
COMS W4115
Programming Languages and Translators

Homework Assignment 1

Prof. Stephen A. Edwards Due June 14th, 2006
Columbia University at 11:59 PM

CVN students: FAX the solutions to CVN.
Write your name on your solutions.
Do this assignment alone. You may consult the instructor, but

not other students.

1. Scanners

(a) Write a regular expression that accepts only nonneg-
ative even binary numbers, e.g., 100, 110, 10, and 0.

(b) Draw a DFA that accepts only nonnegative decimal
integer numbers divisible by three, e.g., 0, 3, 6, 9, 12,
and 561. Hint: sum their digits.

(c) Using ANTLR-like syntax, write a scanner for C’s
floating point numbers, as defined by Ritchie.

A floating constant consists of an integer
part, a decimal point, a fraction part, an e,
and an optionally signed integer exponent.
The integer and fraction parts both consist
of a sequence of digits. Either the integer
part or the fraction part (not both) may be
missing; either the decimal point or the e
and the exponent (not both) may be missing.

Hint: make sure your scanner accepts constants such
as 1. 0.5e-15 .3e+3 .2 1e5 but not integer
constants such as 42

2. Draw a DFA for a scanner that recognizes and distinguishes
the following set of keywords. Draw accepting states with
double lines and label them with the name of the keyword
they accept. Follow the definition of a DFA given in class.
auto case char const continue default
do double else enum if ifelse

3. Dragon book, 3.16, p. 149:
Construct nondeterministic finite automata for the follow-
ing regular expressions using Algorithm 3.3 (p. 122, shown
in class) and show how the NFA simulates the input string
ababbab. Follow the simulation procedure shown in class.

(a) (a |b)∗

(b) ((ε |a)b∗)∗

(c) (a |b)∗abb(a |b)∗

4. Dragon book, 4.23, p. 270:

(a) Using the grammar

S → (L) |a
L → L,S |S

construct a rightmost derivation for (a,(a,a)) and
show the handle of each right-sentinel form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the steps in the bottom-up construction of a
parse tree during this shift-reduce parse.

5. Disambiguate and remove left recursion from the following
grammar (i.e., show an equivalent grammar):
e → e >> e |e ? e : e |e -> e | id

Use C’s precedence rules, i.e., the precedence of -> is
higher than that of >> is higher than that of ?:. Hint:
make sure your grammar can accept an expression such as
id?id:id->id?id:id with the right precedence rules, e.g.,
as if it had been written id?id:(id->id)?id:id.

