COMS W4115

Programming Languages and Translators Homework Assignment 2

Prof. Stephen A. Edwards Columbia University

CVN students: FAX the solutions to CVN and email me when you have done so.

Write both your name and your Columbia ID (e.g., se2007) on your solutions.

Do this assignment alone. You may consult the instructor, but not other students.

1. Consider the following Prolog program.
```
takes(jane_doe, his201).
takes(jane_doe, cs254).
takes(ajit_chandra, art302).
takes(ajit_chandra, cs254).
classmates(X,Y) :- takes(X,Z), takes(Y,Z).
```

What does the query classmates (jane_doe, X) return? Give details of how the search procedure produces this result.
2. Consider the following C-like program.

```
int w = 3;
int x = 10;
int incw() { return ++w; }
int incx() { return ++x; }
void foo(y, z){
    printf("%d\n", y + y);
    x = 1;
    printf("%d\n", z);
}
int main() {
    foo(incw(), incx());
    return 0;
}
```

What does it print if the language uses
(a) Applicative-order evaluation?
(b) Normal-order evaluation?

```
switch (a) {
case 1: x = 3; break;
case 2: x = 5; break;
case 3: x = 15; break;
case 4: x = 20; break;
case 5: x = 23; break;
default: x = 28; break;
}
switch (b) {
case 1: x = 3; break;
case 10: x = 5; break;
case 100: x = 15; break;
case 1000: x = 20; break;
default: x = 25; break;
}
```

4. For a 32-bit little-endian processor with the usual alignment rules, show the memory layout and size in bytes of the following C types.
```
union {
    struct {
        int a; /* 32-bit */
        char b; /* 8-bit */
    } s;
    int c;
} u1;
struct {
    char a;
    short b;
    int c;
    char d;
} s1;
struct {
    char a;
    char d;
    short b;
    int c;
} s2;
```

