
Project Whitepaper: Reinforcement Learning

Language

Michael Groble (michael.groble@motorola.com)

September 24, 2006

1 Problem Description

The language I want to develop for this project is one to specify and simulate
various reinforcement learning algorithms. Reinforcement learning is described
in [SB98]. The language will initially focus on the application of Reinforcement
Learning to �nite Markov Decision Processes (MDPs). Brie�y, a �nite MDP is
speci�ed by the tuple < S,As,Pa

ss′ ,Ra
ss′ > where S is the �nite state space,

As is the �nite action space (in general, the allowable actions depends on the
current state s ∈ S, a ∈ As), Pa

ss′ is the environment transition probabilities

Pa
ss′ = Pr{st+1 = s′ | st = s, at = a}

in other words, the probability that a certain state will be reached (s′) as a
result of taking a speci�c action (a) in a speci�c starting state (s) and �nally
Ra

ss′ are the expected action rewards

Ra
ss′ = E[rt+1 | st = s, at = a, st+1 = s′]

in other words, the expectation of the reward (rt+1) as a result of taking
action (a) in a speci�c starting state (s) which results in a speci�c subsequent
state (s′).

The reinforcement learning problem is that of �nding a policy π which in
some sense optimizes our reward. Problems can be categorized into ones with
�nite ends (termed episodic) and those without end (continuous). The language
will support the typical reward formulation, one of maximizing the expected
discounted future rewards. In other words, the policy attempts to maximize the
return Rt where

Rt = E

[
T∑

k=0

γkrt+k+1

]

The term 0 < γ ≤ 1 is called a discount factor (it discounts future rewards).
For continuous tasks, T = ∞ and the discount factor must be less than 1 to

1

ensure the return is bounded. For episodic tasks, the termination of the episode
corresponds to reaching a particular subset of the state space. These terminal
states are not considered part of S. The set S+is used to denote the union of
S and the terminal states. Technically in the de�nition of Pa

ss′ and Ra
ss′ above,

s ∈ S and s′ ∈ S+.
The purpose of the language is to specify �nite MDP problems and the

solution and simulation of both episodic and continuous problems using standard
reinforcement learning algorithms.

2 Sample Input

This section contains some examples of language inputs. The �rst two MDP
examples come from [SB98] and the last one comes from [TBF05]. Note the
examples show a Python-like use of whitespace in a seemingly semantic way. I
don't bother to try to de�ne the semantics since this is just candidate notation.
I haven't thought much about how to really identify di�erent scoping areas.

2.1 Gambler's Problem

The �rst case is a simple gambling game where the probability of winning any
particular turn is 0.4. The objective is to acquire a total amount of exactly
100. On each turn, the gambler must bet at least 1 and at most their total
holdings (up to the amount that would give them 100 if they were to win). The
learning problem is to determine the optimal gambling policy, in other words
what amount should be bet for each amount the gambler is holding.

1 mdp Gamblers

2 states capital

3 actions stake

4 reward r

5

6 valid states { 0 < capital < 100 }

7

8 episode

9 set loseStates { capital == 0 }

10 set winStates { capital == 100 }

11 terminals { winStates, loseStates }

12

13 valid actions {0 < stake <= min(capital, 100 - capital)}

14

15 environment

16 random win = binomial(0.4)

17

18 capital' = capital + 2 * (win - 0.5) * stake

19 r = 1 if capital' in winStates else 0

2

Lines 2 through 4 de�ne the names used to represent states, actions and reward.
Line 6 de�nes the valid states space S. In this case, the problem is episodic.
Lines 8 through 11 de�ne variables related to the episodic behavior. Lines 9
and 10 de�ne named sets that are used in the scope of an episode. Elements of
the set can be enumerated or de�ned by constraints. For example, the following
are equivalent

set winStates { capital == 100 }

set winStates { capital in {100} }

where {100} is a set literal consisting of the single element 100. The following
are also equivalent

valid states { 0 < capital < 100 }

valid states { capital in {1:99} }

In this case, the set literal {1 : 99} uses the range operator to represent the 99
integers between 1 and 99 inclusive.

Line 11 denotes the states which are terminal states. Line 13 de�nes the
valid actions As . This example shows a case where the set of valid actions
does depend on the current state. Finally, lines 15 through 19 de�ne the en-
vironment behavior. Logically, the system can be divided between an agent
and the environment. The agent observes the current state and reward and
chooses an action. The environment propagates the old state to a new state
based on the chosen action and computes the reward. These lines describe how
the environment updates for this problem.

Line 16 de�nes a random variable within the scope of the environment. In
this particular case, the random variable is drawn from a binomial distribution.
Since it is de�ned in the scope of the environment, a new value is drawn at each
turn. Line 18 shows how capital is updated and line 19 shows how the reward is
computed. The last line also shows a Python-like conditional statement of the
form < true− value > if < condition > else < false− value >. It also
shows the syntax for set mebership predicate < value > in < set >.

2.2 Jack's Car Rental

This next example is a car rental company with two sites. People stop at each
site to request rental cars and return cars. At night, the owner has the discretion
of transferring up to 5 cars from one site to another. In this case the policy we
want to learn is how many cars to transfer given the number of cars remaining
at each location. For simplicity, cars at each location are limited to 20. Any
transferred or returned over 20 e�ectively disappear. Each rental provides a
reward of +10 and each car transfer incurs a cost of 2 (provides a reward of -2).

1 mdp CarRental

2 states cars[2]

3 actions netTransfer

3

4 reward r

5 valid states { 0 <= cars <= 20 }

6 valid actions { -min(5,cars[1]) < netTransfer < min(5,cars[0]) }

7 environment

8 random returns = [poisson(3);poisson(2)]

9 random requests = [poisson(3);poisson(4)]

10 nextMorn = min(cars + [-netTransfer;netTransfer], 20)

11 rentals = min(requests, nextMorn)

12 cars' = min(nextMorn + returns - rentals, 20)

13 r = rentals * 10 - 2 * abs(netTransfer)

The �rst thing to notice about this case is that the state is no longer a scalar,
but is a vector. The notation for vector quantities and operations match that
of Matlab in spirit. Line 2 declares the state element cars as a vector with
two elements (one for each rental location). Line 3 de�nes the action as a net
transfer, the number of cars transferred from location 1 to location 2 (a negative
value indicates transfer from 2 to 1).

The next thing to notice about this case is that it is continuous, not episodic,
so there is no episodic section.

The environment section shows the use of temporary variables (nextMorn
and rentals) to simplify the calculation of state updates and rewards.

2.3 Heaven or Hell

This is an example of a �gridworld�, an environment where the agent's actions
allow it to move about a 2-dimensional grid. In this case, there is one start
position, two terminal positions (Heaven and Hell) and one Map position. The
reward for Heaven is +100 while the reward for Hell is -100. The act of moving
has a reward of -1. Two locations in the world are �xed for Heaven and Hell,
but the agent cannot tell which is which. Each episode has Heaven and Hell
randomly assigned to the two locations. If the agent enters the Map location,
it is told which location is Heaven.

1 mdp HH

2 states position[2]

3 states map

4 action direction

5 diagram

6 A B

7

8 .

9 .

10 S

11 .

12 .

13 ...M

4

14

15 valid states {position in {.,S,M} &&

16 map in {unknown, a, b}}

17

18 valid actions {n,s,e,w}

19

20 episode

21 starts {position = S && map = unknown}

22 terminals {position in {A,B}}

23 random aIsHeaven = binomial(0.5)

24 set heaven {position in {A} and aIsHeaven ||

25 position in {B} and !aIsHeaven}

26 set hell {terminals - heaven}

27

28 environment

29 next = [position[0] + (1 if action == w else

30 (-1 if action == e else 0));

31 position[1] + (1 if action == n else

32 (-1 if action == s else 0))]

33 position' = next if next in {valid states, terminals}

34 else position

35 map' = map if position not in {M}

36 else (a if aIsHeaven else b)

37 reward = 99 if position in heaven

38 else (-101 if position in hell else -1)

This example shows quite a few new aspects of the language. First is that states
can be structured. In this case states are represented by a vector component
(position) and a scalar component (map). Second is that states and actions
can consist of sets of nominal named values rather than integer values. The
map state can have the values �unknown� (meaning the location of Heaven is
unknown), �a� or �b�. Similarly, the action in line 18 is movement in one of the
compass directions �n�, �s�, �e� or �w�.

Third, shown in lines 5 through 13, is a potential shorthand notation to ease
creating gridworlds by depicting them with ASCII diagrams. Lines 15 and 16
map the ASCII notations onto the �normal� constraint notation. Logically, each
character in the ASCII diagram represents the set of positions in the diagram
where that character is found. So on line 15, the term {., S, M} means the set of
16 locations matching those three character annotations.

Lines 20 through 26 show an episode section. In this case, a random variable
is declared in the episode section, it is therefore drawn at the beginning of each
episode and remains constant during the turns within an episode. Line 21 also
shows a new special �starts� set which de�nes the set of states which are initial
states in the episode. A missing �starts� declaration means the start states are
unconstrained and consist of all �valid states�.

5

Lines 29 through 32 translate the motion names to potential movement while
lines 33 and 34 ensure the agent cannot move out of the valid positions. Lines
35 and 36 update the map state if agent is in the Map location.

2.4 Solution Language

The previous three sections described sample inputs for problem descriptions.
We also need a language for solving the problems. For now, I plan on having
a limited number of hard-coded algorithms available rather than specifying a
language for de�ning algorithms. The invocation of those algorithms will be
fairly Matlab-like:

// determines policy for the HH mdp using policy iteration

policy = policyIteration(mdp = HH, threshold = 0.1)

// determines policy for Gamblers using value iteration

policy = valueIteration(mdp = Gamblers, threshold = 0.1)

// determines policy for Racetrack using Sarsa(lambda)

[policy,returns] = sarsa(mdp = Racetrack, lambda = 0.6,

epsilon = 0.01, episodes = 5000)

Once policies are learned, they can be simulated for evaluation purposes

[states,actions,rewards] = simulateSteps(policy = p, steps = 100)

[states,actions,rewards] = simulateEpisode(policy = p)

My end-goal is to provide the ability to specify di�erent algorithms in the lan-
guage itself and to specify concepts of Programmable Reinforcement Learning
[AR00] in the language, but those will likely not be done in the scope of this
course.

3 Issues

My main language design issue I have is the avoidance of procedural statements
in the environment speci�cation. Some algorithms require that I be able to
�compile� the environment descriptions into explicit values for the probabilities
Pa

ss′ and expected values Ra
ss′ across the entire state-action space while others

rely on Monte Carlo simulation of the environment. My current belief is that
the language therefore needs to be as declarative as possible and as devoid of
procedural �control �ow� statements as I can make it. The conditional operator
is my only concession and enforces my belief that I need a value for every
�branch�.

My other big issue is related to the interaction of the structured state repre-
sentation and the set notation. Imagine a gridworld with dynamics where states
are position[2], velocity[2] and actions are acceleration[2]. Also imagine
some sets that de�ne special positions, for example

6

set locations = {...}

On the one hand, I'd like to provide error checking to ensure sets are being
compared correctly. It should make sense to say

position in locations

but not

velocity in locations

or even worse, comparing an action with a set de�ned on states

acceleration in locations

On the other hand, you could argue something like

velocity in locations

is valid and should evaluate to �true� (since velocity is unconstrained by
locations).

I wonder if sets need some (implied or explicit) type system to minimally dis-
tinguish between states and actions and possibly distinguish between structured
states.

4 Mechanics

I have prior experience building parsers using high-level tools (I am taking this
course because I need to meet the core requirement and haven't formally studied
languages before). I implemented a proprietary language used in Motorola for
de�ning binary message formats. I extended the language to support comments
similar to Javadoc and created a parser that would create FrameMaker inter-
face documentation from the commented message de�nition �les. The complete
system was about 6000 lines of C++ using the Spirit parser library from Boost
[dG]. I also created parsers for two proprietary languages used to specify dia-
log management systems. These parsers were part of Eclipse editors for those
languages (with interactive syntax and semantic error annotation, hyperlinking
and refactoring similar to the capabilities of JDT). The parser plugins were
about 3000 lines of Java using Antlr.

I'd like to start with an architecture that matches what I did in my plugin
work. For good or bad, I picked up on the convention used by the Antlr Eclipse
plugin[Jue]. I de�ne a ParserBehavior interface in Java and call that behavior
from the Antlr code rather than put explicit logic in the .g �les. For example

object:

fo:OPAREN "form" {behavior.beginForm();}

form_object_guts

7

fe:EPAREN {behavior.endForm(fo,fe);}

| mo:OPAREN "menu" {behavior.beginMenu();}

menu_object_guts

me:EPAREN {behavior.endMenu(mo,me);}

;

I constructed the abstract syntax representation within the ParserBehavior im-
plementation. The abstract syntax was represented by EMF-generated code
(this abstract syntax will be shared between the concrete textual syntax from
the Antlr parsers and a graphical concrete syntax implemented by a separate
diagram editor in Eclipse).

I like the separation of interface and implementation. I in fact wrote a
few di�erent ParserBehavior implementations for di�erent functionality in the
development environment only one of which constructed a full abstract syntax
representation. But I found error handling a little tedious, for example

public void beginMenu() {

Menu menu = FrameFactory.eINSTANCE.createMenu();

currentObjectScope.push(menu);

stack.push(menu);

}

public void endMenu(Token hoverStart,Token hoverEnd) {

if (stack.peek() instanceof Menu) {

Menu m = (Menu)stack.pop();

currentObjectScope.pop();

if (stack.peek() instanceof Frame) {

((Frame)stack.peek()).getObjects().put(m.getName(),m);

updateHover(m,hoverStart,hoverEnd);

}

else {

throw new UnexpectedParseBehaviorException(

stack.peek().toString());

}

}

else {

throw new UnexpectedParseBehaviorException(

stack.peek().toString());

}

}

I'd appreciate any suggestions on how to maintain this separation without the
burden of seemingly implementing the language twice, once in Antlr and again
in the ParserBehavior.

I have already manually implemented a number of these MDPs and rein-
forcement learning algorithms in C++. I experimented with porting them to
Java and they run at least ten times slower. As a consequence, I want to either

8

implement the parser in C++ or implement it in Java as something that gen-
erates C++ code. I am leaning towards the Java implementation just because
I am more productive in Java and have quite a bit of Java Antlr experience.

References

[AR00] D. Andre and S. J. Russell, Programmable Reinforcement Learning

Agents, Proceedings of Neural Information Processing Systems, 2000,
pp. 1019�1025.

[dG] Joel de Guzman, The Spirit Parser Library,
http://spirit.sourceforge.net/.

[Jue] Torsten Juergeleit, ANTLR plugin for Eclipse,
http://antlreclipse.sourceforge.net/.

[SB98] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An

Introduction, The MIT Press, Cambridge, MA, 1998.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic

Robotics, The MIT Press, Cambridge, MA, 2005.

9

