
ACL: Automated Command Line 
 
Introduction 
 
ACL is an interpreted language designed to automated repetitive tasks on the 
command line. The interpreter will be based on Java mainly because existing 
implementation of Expect suffers from the problems of C, where you need a 
separate interpreter for every OS. Using Java will ensure that the interpreter is 
useful regardless of the OS used and be able to run it whenever a JVM for the 
OS exist. 
 
Design 
 
Here are some design features of ACL: 

1. Simple and easy to use – The syntax and semantics of ACL would be like 
a hybrid between Expect and C/Java. Efforts will be made to ensure that 
the language is intuitive and easy to read and understand. 

2. Cross platform compatibility – Able to run ACL on every platform where a 
JVM exist. This is a lofty goal and efforts will be made to ensure that this 
goal is met. 

3. Interpreted – This will ensure that it is fast and easy to write and test ACL 
scripts. 

 
Keywords 
 
Here are the initial proposed keywords of ACL: 

1. session – To spawn a new telnet/SSL/… session. 
2. receive – To wait for a certain sequence of characters from the spawn 

session. 
3. send – To send a certain sequence of characters to the spawned session. 
4. interact – To place the user in interactive mode with the spawned session 

so that the user can type and interact directly with the spawned session 
5. if, else, while, for – Used for flow control in the script. Structure is very 

similar to C/Java. 
6. function – To define a function. 

 
Variables 
 
There are only two types of variables currently supported: 

1. string – i.e., a = “a string” 
2. integer – i.e., a = 123 



Programming Examples 
 
Here is a simple program to login to 2 layers of server, send 2 commands and 
return control to the user: 
---- 
function login_ssh (server_name, user, password) { 

session "ssh server_name" 
 

receive "Login:" 
send user 
receive "Password:" 
send password 

} 
 
user = "john" 
password = "secret" 
 
login_ssh(“first_server”, user, password) 
 
receive "$" // Wait for the prompt "$" 
send "ssh second_server" 
receive "Login:" 
send user 
receive "Password:" 
send password 
 
receive "$" 
send "first command" 
receive "$" 
send "second command" 
 
interact 
---- 



Here is a simple program to automate killing a monster in a text-based MUD 
(Multi-User Dimension) game: 
---- 
function login_mud (server_name, user, password) { 

session "ssh server_name" 
 

receive "Login:" 
send user 
receive "Password:" 
send password 

} 
 
function walk_to_monster() { 

receive "#" 
send “north” 
receive "#" 
send “west” 
receive "#" 
send “west” 
receive "#" 
send “north” 
receive "#" 
send “north” 
receive "#" 
send “east” 

} 
 
function walk_to_sleep() { 

receive "#" 
send “west” 
receive "#" 
send “south” 
receive "#" 
send “south” 
receive "#" 
send “east 
receive "#" 
send “east 
receive "#" 
send “south 

} 
 
user = "ultimate_killer" 
password = "i_kill_for_fun_and_enjoyment" 
 
login_mud(“mud_server”, user, password) 



 
for (i = 1; i < 100; i++) { 

walk_to_monster() 
receive "#" 
send “kill goblin” 
receive "goblin is DEAD!!” 
walk_to_rest() 
receive "#" 
send “sleep” 
receive "You are fully rested." 

} 
---- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


