers with optional type specifiers, or a block of such data lines.

format_spec : data_line | block ;

data_line : (ID (HAS_TYPE typespec)?)+ EOL ;

typespec : STRING | INTEGER | FLOAT | NUMBOOL ;

A block of data lines is either an if block or an each block.

block : if_block | each_block ;

The if block is delimited by a pair lines which start with the keywords if and fi, respectively.
The if block contains one or more format specifiers. There is a conditional test written after
the keyword if which when it holds, the format specifiers in the if block must match the object
file data; otherwise the if block format specifiers do not apply to the object file data.

if_block : IF test EOL (format_spec)+ FI EOL;

Conditional tests look like the infix relational operation xRy, where R is any one of the relational
operators >, >=, <, <=, ==, !=, which stand for “greater than”, “greater than or equal to”, “less

BELLOWS LANGUAGE REFERENCE MANUAL 5

than”, “less than or equal to”, “equal to” and “not equal to” respectively. The operands x and y
can be either an identifier or a literal, but they cannot both be a literal. The ordering relations
for numbers have the same semantics as in the algebra of real numbers. The ordering relations
on strings are based on the lexicographical ordering of the constituent ASCII characters. The
equality relations for numbers are such that the two numbers should have the same type and
internal value. Equality for strings is such that the two strings must have the same length and
their respective ASCII character values must be equal.

test : (ID relop (ID | literal))

| (literal relop ID) ;

relop : GT | GTE | LT | LTE | EQ | NEQ ;

literal : STRING_LITERAL | NUMBER_LITERAL ;

The each block is delimited by lines which start with the keywords each and chae, respectively.
The each block contains one or more format specifiers which define a record, and we call this
the record specification. There is a record name, i.e. an identifier, after the keyword each. The
record specification will match a certain number of data records in the object file; hence, the
each block is a looping construct. The number of such records can be obtained by inspecting
the value of the variable which has the name of the record prepended by the # character.

each_block : EACH record_name EOL (format_spec)+ CHAE EOL ;

record_name : ID ;

