
The GAL Programming Language:

A rapid prototyping language for graph algorithms

Athar Abdul-Quader

ama2115@columbia.edu

Shepard Saltzman

sms2195@columbia.edu

Albert Winters

ajw2124@columbia.edu

Oren B. Yeshua

oby1@columbia.edu

1 Introduction

A graph G consists of a set of vertices V and a set of edges E each of which joins
two of the vertices. This simple abstraction serves as a model for a multitude of
real world systems and leads to a wide variety of useful and elegant algorithms for
solving problems in those systems. However, despite the elegance of the formalism,
implementing graph algorithms in a general purpose programming language can
become quite cumbersome. Programmers must �rst make decisions about how to
represent graphs, edges, and vertices, and then attempt to translate the algorithm
into the desired language.

2 Audience

Students and researchers studying algorithmic theory should �nd GAL exception-
ally useful in allowing them to quickly implement and experiment with the tech-
niques they are investigating. GAL allows students to focus on algorithm concepts
without worrying about time-consuming implementation details - helping to foster
understanding of the algorithm as a whole, and perhaps facilitating the discovery
of improvements where possible. GAL is also well suited for developers looking to
quickly include graphs and graph algorithms in their software while avoiding the
hassle of choosing an appropriate API and learning to use it.

3 Related work

While there are many graph and network algorithm APIs, like jGABL� and boosty,
they are all based on general purpose programming languages. As such, algorithms
implemented using those APIs are encumbered with the syntax and nuances of the
language, making them di�cult to read and maintain. We have been unable to �nd
a programming language developed speci�cally for computing with graphs.

�http://www.math.tu-berlin.de/jGABL/
yhttp://www.boost.org/libs/graph/doc/

1



4 Goals

4.1 Intuitive

The GAL language is terse and uncluttered by a myriad of non-essential symbols.
GAL syntax closely mirrors popular pseudocode formats found in the algorithm
literature making GAL code both easy to develop and intuitive to understand.

4.2 Concise

GAL programs should be concise in comparison to their counterparts in other lan-
guages. Because GAL is designed speci�cally for graph algorithms, it can provide
signi�cant LOC savings over the standard general purpose programming languages
(both imperative and functional) when working with graphs. Built in data struc-
tures, operators, and functions for working with graphs and sets facilitate this goal.

4.3 Portable

The Java code produced by our GAL compiler can be quickly integrated into any
Java application, providing the exibility, scalability, and cross platform support
that comes from using the Java language. Furthermore, GAL uses a simple set
of primitives and built in functions that can be implemented in any general pur-
pose programming language. While we will provide an implementation in Java,
GAL compilers can be written for your pre�ered target language based on the GAL
speci�cation. Learning various APIs for di�erent languages is time consuming and
unnecesary.

4.4 E�cient

GAL will use appropriate data structures and algorithms in its internal representa-
tion and manipulation of graphs, sets, and queues in order to free the programmer
from dealing with such issues. The focus of GAL is on rapid prototyping, so the
core concern is to keep computationally e�cient algorithms running e�ciently when
implemented in GAL. For �ne tuning of constant factors, the code may be tightened
in the target language.

5 Features

5.1 Data types

GAL includes graphs, sets, and queues as built-in types along with the familiar
numbers, constants, strings, and booleans. The language is weakly typed for added
exibility and readability.

2



5.2 Control structures

Simple and familiar program ow control mechanisms like while and for loops and
if/else statements are provided. Some language speci�c control structures are the
foreach keyword as well as indentation to specify scope.

5.3 Comments

The traditional '//' signi�es a single line comment, enabling a natural and readable
embedding of annotation alongside the code.

5.4 A simple example

To get a sense of what a basic GAL program would look like, what follows is a
depth-�rst traversal algorithm as it might be written in GAL.

DFS(G)

foreach (u in G.V)

u.visited <- FALSE // initialize the vertices

foreach (u in G.V) // for all

if (u.visited = FALSE) // unconnected components of G

DF-VISIT(u) // begin traversal

DFS-VISIT(u)

print(u) // output vertex info to the terminal

u.visited <- TRUE // mark node as visited

foreach (e in u.edges)

if (e.head.visited = FALSE)

DFS-VISIT(e.head) // recurse

MAIN()

graph G // declare a graph

G.V = {1,2,3,4,5} // add vertices

G.E = {(1,2),(1,3),(2,3) // add edges

G.E += {(4,5)} // add more edges

DFS(G) // traverse

The simple program above demonstrates many of our GAL's features. Graphs,
vertices, and edges are all basic types, but additional �elds can be added to them
on the y as is the case with the visited �eld used to tag vertices in the example.
Recursion is supported as in the call to DFS-VISIT and comments nicely annotate
the code. The basic types are also printable for debugging or rapid prototyping
purposes.

3



6 Summary

Programmers seeking to utilize graph algorithms in their software encounter a par-
adigm shift in which they must take the algorithms from the theoretical perspective
in which they were discovered, and convert them into a functioning computer pro-
gram. It is the aim of GAL to make this transition as simple and natural as possible.
Algorithms implemented in GAL are human-readable, which allows this language to
be used for teaching purposes as well as general graph algorithmic development. We
hope our GAL will become a useful tool for studying, prototyping and implementing
graph algorithms.

4


