

PCL
Portable Charting Language

Language Reference
Manual

Chee Seng Choong Thomas Chou

1.1 Lexical Conventions

The language is classified into 6 kinds of tokens: identifiers, keywords, constants, strings,
expression operators and other operators. Whitespace (blanks, tabs, and newlines) are
ignored and are expected to serve as token separators.

1.1.1 Comments
Comments begin with “//” and ends with a carriage return or new line. Comments can
begin anywhere in a line.

1.1.2 Identifiers
An identifier consists of a sequence of letters, digits, and underscores “_”. The first
character of an identifier should be a letter. Identifiers are case-sensitive.

1.1.3 Keywords
The following identifiers are reserved as keywords, and should not be used otherwise:

if else for value validate
generate return break continue load
save let print true false
in newseries scatter line bar

1.1.4 Constants
There are two types of constants – numbers and strings. Their format is defined as
follows:

1.1.4.1 Numbers
A number consists of one or more digits with an optional decimal point “.”. A number
with a decimal must have the following format: An integer constant followed by a
decimal point and an “e” or “E” followed by a signed integer exponent. A positive
exponent may be preceeded by a plus sign “+”. A negative exponent must have a minus
sign “-“.

1.1.4.2 Strings
A string can be one or more characters enclosed in double quotes “ “ ”. Any double-
quotes within a string must be preceded by a backslash “\” character.

1.1.6 Other tokens
The following operators or symbolic characters are used:

{ } [] () , ;
+ - * / % = > <
>= <= == != ! && ||

1.2 Types

The types supported in PCL are Java primitives. Type checking will be done only at run
time.

1.3 Expressions

 1.2.1 Primary Expressions

Primary expressions involve identifiers, constants, function calls, access to data series
and charts, including expressions surrounded by “(“ and “)”.

1.2.2 Identifier
An identifier is a left-value expression. It will be evaluated to a value that is bounded to
this identifier.

1.2.3 Constant
A constant is a right-value expression. It will be evaluated to the constant itself.

1.2.4 (expression)
An expression enclosed in parentheses is a primary expression whose value are identical
to the expression itself. The parentheses denotes precedence in the evaluation of the
expression that is higher than the other expressions in the statement.

1.2.5 Function Call
A function call consists of a function identifier followed by parentheses containing one or
a comma-separated list of expressions which are considered the arguments to the
function.

1.2.6 Unary operators
Expressions with unary operators group left to right.

1.2.6.1 -expression
The result is the negative of the expression. This is applicable to number constants only.

1.2.6.2 !expression
The result is the logic negation of the boolean value of the expression.

1.2.7 Multiplicative operators
The multiplicative operators *, /, and % group left to right.

1.2.7.1 expression * expression
The binary * operator indicates multiplication.

1.2.7.2 expression / expression
The binary / operator indicates division.

1.2.7.3 expression % expression
The binary % operator yields the remainder from the division of the first expression by
the second. Both operands must be integers.

1.2.8 Additive operators
The additive operators + and – group left to right. Precedence is deferred to multiplicative
operators.

1.2.8.1 expression + expression

The result is the sum of the expressions. If one of the operands have an exponent, the
result will be represented in that format.

1.2.8.2 expression – expression
The result is the difference of the operands.

1.2.9 Relational expression
Relational operators can only have two operands and are of the following types:
expression > expression (more than)
expression < expression (less than)
expression >= expression (more than or equals)
expression <= expression (less than or equals)
The operators yield the boolean value of true if the specified relation is true; false
otherwise. Only numbers may be compared.

1.2.10 Equality operators
The == (equal to) and the != (not equal to) operators have lower precedence than
relational operators. Otherwise they are evaluated the same way as relational expressions.

1.2.11 expression || expression
The || operator returns the boolean logical true if either of its operands is true. It groups
left to right. Operands must contain only boolean values.

1.2.12 expression && expression
The && operator returns true if both of its operands are true. Like ||, it groups left to right
and only accepts operands that contain boolean values.

1.2.13 Assignments
In the form of expression = expression, it assigns the value of the right operand to the left
operand. The left operand has to be an identifier.

1.2.14 Declarators
A declaration begins with the keyword let followed by a single or list of comma-
separated identifiers.

1.2.15 Statements
Statements are executed in sequence, unless flow control statements indicate otherwise.
Syntax notation: syntactic categories are indicated in italics, and literal words and
characters in gothic.

1.2.15.1 Expression statement
Most statements are expression statements of the form
expression;

1.2.15.2 Compound statement
Statements can be grouped together by enclosing them with curly bracers “{“ and “}”.

1.2.15.3 Conditional statement
A conditional statement can be of the two following forms:

if (expression) statement

if (expression) statement else statement

In both cases, the expression is evaluated first. If the value is a boolean true, the first
statement is executed. Otherwise, the second statement is executed. The “else” ambiguity
is resolved by connecting an else with the last encountered elseless if.

1.2.15.4 For statement
The for statement has the form

for (expression1 ; expression2 ; expression3) statement

The first expression specificies the initialization of the loop. The second expression
specifies the condition that would terminate the loop. The third expression specifies the
incrementation performed at the end of each iteration of the loop. All of the expressions
are optional.

1.2.15.5 Break statement
The statement

break ;

causes an abort of the smallest enclosing for loop statement. Control passes to the
statement that is immediately after the loop.

1.2.15.6 Continue statement
The statement

continue ;

causes control to pass to the end of the current iteration of the smallest enclosing for
loop.

1.2.15.7 Return statement
A return statement,

return expression ;

is used inside the validator or generator function body. It must return either a boolean
value of true or false, or an identifier containing such a value.

1.3 Predefined Objects and Functions

Like lanugages such as Javascript and VBscript, PCL comes with a set of pre-defined
objects and functions used for configuring the chart before it is plotted.

These pre-defined objects and functions are listed below and explained in detail in the
following sections

Object Properties Functions
Chart name plot
 bgcolor save

 fgcolor addseries
 datacolumn removeseries
 dataseries
Dataseries name add
 x
 y
 type
DataColumn name
 data

Global functions:
Function name Parameters Description
print string Prints the string to console
load string Loads a csv data file and creates a Chart object

1.3.1 Collections
A Collection represents an object that holds a group of objects. Some of the properties
defined above, such as dataseries and datacolumn, are Collections.

Square brackets “[“ and “]” will be used to access the individual objects within a
Collection. Some Collections can only be accessed by using a string.

Example:
 dataseries["series name"]

Otherwise can be accessed by an integer index

Example:
 dataseries.x[0]

1.3.2 Chart
The Chart object is a construct used to store the data that is to be graphed. It is created by
calling a predefined function load() which takes in the filename of the charting data
file.

Example:
 let myChart = load("c:\mydatafile.csv");

The data file must be in a csv format. Once load() is called, the contents of that csv file
are loaded into the Chart object. The properties of the Chart object are described below.

Property Name Description
name A unique identifier that can be specified by the user.
bgcolor Background color of the chart.
fgcolor Foreground color of the chart.
datacolumn A Collection DataColumn objects that represent contents of the
 loaded csv charting data file. Access to this collection is by
 name.
dataseries A Collection of DataSeries objects. items are accessed by data
 series name.

The following functions can be applied on the Chart object.

Function Name Parameters Descripition
addseries series name Creates a new Dataseries object to be
 plotted.
removeseries series name Remove a DatSeries object from the
 dataseries collection.
save filename Saves the Chart object's data into a csv
 file.
plot series name Plots the data series specified. If no
 parameter is passed in, then all data
 series are plotted.

1.3.3 Dataseries
A Dataseries object represents a collection of data points that are to be plotted with a
unique symbol and color. A user create and modify Dataseries objects by using the
following properties and functions.

Property Name Descripition
name A unique identifier that can be specified by the user
x A Collection of values which is mapped to one of the data
 columns in the Chart object.
y A Collection of values which is mapped to one of the data
 columns in the Chart object.
type Describes the type of plot this data series will be. The possible
 types are {Scatter, Line, Bar}

Function Name Parameters Descripition
add x, y values Adds a data point to the data series

1.3.4 DataColumn
The csv data in the Chart object is stored as a matrix. To access the contents of the
matrix, the programmer must use DataColumn object and its properties.

Each DataColumn object in the Chart's DataColumn Collection maps to a column in the
matrix and is automatically assigned a name. The name has the following format
col1, col2, col3,

Property Name Description
name A unique identifier that can be specified by the user
data An array of values stored

The following a sample program that shows how the objects described above are used

// Load the csv file and create the Chart object
let chart = load("data.csv")

// Assign chart attributes
chart.bgcolor = #000000

chart.fgcolor = #FFFFFF
chart.datacolumn["col1"].name = "X values"
chart.datacolumn["col2"].name = "Y values"

// Create a new data series
chart.addseries("new series")
chart.dataseries["new series"].x = chart.datacolumn["X values"].data
chart.dataseries["new series"].y = chart.datacolumn["Y values"].data
chart.dataseries["new series"].type = Scatter

// Save the chart
chart.save("newfile.csv")

// Plot the chart
chart.plot()

1.4 Validators and Generators

1.4.1 Validators
PCL has built in constructs to help users validate their data before plotting it. These
constructs are called Validators and are defined in the following format:

[Validator-name]
{
 // Describe Validation rules here
}

validate(validator-name, column-name)

As shown above, the declaration of a Validator must begin with the name of the validator
enclosed in square brackets, “[“ and “]”, and the body of the Validator must be enclosed
within curly braces, “{“ and “}”. Within the body of a validator users are allowed to use
expressions and identifiers to implement their validation rules. The Validator will only
terminate on a return statement. A return value of true will indicate that validation for
current cell was successful and false otherwise. To validate a specific data column, the
user would call the validate() function passing in the validator name and name of the
column to be validated.

Example:
 validate("My Validation Rule", "Y-Values")

The rule defined within the body of Validator is applied to all values within the specified
data column. A special identifier, value, is used to represent the contents of the current
cell in the column being validated. If all values in the column checked return true then the
validate() function will return true; otherwise it will return false.

Example:

[MaxValueCheck]
{
 if(value > 300)
 return false
 else
 return true
}

The special value identifier also has a function called isTypeOf() which can be used to
check the format of a specific value. The function takes in a regular expression string
describing the format that the user wants each data point to validate against.

Example:

[FormatCheck]
{
 // Check to see if a value is a number or not
 if(value.isTypeOf("[0...9]")
 return true
 else
 return false
}

Validators can also be used to correct mal-formatted or out of range values by changing
the value identifier.

Example:

[Normalize]
{
 // Put the ceiling at 300
 if(value > 300)
 value = 300

 return true
}

1.4.2 Generators
A Generator allows users to create new data points from existing data points. The new
data points are then used to produce a new DataSeries object that is added to the Chart.
The format of a Generator is shown below.

[Generator-Name]
in(parameter-list)
{
 // Body of the Generator
}

As shown above, the declaration of a Generator begins with the Generator name enclosed
in square brackets. This is then followed by the parameter declaration. The parameter
declaration must begin with the in keyword with each parameter declared separated by
commans and within the parantheses.

The body of the Generator must be enclosed with curly braces, “{“ and “}”, and the
Generator must be terminated with a return statement.

To execute a generator, the user will call the generate function passing in the Generator
name, chart object and list of parameters:

generate(generator-name, chart-object, parameter-list)

Within the body of the Generator, besides using regular statements and expressions, users
are allowed to use the special identifier newseries to produce their new DataSeries. The
newseries identifier is a DataSeries object and if the Generator call succeeds without
error and returns true, this DataSeries will then be added to the Chart's DataSeries
collection. Otherwise, the DataSeries
is discarded.

Example

[Average]
in(high, low)
{
 // Create a new series that represents the running average
 newseries.name = "Average"
 for(int i=0; i<high.x.length; i++)
 {
 newseries.add(high.x[i], (high.y[i] + low.y[i]) / 2);
 }

 return true;
}

1.4.3 Importing Validators and Generators
A user can import Validators and Generators defined in a different file using the import
command shown below:

import <filename of validators and generators>

Example:
 import "PCL-Modules.pcl"

