

SIMPLEX
SYNTAX FOR INTERNATIONAL MONETARY,
PROPERTY, AND LIQUIDITY EXCHANGE

FINAL REPORT
December 19, 2006

 stc2104 | Steven Chen
gch2102 | Gilbert Hom

kxj1| Kelvin Jiang
ehz2101 | Eric Zhang

TABLE OF CONTENTS

INTRODUCTION .. 4
LANGUAGE TUTORIAL ... 7

INTRODUCTION.. 7
VARIABLE DECLARATION AND INITIALIZATION... 7
ITERATIVE STATEMENTS.. 7
CONDITIONAL STATEMENTS... 8
USER INPUT.. 8
PROGRAM OUTPUT.. 8
USER-DEFINED FUNCTIONS .. 9
CASTING CURRENCIES .. 9
COMMENTS .. 9

LANGUAGE MANUAL ... 10
OVERVIEW.. 10
LEXICAL CONVENTIONS ... 10
DATA TYPES ... 11
EXPRESSIONS .. 12
OPERATOR PRECEDENCE .. 15
STATEMENTS .. 15
PROCEDURES.. 17
PROGRAM STRUCTURE .. 17

PROJECT PLAN... 18
PROCESS OVERVIEW .. 18
PROGRAMMING STYLE .. 18
PROJECT TIMELINE .. 19
ROLES AND RESPONSIBILITIES .. 19
SOFTWARE DEVELOPMENT TOOLS ... 19
PROJECT LOG ... 20

ARCHITECTURAL DESIGN.. 21
OVERVIEW.. 21
SIMPLEX LEXER ... 21
SIMPLEX PARSER ... 22
SIMPLEX TREE WALKER.. 22
SIMPLEX INTERMEDIATE REPRESENTATION CLASSES .. 23

TEST PLAN ... 26
TEST METHODS .. 26
THE CONSOLE.. 26
REGRESSION TEST SUITE ... 27
TEST APPLICATIONS .. 30

LESSONS LEARNED ... 32
STEVEN CHEN .. 32
GILBERT HOM .. 32
KELVIN JIANG .. 33
ERIC ZHANG .. 33

APPENDIX .. 34

SIMPLEX: Final Report

3

grammar.g... 34
Main.java... 43
Arglist.java ... 44
Arith.java .. 45
Cast.java... 48
Cond.java... 50
Console.java .. 51
Constant.java .. 54
Decl.java... 55
Expr.java... 56
ExprList.java .. 57
For.java... 58
Func.java... 59
FuncCall.java .. 60
FuncCallStmt.java ... 61
Id.java ... 62
Input.java .. 63
Node.java... 64
Not.java... 65
printFunction.java ... 66
Rel.java... 67
Return.java .. 68
Seq.java... 69
Set.java... 70
Stmt.java... 71
SymbolTable.java ... 72
TestSuite.java.. 73
Type.java... 74
Unary.java .. 76
While.java .. 77

SIMPLEX: Final Report

4

INTRODUCTION

The financial services industry is dynamic and extremely competitive. From making
investment choices to providing advice to Fortune 500 corporations, one’s reputation depends
on the ability to make wise, precise and timely decisions. SIMPLEX is designed to assist
financial professionals quickly produce accurate and precise financial analysis under intense
deadline pressure.

SIMPLEX allows financial professionals to focus on analysis rather than on intricacies in

programming languages such as Java and C++. The language is syntactically intuitive and uses
terminology and conventions familiar to professionals in the industry. Furthermore, users of
SIMPLEX will appreciate the built-in features which again, allow the user to focus on the
analysis and not on formatting output, memorizing formulas, determining data types or
learning a significant amount of syntax. Overall, SIMPLEX is a flexible and intuitive
programming language which can be used across many platforms and serves as a powerful tool
for financial professionals.

BACKGROUND
Financial models serve as the foundation upon which financial analysis occurs. Financial

models are used to calculate and/or estimate financial figures. They can be used to predict
future earnings of a company, the result of a potential merger/acquisition, and the amount of
debt a company can take on, among other things. Good models are designed in such a fashion
that, should a user change an initial assumption, the change in the assumption should flow
through the model without having to update anything else. Furthermore, good models can be
easily modified and expanded to provide greater functionality and flexibility.

MOTIVATING SCENARIOS
An investment banking analyst has been asked to determine the pro forma effect of the

merger between two large media companies. A homeowner wants to determine the best
mortgage that fits his/her financial situation. A student wants to keep track of her student loans
and the payments needed to repay those loans. An entrepreneur needs to estimate the growth
of the sales of his company for a presentation to potential investors. An economist wants to
determine the effect of a rise in interest rates by the Fed. A foreign exchange trader wants
exploit currency arbitrage situations. These are all scenarios in which SIMPLEX will be able to
provide a path to an answer or a solution.

While Microsoft Excel is powerful and considered the industry standard when it comes to

financial analysis, it is fairly expensive. For students and young entrepreneurs who want to
perform their own financial analysis, Microsoft Excel is most likely unaffordable. SIMPLEX will
give its users the power to create everything from expansive financial models to quick financial
calculations at virtually no cost. Overall, SIMPLEX serves as an economical alternative to
Microsoft Excel without compromising any features required to generate meaningful financial
analysis.

SIMPLEX: Final Report

5

FUNDAMENTAL FEATURES
Data Types

A significant feature of SIMPLEX is the use of different currencies as data types. For
example, US Dollars, Euros, Japanese Yen and other currencies will be set as data types. The
reason motivating this feature is to ensure that different currencies cannot be mathematically
manipulated without first applying the appropriate currency exchange rate. This ensures
apples-to-apples comparisons. In addition SIMPLEX will include a data type called ‘rate.’ Users
will program rates—such as interest rates—as 7.50 rather than 0.075. It is more intuitive to think
of rates in terms of their actual number (7.50%) rather than their decimal equivalent (0.075).

In order to keep track of time, SIMPLEX will support ‘years,’ ‘months’ and ‘days’ data types.
Lastly, for all other purposes, the programming language will have a generic string and number
data type.

Currency Manipulation
SIMPLEX will automatically import currency exchange rate data in order to perform

manipulations between currencies. This is a valuable feature because it prevents the user from
having to enter all applicable exchange rate ratios into his/her program. A unique feature of
SIMPLEX will include support to quickly typecast currencies. For example, if it was necessary
to convert a value from US Dollars to Euros, the user could simply type (Euros) in front of a
US Dollar variable name. This automatically applies the appropriate exchange rate to the value
of the variable being converted.

Appropriately Formatted Output

In order to differentiate between currencies when values are displayed, the accompanying
symbol (e.g. $, ¥, €, £, etc.) is also printed. Rather than having a minus sign in front of negative
values, which are often small and hard to see, negative values will be shown with parenthesis
around them. Also, values being printed will always have the appropriate amount of significant
digits shown. For example, US Dollars are represented as having 2 decimal places and never
more. This feature ensures that no superfluous data is shown.

Built-In Functions

Due to the mathematical complexity of some formulas, SIMPLEX will contain several
frequently used functions including payment, present value, future value and internal rate of
return functions.

Mathematical Expressions

SIMPLEX offers the convenience of being able to perform and evaluate mathematical
expressions through the use of operators, not procedures and functions. This mimics the format
of evaluating mathematical expressions in graphical calculators and Microsoft Excel. Having
this feature focuses the user’s attention to the program and not syntax. For example
Math.pow(3,2) is the Java operation to raise 3 to the second power. The syntax to perform the
same operation in SIMPLEX is 2^3.

SIMPLEX: Final Report

6

User-Defined Functions
A rudimentary equations solver will be incorporated into the compiler. Users can use this

solver to define functions which take parameters of linear equations and solve for the missing
variable. This way, long and common strings of arithmetic can be condensed into a user
defined function. The user can then call the function in the program, leaving one of the
arguments undefined, and the function will return the value of the missing variable.

Portability

An essential component of SIMPLEX is its ability to be run on several computing platforms.
To achieve this feature, SIMPLEX code is translated into Java, which is then able to run on
computers with the Java Virtual Machine installed.

SIMPLEX: Final Report

7

LANGUAGE TUTORIAL

INTRODUCTION
Here is how the “Hello World” program is formulated in SIMPLEX.

 void main()

{

 print (“Hello World”);

 }

The main portion of all SIMPLEX programs must be contained in the void main() method.

The print command allows you to print items to screen. Any user defined functions must
occur prior to the main method.

VARIABLE DECLARATION AND INITIALIZATION
As will be mentioned in the Language Reference Manual later on, there are data types that

can be used in SIMPLEX. Variables must be declared first before they can be used. However,
declaration and initiation cannot occur in the same statement.

There are several currencies available to the user in SIMPLEX. Please refer to the Language
Reference Manual for the slate of options. The following is an example of how to declare a
variable of YEN type called “myAmount” and how to initialize it to 100:

 YEN myAmount;
 myAmount = 100;

The declaration of the generic number data type follows similarly. For example:

 number thisNumber;
 thisNumber = 3.14;

Again, the declaration of the string data type follows similarly. For example:

 string myName;
 myName = “Steven Chen”;

The rate data type is fairly unique to SIMPLEX. Rates are initialized using the actually

percentage amount. For example, if one were to desire a variable containing 5% (0.05 in real
number terms), this would be the code:

 rate myInterestRate;
 myInterestRate = 5; // refers to 5% (or 0.05)

ITERATIVE STATEMENTS
The while and for loop statements are available for creating iterative statements. The

syntax to these statements is similar to that of C, C++ and Java. Below are two examples
illustrating these statements.

 number a;
 a = 0;

while (a > 5)
 {

SIMPLEX: Final Report

8

 a++;
 }

 number a;

for (a = 0; a < 5; a++)
{
 print “Hi!”;
}

CONDITIONAL STATEMENTS
No different from most other languages, if and else statements are available to the user

when conditions need to be evaluated. Conditional statements can be nested, thus allowing the
user to make multiple conditional statements. Conditional statements are illustrated in the
example below:

if (a > 5)
{
 print (“a is greater than 5”);
}
else
{
 print (“a is less than or equal to 5”);
}

USER INPUT
The input function is a pre-defined function in SIMPLEX that allows the user to quickly

and easily obtain input from the user from the command line. The argument of the input
function is the variable in which the data the user enters in the command line is to be stored. For
example, if the program were to obtain user input on a number, the following would be an
example of how to achieve this:

number userInput;

print (“User: Please input a number”);
input(userInput);

PROGRAM OUTPUT
The print function is a pre-defined function in SIMPLEX that allows the user to quickly

output information to the command line. The print function will automatically format
currencies to show the appropriate symbol or abbreviation along with 2 decimal points. The
print function is capable of handling all data types in SIMPLEX. The following is an example
of the print function printing out an entire line with several data types

number a;
USD b;
string c;
rate d;

a = 4.1;
b = 9.3311;
c = “steve”;
d = 3;

print (a + “ “ + b + “ “ + c + “ “ + d);

SIMPLEX: Final Report

9

The output to this print statement is

4.1 $9.34 steve 3.0%

USER-DEFINED FUNCTIONS
SIMPLEX gives the user the ability to create user-defined functions. As mentioned

previously, these functions must occur prior to the main method being called. Functions must
have associated with them a name (identifier), argument(s) and a return type. The following is
an example of a function:

USD myFunction (USD amt, rate r)
{
 USD temp;
 temp = amt * r;
 return temp;
}

CASTING CURRENCIES
Another fairly unique aspect to SIMPLEX is the ability to ‘cast’ currencies, rather than apply

a conversion factor. In order to convert between variables of different currency types, place the
new currency type in brackets prior to the variable name. For example, to convert a variable of
USD to YEN:

USD a;
YEN b;

a = 5.50; // $5.50
b = (YEN)a; // converts $5.50 into Yen equivalent and stores in b

COMMENTS
As with nearly every programming language, the user has the option to place ‘comments’ in

code. Comments are ignored by the compiler and can be single line or multiple lines. Single line
comments start with two slashes: //. Multiple line comment lines begin with /* and end with a
*/.

SIMPLEX: Final Report

10

LANGUAGE MANUAL

OVERVIEW
SIMPLEX (Syntax for International Monetary, Property, and Liquidity Exchange) is a light-

weight, C-like language that greatly simplifies the development of financial applications. It
provides special money, date, and percentage types that are required by almost every financial
system, and also makes software development more accessible to financial analysts through
more intuitive expression and operator syntax. It is portable, compact, and easy to learn.
SIMPLEX programs are case sensitive and can be written easily using any ASCII text editor.

LEXICAL CONVENTIONS
There are 5 types of tokens in SIMPLEX. They are: identifiers, keywords, constants,

operators and separators. Identifiers must be separated by whitespace and are greedy, meaning
they consume as much input as they can match. The details of each type of token are discussed
below.

Whitespace

Whitespace is ignored by the SIMPLEX compiler. The purpose of whitespace is to separate
out different tokens and allow users to follow the code in an easier fashion. Whitespace includes
indentations, tabs, spaces and line terminators (including support for DOS, UNIX and MAC
standards).

Comments

Comments are also ignored by the SIMPLEX compiler. Single-line comments begin with //
and end at the end of the line. Multiple-line comments begin with /* and continue until */ is
reached.

Identifiers

Identifiers in SIMPLEX are constructed using any alphanumeric combination of characters
and the underscore character but cannot begin with a numerical digit. Furthermore, identifiers
cannot take the same name as keywords. As mentioned earlier, SIMPLEX is case sensitive; thus,
upper and lower case characters are different from each other.

Keywords

There is a small set of words reserved in SIMPLEX for essential functions. These keywords
cannot be used as names for identifiers and include the following:

if for while else number
rate USD EUR CAD GBP
AUD CHF CNY MXN SOS
YEN year month day void
continue break return string main

Please note that this list of keywords includes 10 standard currencies described later.

Number Constants

A number is constructed with digits and can be followed, optionally, by a decimal point and
more digits. Scientific notation is not accepted. Unlike many other programming languages

SIMPLEX: Final Report

11

such as Java and C++, the user does not have to differentiate between integers and floating
point numbers.

String Constants

A string is constructed with any combination of ASCII characters enclosed by double
quotes.
For example, “Steven Chen” is considered to be a string constant since it is a series of ASCII
characters surrounded by double quotes on both the left and right side. Certain characters must
be ‘escaped’ meaning that a backslash must be placed immediately to the left of the character.
Characters that must be escaped include double quotes (“), newlines, backslash characters and
tabs.

Separators

The following characters are used in SIMPLEX as separators:
{} – Code block separator
() – Grouping separator and parameter list separator
; - Statement Delimiter
, - List Delimiter

DATA TYPES
SIMPLEX requires explicit type specification— meaning that identifier types must be

declared prior to the compilation of the program. The variable is declared in the following
manner:

data-type identifier;

The variable can also be initialized with a constant value on the same line as the declaration:

data-type identifier = value;

There are five ‘classes’ of data types: currencies, numbers, dates, rates, and strings. Within each
class are the actual data types. The programmer may only declare variables with specific data
types; however, the result of operations on these variables and constants are defined by the data
type classes present in the operation rather than the data type itself. This will be explained in
further detail in the ‘Expressions’ section, below.
If a variable is cast to a data type within the same class, the appropriate conversion is applied.
For example, if USD are cast to CNY, the result is a CNY value with a value that is 8 times that
of the original. If the variable is cast to a data type in a different class, the value is first cast to a
number and then from a number to the desired data type. Since the conversion factor to and
from a number is 1 to 1, this directly converts a numerical value of any type to the same value of
another type.

SIMPLEX: Final Report

12

Currencies
One of the unique aspects of SIMPLEX is the use of currencies as data types. The following

10 currencies are the standard currencies included with SIMPLEX. Later versions of SIMPLEX
will include additional currencies.

USD YEN EUR CAD GBP
AUD CHF CNY MXN SOS

Currency values are constructed the same way as number constants (described in the
Lexical Conventions section). The user does not have to include the currency symbol (e.g. $, ¥, €,
£, etc.) since the compiler will take care of this.

Number

Numbers consist of signed 64-bit floating point numbers. The data type of a number
variable is number.

Dates

There are three Date data types: year, month and day. They can be initialized the same
way as a number and have built in casts defined: a year casts to 12 months and 365 days. A
month casts to 30 days.

Rate

A fairly unique feature to SIMPLEX is support for a ‘rate’ data type. For example, 5% is
typically entered into programming languages as 0.05. However, SIMPLEX allows the user to
simply enter the rate as 5% (The percent operator divides a number by 100, and the percentage
is still stored internally as 0.05). Rate values are constructed the same way as number constants
(described in the Lexical Conventions section). The Rate data type is identified by rate.

String

The string data type allows the programmer to store arbitrary sequences of characters in a
variable. String variables are initialized with string constants (described in the Lexical
Conventions section).

EXPRESSIONS
The following section discusses expressions used in SIMPLEX. Expression operators are

listed in order of highest to lowest level of precedence. Operators in the same section are
considered to have equal precedence and evaluate from left to right. Note that the operators
can not be applied to arbitrary data types: for example, it is not clear what the result of adding a
date and a currency should be. To resolve this problem, the language will have a compatibility
table that tells the compiler which operations are legal. Operations on data type combinations
not in the compatibility table are allowed but produce a warning. When this happens, the
values are both first converted to numbers, and the operation is performed.

Primary Expressions

A primary expression is the simplest form of an expression and is typically used to
represent a single value. Primary expressions include identifiers, constants and procedure calls.
Furthermore, parenthesized expressions are considered to be primary expressions. Primary
expressions are of highest precedence in SIMPLEX.

SIMPLEX: Final Report

13

Unary Expressions

The next level of operator precedence in SIMPLEX consists of unary expressions. Unary
expressions consist of one operator and an identifier. Operators include: !, ++, --, %,
unary +, unary -, and (type). These operators are described below.

!expression

The result of this unary expression is the logical negation of the expression. Thus, the
negation returns a one when the expression returns a zero and returns a zero when the
expression is non-zero.

expression++

The result of this unary expression is addition of 1 to the expression. This operator can only
be applied to number, currency, rate and date data types. This operator mimics the functionality
of the post-increment operator in C. A pre-increment operator is not available in SIMPLEX.

expression--

The result of this unary expression is subtraction of 1 to the expression. This operator can
only be applied to number, currency, rate and date data types. Again, a pre-increment version
of this operator is not defined.

expression%

Unlike most programming languages where the % symbol is used for the modulus
operation, SIMPLEX reserves the % symbol as denoting the division of the expression by 100.
This expedites the conversion of numerical percentages to decimal values, a very common
operation in financial applications.

+expression

The result of the unary + operator is the expression itself.

-expression

The result of the unary - operator is the negation of the expression.

(type)expression

The result of the cast operation is the conversion of the data type of the expression into the
data type specified in the parenthesis. Casting allows for conversions between data types of the
same class. For example, an expression of type month can be cast into a day since both month
and day are in the date data type class. When the programmer asks for an undefined cast
(casting a month into USD, for example) the value is simply cast into a number type, then to the
desired data type. The compiler may produce a warning if this occurs.

Multiplicative Operators

The three multiplicative operators, * for multiplication, / for division, and ^ for
exponentiation, can be used to perform multiplicative operations. They are grouped left to right
and can be applied to numbers, rates and currency data types.

SIMPLEX: Final Report

14

Additive Operators
The two additive operators, + for addition and – for subtraction, can be used to perform

additive operations. They are grouped left to right and can be applied to numbers, rates and
currency data types. The addition operator can also be used to concatenate strings.

Assignment Operators

The assignment operator, “=”, stores the value returned by the expression on its right side
into the identifier on its left side. It has the lowest precedence, and is associative from right to
left. This allows multiple assignments to be made on the same line, in the following manner:

identifier1 = identifier2 = identifier3 = expression;

In this statement, the low precedence and right to left associatively of the assignment
operator ensures that the entire expression is evaluated first. Next, the value of the expression
is assigned to identifier3, then identifier2, then identifier1.

Relational and Equality Expressions

The following table summarizes the 6 relational operators available.

Operator Description

> Greater Than

< Less Than

>= Greater Than or Equal To

<= Less Than or Equal To

== Equal To

!= Not Equal To

Relational and equality expressions are constructed as follows:

expression operator expression

Relational expressions return either zero or one, indicating whether the expression was false

or true, respectively.

Logical Expressions

There are two logical operators available in SIMPLEX. The logical AND operator, denoted
by && takes higher precedence than the logical inclusive OR operator, which is denoted by ||.
These operators are generally applied to relational and equality expressions, and other logical
expressions. The values are evaluated, and the logical expression returns true or false (1 or 0,
respectively). Logical expressions may be grouped with parenthesis like any other binary
operation. The exclusive OR operator is not defined. Logical expressions treat zero as false,
and non-zero values as true.

Operator Shorthand

All additive and multiplicative operators have a shorthand form that allows for easy
manipulation of the result variable in the expression. For example, to add 5 to the variable x,
one could write x = x+5. The shorthand notation allows the user to write x += 5 instead.
This shorthand works with +, -, *, /, and ^.

SIMPLEX: Final Report

15

OPERATOR PRECEDENCE
The following table shows the precedence of operators in SIMPLEX from highest to lowest:

Operators Associativity

(expression) Left to Right

!, ++, --, %, unary +, unary -, (type) Right to Left

^, *, / Left to Right

+, - Left to Right

<, <=, >=, >, ==, != Left to Right

&& Left to Right

|| Left to Right

=, +=, -=, *=, /= Right to Left

STATEMENTS
A statement is a line of code which is terminated by a semicolon and represents an

executable instruction to the compiler. There are several types of statements, including
assignment, jump, procedure call, and return statements. Compound statements—blocks of
multiple statements, are also possible.

Assignment Statements

The assignment statement is simply an assignment expression followed by a semicolon. For
an example, see the ‘Assignment Expression’ section above.

Jump Statements

The break statement is used to break the inner most loop during execution. The break
statement can be used in both while and for loops. The statement is invoked by simple
typing:

break;

The continue statement is used to exit out of the current iteration of a loop. The break

statement can be used in both while and for loops. The statement is invoked by simply typing

continue;

Subprocedure Call Statements

Subprocedures, both user-defined and built-in, can be called by typing the name of the
function, an open parenthesis, a list of parameters, and a close parenthesis.

Return Statements

The return statement is used to return a value to the caller of a subprocedure. The
statement takes the following form:

return (expression);

SIMPLEX: Final Report

16

The value of the expression is returned to the caller of the function. If the function has a
return type, then it must have at least one return statement in its top level code block.

Statement Blocks

Statement blocks are used when more than one statement or compound statement should be
considered a single statement overall. A left brace bracket is used to denote the beginning of a
block and a right brace bracket used to denote the end of a block.

 {
 statement1
 statement2
 .
 .
 .
 }

In the following compound statements, ‘statement’ can be either a single statement, or a
statement block.

Conditional Statements

Conditional statements are used to control the flow of a program. A simple conditional
statement takes the following form:

if (expression) statement

or

if (expression) statement1 else statement2

In the first form, if the expression returns a non-zero value, then the statement is executed.

The second form adds one more component to the conditional. Like before, if the expression
evaluates to a non-zero value, statement1 is executed; however, statement2 is executed
otherwise. Conditional statements can be nested, allowing for special syntax like ‘else if’.

Iterative Statements

Iterative statements are used for executing a certain statement or group of statements for
multiple iterations known as loops.

while loops are used to execute statements based on a condition. They take the following
form:

while (expression) statement

As long as the expression evaluates to non-zero value, the statement is repeated until the

condition returns a zero value. Infinite loops occur when the condition never evaluates to false.

for loops are used to execute based on number of iterations. For loops take the following
form:

for (expression1 ; expression2 ; expression3) statement

SIMPLEX: Final Report

17

The first expression, expression1 is used to initialize the loop. The second expression,
expression2 is used to specify a testing condition to exit the loop. The third expression,
expression3 is used to increment the variable initialized in expr1, which is performed after
every iteration of the for loop. All three expressions must be present.

PROCEDURES
Procedures take the following form in SIMPLEX:

type-specifier procedure-identifier (identifier-list)
{
 statement
}

The type-specifier is the data type that the procedure should return. The procedure-

identifier is an identifier that names the procedure. The identifier-list is an optional list of
arguments (separated by commas) that are passed by value.

PROGRAM STRUCTURE
SIMPLEX programs can be simply written in ASCII text files. The structure of a SIMPLEX

program is as follows: global variables should be declared at the beginning of the file. Followed
by the global variables should be procedures. Lastly, a procedure called main serves as the
starting point for program execution.

SIMPLEX: Final Report

18

PROJECT PLAN

PROCESS OVERVIEW
The initial planning of the project was fairly smooth. We all pitched to each other a potential

idea for a programming language and ultimately settled on one that we felt would be
interesting and fairly unique, as there are were no other financially-focused programming
languages popular on the market.

The specification, development and testing stages were much different. Very early on, we all
realized the strengths and weaknesses that made us unique and valuable to the team. Some of
us have worked on large software engineering projects in the past, some of us had strong Java
and programming skills and some of us were well organized and brought other intangibles.
Because of each person’s unique skill set, we quickly picked up our own ‘specialties’ and would
be known as that ‘go-to guy’ when it came to that aspect of the project.

Thus, during the specification, development and testing stages, one person would usually
dictate what he wanted, send the group an email detailing his idea and then if anyone had an
issue with that idea, a discussion would then form. Discussions usually took place during our
weekly meetings (typically Monday night) or right after class on Tuesdays and Thursdays
during lunch.

PROGRAMMING STYLE

ANTLR

Convention Description

Names in Lexer Names are to be entirely capitalized (e.g. ASTERISK, COLON)

Underscores in Lexer Names Names in Lexer that are conceptually more than one word will be joined by

underscores (e.g. L_PAREN, G_THAN)

Names in Parser of CamelCase Names are to be completely lower case unless name is conceptually more than

Format one word, where a capitalized letter is allowed (e.g. functionDef, argumentList)

Parser Rules Attempt to place each component of each rule on a separate line for readbility

JAVA

Convention Description

Commenting Use comments to separate sections of code, embed to do lists, explain code,

illustrate what does not work, show who worked on code

Left Braces '{' Occur on same line as if, while, for, etc. statements

Right Braces '}' Occur on own line

Operator / Operand Spacing Place spaces between operators and operands

Standardized Abbreviations If something is to be abbreviated, maintain the fact that it is abbreviated and use

the same abbreviation throughout (e.g. expr, argList)

Names in CamelCase Format Variable and method names should follow standard CamelCase Format

Multiple Lines In the case of a long expression, place on multiple lines to prevent need to

scroll right

Import Statements Place in first lines of source file

Write Methods as Appropriate Writing methods allows for the re-using of fuctions, allowing for less confusion

and less duplication of code

Method Headers Method Headers take form: <access> returnType methodName (argList)

Line Lengths Avoid line lengths greater than 90

SIMPLEX: Final Report

19

PROJECT TIMELINE

Date Task

9/7/2006 Form Group

9/11/2006 Form Idea for Language

9/26/2006 Whitepaper

10/7/2006 ANTLR Lexer Completion

10/19/2006 Language Reference Manual

10/20/2006 Begin Work on Tree Walker and IR Classes

10/24/2006 ANTLR Parser Completion

11/8/2006 Begin Regression Test Suite Evaluation

12/15/2006 Total Project Completion

12/18/2006 Final Presentation

12/19/2006 Final Report

ROLES AND RESPONSIBILITIES

Team Member Primary Responsibilities

Steven Chen Whitepaper, LRM, ANTLR Lexer and Parser, Final Report

Gilbert Hom Testing, Final Presentation

Kelvin Jiang Testing, Intermediate Representation Classes

Eric Zhang Tree Walker, Testing, Intermediate Representation Classes,

SOFTWARE DEVELOPMENT TOOLS

Eclipse (with ANTLR Plugin)

We chose to use the Eclipse IDE (http://www.eclipse.org/) because it is a free, easy to use
tool with an ANTLR plugin (http://antlreclipse.sourceforge.net/) available. Along with the
typical IDE features (e.g. syntax highlighting, automatic indenting, etc.), we were able to
manage the many Java classes that made up our project. The debugger in Eclipse also served as
an invaluable resource.

Subversion

Subversion is a version controlling system similar to CVS. Subclipse
(http://subclipse.tigris.org/) is an Eclipse plugin that integrates Subversion with the Eclipse
IDE. Subclipse allowed us to check out different files at the same time to ensure that everyone
could actively work on a separate part of the project without issue.

SIMPLEX: Final Report

20

PROJECT LOG

Week Phase Tasks In Progress

1 9/5 - 9/10 Group Formation Group Formed

2 9/11 - 9/17 Idea Formation Decide on a language and its specialty

3 9/18 - 9/24 Idea Formation Whitepaper Write-Up

4 9/25 - 10/1 Design Whitepaper Write-Up, Language Design

5 10/2 - 10/8 Design Language Reference Manual Write-Up; ANTLR Lexer

6 10/9 - 10/15 Design Language Reference Manual Write-Up; ANTLR Lexer/Parser

7 10/16 - 10/22 Design Language Reference Manual Completed; Parser/Tree Walker

8 10/23 - 10/29 Implementation Tree Walker/Java IR Classes

9 10/30 - 11/5 Implementation Java IR Classes

10 11/6 - 11/12 Implementation Java IR Classes (Elections Weekend)

11 11/13 - 11/19 Implementation Java IR Classes

12 11/20 - 11/26 Implementation Java IR Classes (Thanksgiving Weekend)

13 11/27 - 12/3 Implementation/Testing Java IR Refinements, Error Checking

14 12/4 - 12/10 Implementation/Testing Java IR Refinements, In-Depth Testing

15 12/11 - 12/19 Testing/Report Completion More Testing, Final Report Write-Up, Presentation Creation

Week

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group Formation

Idea Formation

Design

Implementation

Testing

Final Touches

SIMPLEX: Final Report

21

ARCHITECTURAL DESIGN

OVERVIEW
The SIMPLEX compiler has four major components—the Lexer, the Parser, the Tree Walker,

and the intermediate representation (IR) classes. Their interactions are shown in the diagram
below:

The Lexer is the first component to see the input file. Its role is to convert the string of
characters in the file into a series of tokens. It eliminates whitespace and comments, and sends
the resulting tokens to the parser.

The parser then reads in the series of tokens and generates an abstract syntax tree
representation of the file. In the tree, the unnecessary punctuation is removed and the
statements and expressions are connected in the proper order. It is in this step that syntax rules
like left associativity and operator precedence are handled. Once the expressions and
statements have been parsed into the AST, the ambiguity in certain language constructs is
resolved.

The next step is walking the tree, which is done by the SIMPLEX tree walker. The walker
takes an abstract syntax tree as input and constructs an intermediate representation with the IR
classes. It is in this stage that the semantics of the language constructs are resolved—variable
declarations nodes on the tree form ‘Decl’ objects in the IR, expressions become ‘Expr’ objects,
and so on. Semantic errors such as the comparison of incompatible types are handled at this
stage.

The intermediate representation classes can each generate their corresponding Java
constructs. When the entire program has been converted into the IR, the generate function is
called on the top level statement which subsequently calls each of the generate functions
recursively, and the entirety of the java code is output.

SIMPLEX LEXER

To a compiler, the initial input file is nothing more than a long string of characters without
any apparent syntax or semantic meaning. The Lexer is a simple regular expression matcher
that gives names to certain strings of characters in a file. The Lexer uses a system of rules and a
simple state machine system to define what character strings become which tokens. For
example,

SIMPLEX: Final Report

22

OPEQUALS: ("+=" | "-=" | "/=" | "*=" | "^=");

defines a rule that matches any of the string between double quotes, and names the token
‘OPEQUALS’ for use later on with the parser and tree walker.

The Lexer can also help the compiler eliminate input that will not be useful in later stages
such as whitespace. This is done with a rule that looks like:

WHITESPACE
 : (' ' | '\t' | '\f')+
 { $setType(Token.SKIP); }
 ;

The rule matches tabs, spaces, and form feed characters, and the code within the braces tells
the Lexer to omit those characters from the output token stream.

SIMPLEX PARSER

The Parser, like the Lexer, matches patterns in its input. However, unlike the Lexer, it does
not match string patterns. Rather, it matches patterns between tokens rather than characters,
and outputs an abstract syntax tree. Again, this matching is defined by a set of rules; however,
there are a few extra operators that help define the resulting AST:

functionBody: L_BRACE^ (statement)* R_BRACE! ;

The rule above, for example, matches blocks of code between braces. A block of code is
defined as zero or more statements between a left brace and a right brace. Statements are
matched by the statement subrule, and ‘zero or more’ is specified with the Kleene star operator
(*). The structure of the resulting AST tree is also specified within the rule: the carat operator
(^) defines the left brace token as the root of the functionBody subtree; the statements become
the root node’s children, and the exclamation point (!) tells the parser to match the right brace
but not include it in the AST.

SIMPLEX TREE WALKER

The tree walker is another pattern matcher, but matches subtrees in the AST rather than
tokens or characters. Because the tree walker creates Java IR objects to represent the nodes on
the AST, there is significantly more Java code embedded in the ANTLR rules. Again, the syntax
of the walker is different from that of the previous steps. An example rule is below:

decl returns [Decl d]
{ d = null; Type t; }
 : #(DECL t=type IDENTIFIER
 {
 if (stack.get(#IDENTIFIER.getText()) != null) {
 System.err.println("Variable already
 declared: " + #IDENTIFIER.getText());
 }
 stack.put(#IDENTIFIER.getText(), t);
 d = new Decl(t, #IDENTIFIER.getText());
 }
)
 ;

This rule, called ‘decl’, passes a Decl object to the rule that calls it. The code within the first

set of braces initializes the Decl object, d, to null, and creates a Type object, t, in the same scope.

SIMPLEX: Final Report

23

It then matches a tree with a DECL node as the root and a type node and an IDENTIFIER node
as children. Once it has matched these, it executes the Java code within the second set of braces.
This code first checks the global symbol table, ‘stack’ to see if the identifier is declared, and if
not, it puts the identifier on the stack and initializes the Decl object to return. If the variable is
already declared, it generates an error message.

The Decl and Type objects are just two of the intermediate representation classes that
eventually generate the translated code. The Decl object inherits from the more general Stmt
object, which, through the magic of polymorphism, will eventually represent the entire
program.

SIMPLEX INTERMEDIATE REPRESENTATION CLASSES
There is one Java IR class for every language construct in SIMPLEX. Almost all of the

classes inherit from the Node object, which contains a method to print error messages to the
console. The two subclasses, Expr and Stmt, represent expressions and statements respectively.
Expressions consist of the class of language constructs that return values—arithmetic
expressions, boolean expression, function calls, etc. Statements are assignments, conditionals,
loops, and the like. Each possible expression or statement is represented by its own IR class,
which inherits from their respective subclasses (Expr or Stmt). The entire class hierarchy is
shown below:

SIMPLEX: Final Report

24

There are several special classes in the hierarchy—Seq, Arglist, and ExprList. These do not
represent specific statements or expressions; rather, they represent groups of statements and
expressions. Seq, for example, contains two Stmt objects. Since Seq itself inherits from Stmt, it
can contain instances of itself. By including Seq objects in other Seq objects, large numbers of
statements can be grouped together in a tree structure. Each subclass also defines a ‘gen()’
method which overrides the superclass’s ‘gen()’, and generates the translated Java code for the
corresponding construct. By creating a single Seq object and adding other statements to it, the
gen() function can be called on each of the statements recursively when all the IR classes are
created, and the translated program will be output. For example, the following IR would
represent the SIMPLEX program below it:

SIMPLEX program:

void main() {
 USD x;
 x = x + 1;
 print(x);
}

The Func object’s gen() function will then call the gen() function of Seq, which then calls the

gen() function of its children, Decl and Seq. By recursively calling gen() in this way, the tree

SIMPLEX: Final Report

25

walker can return a single object whose base type is Stmt and generate the translated Java code
from that object.

SIMPLEX: Final Report

26

TEST PLAN

TEST METHODS
For testing, the team developed a testing framework consisting of two modules: the console

and the regression testing suite. The console is a Java based program that provides a command
line environment for compiling and running .spx files. The user can input “compile
<filename>” to translate a .spx file into a .java file and compile it into a .class file. Upon
successful completion, the user can then input “run <programname>” to execute a program.
The second module is the regression testing suite, which is a Java based program that
automates the compilation and execution of a batch of .spx files. These .spx files are located in
the <classpath>/tests directory. The regression test suite does this by first automatically
generate a list of .spx files in the /tests directory, then tries to compile and run each of the .spx
file. If the compilation is unsuccessful, then the test suite will flag that file with erroneous
syntax. If the compilation is successful, then the program will be executed and any output will
be printed to the console. The console and the regression test suite together form the testing
framework for Simplex.

THE CONSOLE
As mentioned above, the console provides a command line environment for Simplex

developers to compile and run a .spx program. It is Java based and its class and method
signatures are as follows:

public class Console {

 // prints the commands available in the console

 public static void printUsage(boolean err) {

 ...

 }

 // parses the .spx file name from the path provided by the user

 public static String getFilename(String path) {

 ...

 }

 // checks whether a file is a valid .spx file

public static boolean checkFilename(String path, boolean checkSpx) {

 ...

 }

 // executes a windows shell command

 public static Process cmdExec(String cmd) throws IOException,

 InterruptedException {

 ...

 }

 // runs a compiled .spx program

 public static void run(String file) throws IOException,

 InterruptedException {

 ...

 }

 // compiles a .spx file

SIMPLEX: Final Report

27

 public static void compile(String path) throws

FileNotFoundException, IOException, InterruptedException,

RecognitionException, TokenStreamException {

 ...

 }

 // main program

 public static void main(String[] args) {

...

 }

}

For the console’s full source code, please see Appendix I. Depending on the command

inputted by the user, the console compiles or runs a .spx program with exceptions handling. A
sample console usage would be:

> help
Commands:
compile <filename>
run <programname>
exit
<filename> must a string of alphabets followed by the extension .spx

> compile /tests/arith.spx
arith.spx successfully compiled.

> run arith
48.0

> exit

Therefore the console provides the user an environment to compile and execute .spx

programs.

REGRESSION TEST SUITE

The regression test suite builds on top of the console. It uses the static methods such as
cmdExec(), run(), and compile() to automatically compile and run the list of .spx files in the
/tests directory. To include a .spx in the regression test, simply include it in the /test directory.
The regression test suite has the following pseudo code:

public class TestSuite {

 public static void main(String[] args) {

Use cmdExec() to get a list of .spx files in the /test directory.

Save the files in a String array.

For each file in the String array:

 Compile(file)

 If(Compile is successful)

 Run(file)

Testing completed.

SIMPLEX: Final Report

28

 }

}

For its complete source code, please view Appendix II. The group developed simple test
cases first to test fundamental aspects of the language such as variable declaration, types, print
functionalities, arithmetics, function declarations and usage, logicals, branches, etc. The
following are some of the test cases we have developed:

print.spx:
void main() {
 print("Hello world");
}
Output: Hello world

declaration.spx:
void main() {
 number num;
 string str;
 USD u;
 print(num);
}
Output: 0.0

arithmetics.spx:
void main() {
 EUR a;
 day b;
 string x;
 USD y;
 number neg;
 neg++;
 // a = (b / a) * (365);
 y=1;
 a = a * (2 + 4 + a) / y;
 a = 2 * 4 + 8 * 5;
 print(a);
}
Output: 48.0

for.spx:
void main() {
 number i;
 number j;

 for (i = 1; i < 11; i = i + 1)
 j++;
 print(j);
}
Output: 10.0

if.spx:
void main() {
 YEN x;
 x = 0;
 if (x < 10)
 if (x > 11)
 print(x);
 else
 x = 3;
 else

SIMPLEX: Final Report

29

 x = 11;
}
Output: 0

while.spx:
void main() {
 number x;
 number y;
 while (x < 10) {
 x = x + 1;
 x = y + x;
 }
 print(x);
}
Output: 10

func.spx:
YEN test(rate testrate, USD x) {
 print("testing!");
 EUR y;
 testrate = 1;
 return 2;
}

void main() {
 CNY x;
 test(1,x);
 x = -x;
 return;
}
Output: testing!

greedy.spx:

void main ()

{

 number a;

 a = 4;

 if (a == 3) {

 if (a == 4) {

 print ("I got inside!");

 }

 }

 else {

 print ("I am in the else statement");

 }

}

Output: I am in the else statement

With the language’s fundamental elements properly tested, we developed more
sophisticated programs both to test several elements simultaneously as well as to demonstrate
the type of programs typically developed with Simplex.

SIMPLEX: Final Report

30

TEST APPLICATIONS
Our first test application is a typical financial application – the mortgage payment and

amortization schedule. This is the schedule of payments a homeowner would make on their
mortgage. In the test application, we allow the user to input the total mortgage amount, the
number of payments per year, the number of years and the interest rate. The program then
outputs a period by period payment schedule. The test application makes strong use of
mathematical functions, loops, our input and print functions, and rate data type. Below is the
code for this application:

// author: Steven Chen

void main() {

 USD totalMortgage;

 number numYears;

 number paymentsPerYear;

 rate interestRate;

 USD payment;

 print("Enter Total Mortgage amount: ");

 input(totalMortgage);

 print("Enter interest rate: ");

 input(interestRate);

 print("Enter Payments Per Year: ");

 input(paymentsPerYear);

 print("Enter Number of years: ");

 input(numYears);

 rate interestPerPeriod;

 interestPerPeriod = interestRate/paymentsPerYear;

 // Calculate Payment manually

 payment = totalMortgage * (interestPerPeriod);

 payment = payment * ((1+interestPerPeriod)^(numYears*paymentsPerYear));

 payment = payment / ((1+interestPerPeriod)^(numYears*paymentsPerYear)-1);

 // calculate and output amortization schedule

 number currentPeriod;

 currentPeriod = 0;

 USD beginningBalance;

 beginningBalance = totalMortgage;

 USD endingBalance;

 USD interestPayment;

 USD amort;

 print ("PERIOD\tBEGINNING BALANCE\tINTEREST PAYMENT\tAMORTIZATION\tENDING BALANCE");

 print ("------\t-----------------\t----------------\t------------\t--------------");

 while (currentPeriod < ((number)numYears*paymentsPerYear))

 {

 interestPayment = (beginningBalance * (interestPerPeriod));

 amort = (payment - interestPayment);

 endingBalance = (beginningBalance - amort);

 print (currentPeriod + "\t\t" + beginningBalance + "\t " + interestPayment + "\t" +

amort + "\t" + endingBalance);

 beginningBalance = endingBalance;

 currentPeriod++;

 }

}

SIMPLEX: Final Report

31

The second test application is one that involves heavy use of type (currency) casting in
addition to the print function. The test application assumes that a US-based landlord owns
buildings in several countries (Canada, Japan and somewhere in the E.U.). The landlord would
like to know his/her cash inflow from rents for the next 4 years in U.S. Dollars. The landlord
would also like to know the growth rate year of year of rents.

// author: Steven Chen

USD calculateYearlyRent(USD a, EUR b, CAD c, YEN d)

{

 USD yearly;

 yearly = ((USD)a + (USD)b + (USD)c + (USD)d);

 return yearly;

}

void main()

{

 USD rent_2007;

 USD rent_2008;

 USD rent_2009;

 USD rent_2010;

 rate growth_07_08;

 rate growth_08_09;

 rate growth_09_10;

 rent_2007 = calculateYearlyRent(1000000, 300000, 123222, 233332322);

 rent_2008 = calculateYearlyRent(1030000, 330000, 121990, 235665645);

 rent_2009 = calculateYearlyRent(1060900, 363000, 120770, 238022302);

 rent_2010 = calculateYearlyRent(1092727, 399300, 119562, 240402525);

 growth_07_08 = (rent_2008 - rent_2007)/rent_2007;

 growth_08_09 = (rent_2009 - rent_2008)/rent_2008;

 growth_09_10 = (rent_2010 - rent_2009)/rent_2009;

 print ("Total 2007 Rent: " + rent_2007);

 print ("Total 2008 Rent: " + rent_2008);

 print ("\t\tYear over Year growth: " + growth_07_08);

 print ("Total 2009 Rent: " + rent_2009);

 print ("\t\tYear over Year growth: " + growth_08_09);

 print ("Total 2010 Rent: " + rent_2010);

 print ("\t\tYear over Year growth: " + growth_09_10);

}

SIMPLEX: Final Report

32

LESSONS LEARNED

STEVEN CHEN
As an engineer, working on a large group project is nothing new to me. However, this

project was much different. There was no usual document with a step by step procedure. There
were no major restricting guidelines. There was certainly no hand-holding. The task at had was
to design our own language, implement it and put it under a rigorous testing procedure.

The beginning of the project proved to be a struggle for me. I spent a significant portion of
time trying to understand ANTLR and what was required to even begin programming. I spent
time looking at online tutorials, class handouts and asking my teammates and classmates for
help. An integral part to being successful is to try and absorb as much information earlier on so
that the latter parts of the projects will require less learning and more ‘doing.’

Another key to being successful is to recognize that everyone has a different way of doing
things and that everyone works on a different schedule and to take advantage of this fact. As a
group, we were not afraid to let a teammate ‘run’ with an idea and let him work ahead and
catch the team up later. If we had all waited until everyone was free, we may not have began
the project until late November/early December. Thus, at least some portion of the project was
being looked at or worked on constantly since mid September, albeit not with the every single
team member.

Lastly, as I fell into a leadership position towards the beginning of the project, I began
setting fairly aggressive deadlines for the group as a whole. While not every deadline was met,
setting an aggressive schedule constantly forced us to show a sense of urgency to prevent
falling too far behind. Milestones (e.g. finishing the Lexer or Tree Walker) were established in
order to focus the group and work towards a common goal under deadline pressure. This was
effective since unlike some groups in the past, we did not end up struggling for time towards
the end of this process.

GILBERT HOM
Creating a language like SIMPLEX initially looked like a daunting task. I didn’t have any

prior experience or idea on how to handle such a task but after working on it throughout the
semester, not only did it become very feasible, I’ve learned quite a bit about the programming
development phases.

Planning – Experimenting with many ideas for a new type of language, working out syntax
on paper helped a lot in the development phase. Fleshing out more than ~85% of our ideas onto
paper and into our Language Reference Manual was essential to the growth of our language.
Working out all the foundations and fundamental blocks first allowed for versatility and
growth. Advanced planning on our walker helped a lot while parsing and organizing the way
SIMPLEX handled equations. If it weren’t for organized planning this task would’ve been
impossible.

Organization – While planning is essential, organization was just as important. Having a
method of syncing everyone’s ideas and code was crucial in our development phase. Eclipse’s
SVN helped a great deal throughout this whole process. It prevented group members from
stepping on each other toes during implementation.

Testing – While implementing all aspects of a language, testing to make sure they are all
functioning properly isn’t the only thing that is needed to be tested. Testing for exceptions and

SIMPLEX: Final Report

33

testing thoroughly is just as important. Lack of testing will just bring up issues when users
attempt to utilize the language incorrectly.

KELVIN JIANG
The project was a very useful experience. I learned a lot about the fundamental building

blocks of developing a language, but more importantly, I learned a lot about software
engineering and software development cycles. Here are four major lessons I’ve gained from this
project, which also serve as advice for future projects:

- Plan a lot and plan early. A good project should consist of at least 50% planning effort
before implementation, especially for a highly complex undertaking such as this. Know
exactly what the goal is, how to get there, and the effort needed to make it successful.

- Keep it simple. This is especially true for writing a language. Don’t bloat the language
with libraries and functions; instead, write small features and building blocks that will
allow users to develop powerful apps on top.

- Have a good working platform. Before actually starting the project, make sure the
necessary tools such as CVS/SVN, Eclipse/ANTLR Studios, etc, are in place.

- Test thoroughly and incrementally. If you don’t test every single aspect of your
language, then your users sure will. However, writing a language is complex and it’s
highly unlikely for a group to cover all the bugs before release. Therefore, remember to
test the language incrementally and build complex tests on top of the simple ones.

ERIC ZHANG
This project has been a fantastic learning experience. Not only did we have the opportunity

to learn how a compiler a built from the ground up, we had the chance to build a working
compiler ourselves and experience firsthand how all of the different parts interact and the kinds
of problems compiler writers run into on a daily basis.

One of the major lessons I’ve learned during this project is the importance of teamwork. In
a software engineering endeavor of this size, cooperation, coordination, and collaboration are
essential to the project’s timely completion. Unlike an individual project where each person can
work at his or her own pace, the team project requires that each contributor sticks to the
deliverables schedule or the progress of the entire project will stall. Coordinating using a
versioning system like SVN helped immensely.

However, even the most seamless of teams cannot complete a project without a plan. This
project required that we each fully understand the entire compilation process before a single
line of code was even written. Writing code blindly without understanding the interactions
between parts is a recipe for disaster. We needed to first come up with a development plan and
a good idea of what the code would look like and how classes would interact before the coding
could begin.

Understanding the importance of planning has given me a new perspective on how a piece
of software should be written. Instead of diving directly into coding at the start, I have found
that thinking about the structure of the program and understanding how each requirement is
fulfilled saves an enormous amount of time later on, since the codebase will be much more
flexible and resilient to changes in the later phases of development.

SIMPLEX: Final Report

34

APPENDIX

grammar.g
author: Steven Chen, Eric Zhang

class SimplexLexer extends Lexer;

options

{

 charVocabulary = '\0'..'\377';

 testLiterals = false; // don't check every rule vs. keywords

 k = 2; // character lookahead to 2

 exportVocab = SIMPLEX; // export for tree walker

}

// Math Related

POINT: '.';

ASTERISK: '*';

SLASH: '/';

PLUS: '+';

MINUS: '-';

CARAT: '^';

PERCENT: '%';

DBL_OP: ("++" | "--");

EQUALS: '=';

OPEQUALS: ("+=" | "-=" | "/=" | "*=" | "^=");

// Logic Related

OR: "||";

AND: "&&";

NOT: "!";

// Relational / Equality

G_THAN: ">";

L_THAN: "<";

EQ_TO: "==";

NOT_EQ_TO: "!=";

GT_EQ_TO: ">=";

LT_EQ_TO: "<=";

// Brackets

L_PAREN: '(';

R_PAREN: ')';

L_BRACE: '{';

R_BRACE: '}';

L_S_BRACKET: '[';

R_S_BRACKET: ']';

// Others

COLON: ':';

SEMICOLON: ';';

COMMA: ',';

protected DIGIT: '0'..'9';

protected LETTER: ('A'..'Z' | 'a'..'z');

IDENTIFIER options {testLiterals = true;}

 : ('_' | LETTER) ('_' | LETTER | DIGIT)*

 ;

NUMBER

 : ('0'..'9')+ ('.' ('0'..'9')*)?

 ;

STRING

 : '"' (ESCAPECHAR|~'"')* '"'

 ;

SIMPLEX: Final Report

35

protected ESCAPECHAR

 : '\\' ('n' | 'r' | 't' | 'b' | 'f' | '"' | '\'' | '\\')

 ;

UNIX_NEWLINE

 : '\n'

 { $setType(Token.SKIP); }

 ;

MAC_NEWLINE

 : '\r'

 { $setType(Token.SKIP); }

 ;

WHITESPACE

 : (' ' | '\t' | '\f')+

 { $setType(Token.SKIP); }

 ;

COMMENT

 : (

 "/*"

 (// multi-line comments

 options {greedy=false;}

 : ('\n' | '\r')

 | ~('\n' | '\r')

)*

 "*/"

 |

 "//" // single line comments

 (~('\n' | '\r'))* ('\n' | '\r')

)

 { $setType(Token.SKIP); }

 ;

//

class SimplexParser extends Parser;

options { buildAST = true;

 k = 3;

 exportVocab = SIMPLEX;

 }

tokens { DECL; FUNC; NEG; CAST; }

type

 :

 "number" | "string" | "rate" | "day" | "month" | "year" |

 "USD" | "YEN" | "CNY" | "EUR" | "ILS" | "AUD" | "CAD" | "GBP" | "MXN" | "SOS"

 ;

start

 :

 (variableDeclaration SEMICOLON!)*

 (functionDef)*

 "void"! "main"^ L_PAREN! R_PAREN! functionBody

 ;

//////////////FUNCTION RELATED////////////////////////

functionDef

 :

 ("void" | type) IDENTIFIER argumentList functionBody

 { #functionDef = #([FUNC, "FUNC"], #functionDef); }

 ;

argumentList

 :

 L_PAREN! (variableDeclaration (COMMA! variableDeclaration)*)? R_PAREN!

 ;

SIMPLEX: Final Report

36

functionBody

 : // body is just a series of statements in braces

 L_BRACE^

 (statement)*

 R_BRACE!

 ;

printFunction

 :

 "print"^

 L_PAREN!

 expression

 R_PAREN!

 ;

inputFunction

 :

 "input"^

 L_PAREN!

 IDENTIFIER

 R_PAREN!

 ;

functionCall

 :

 IDENTIFIER L_PAREN! variableList R_PAREN!

 { #functionCall = #([FUNC, "FUNC"], #functionCall); }

 ;

variableList

 : expression (COMMA! expression)*

 | //nothing

 ;

///

variableDeclaration

 :

 type IDENTIFIER

 {#variableDeclaration = #([DECL, "DECL"], #variableDeclaration); }

 ;

statement

 : variableDeclaration SEMICOLON!

 | assignmentStatement SEMICOLON!

 | printFunction SEMICOLON!

 | inputFunction SEMICOLON!

 | functionCall SEMICOLON!

 | returnStatement SEMICOLON!

 | ifStatement

 | whileStatement

 | forStatement

 | jumpStatement

 | SEMICOLON!

 ;

assignmentStatement

 :

 IDENTIFIER EQUALS^ expression

 | IDENTIFIER DBL_OP^

 | IDENTIFIER OPEQUALS^ expression

 ;

expression

 :

 logical (OR^ logical)*

 ;

logical

 :

SIMPLEX: Final Report

37

 relation (AND^ relation)*

 ;

relation

 :

 addition

 (

 (G_THAN^ | L_THAN^ | EQ_TO^ | NOT_EQ_TO^ | GT_EQ_TO^ | LT_EQ_TO^)

 addition

)?

 ;

addition

 :

 multiply

 (

 (PLUS^ | MINUS^)

 multiply

)*

 ;

multiply

 :

 unary

 ((

 (ASTERISK^ | SLASH^ | CARAT^)

 unary

)*

 | PERCENT^

)

 ;

unary

 :

 rValue

 | MINUS! unary { #unary = #([NEG, "NEG"], #unary); }

 | L_PAREN! type R_PAREN! unary { #unary = #([CAST, "CAST"], #unary); }

 | NOT^ unary

 ;

rValue

 :

 NUMBER

 | STRING

 | ("true" | "false")

 | IDENTIFIER

 | L_PAREN! expression R_PAREN! // expr in parens

 | functionCall

 ;

returnStatement

 : "return"^ (expression)?

 ;

ifStatement

 : "if"^ L_PAREN! expression R_PAREN! (statement | functionBody)

 (

 options {greedy = true;}:

 "else"! (statement | functionBody)

)?

 ;

whileStatement

 : "while"^ L_PAREN! expression R_PAREN! (statement | functionBody)

 ;

forStatement

 : "for"^ L_PAREN! assignmentStatement SEMICOLON! expression SEMICOLON! assignmentStatement

R_PAREN! (statement | functionBody)

 ;

SIMPLEX: Final Report

38

jumpStatement

 : "break" | "continue"

 ;

class simplexWalker extends TreeParser;

{

 SymbolTable stack = null; int LoopLevel = 0;

}

main returns [Stmt s]

{ s = null; Stmt s1 = null; Type t; stack = new SymbolTable(stack, Type.Void); }

 : #("main"

 (s1=globals)?

 s=functionbody

 {

 Arglist args = new Arglist();

 args.add(new Decl(Type.String, "args[]"));

 s = new Func(new Type("public static void", -1, 1, ""), "main", args, s);

 if (s1 != null) s = new Seq(s1, s);

 }

)

 ;

globals returns [Stmt s]

{ s = null; Stmt s1; }

 : s=globaldecl (s1=globals { s = new Seq(s, s1); })?

 ;

globaldecl returns [Stmt s]

{ s = null; Type t; }

 : s=decl

 | s=function

 ;

function returns [Stmt s]

{ s = null; Type t; Stmt s1; Arglist a = new Arglist(); }

 : #(FUNC (t=type | "void" {t=Type.Void;}) IDENTIFIER

 {

 //Create a new stack for the function

 SymbolTable oldstack = stack; stack = new SymbolTable(stack, t);

 }

 //Get the arguments (args puts arg variables onto new stack)

 (a=args)?

 {

 //Put this function name onto the outer stack so other functions can access it

 oldstack.put(#IDENTIFIER.getText(), t, a);

 }

 //Get the rest of the function body

 s1=functionbody

 {

 if (t != Type.Void) {

 if (!s1.hasReturn) {

 System.err.println("Error: Function " + #IDENTIFIER.getText() + " may not

return a value");

 System.exit(0);

 }

 }

 s = new Func(t, #IDENTIFIER.getText(), a, s1);

 stack = oldstack;

 }

)

 ;

args returns [Arglist a]

{ a = new Arglist(); Decl a1; Arglist a2; }

 : a1=decl

 {

 a.add(a1);

 }

 (a2=args { a.copy(a2); })?

SIMPLEX: Final Report

39

 ;

functionbody returns [Stmt s]

{ s = null; }

 : #(L_BRACE

 (s=stmts)?

)

 ;

stmts returns [Stmt s]

{ s = null; Stmt s1; }

 : s=stmt (s1=stmts { s = new Seq(s, s1); })?

 ;

assign returns [Set s]

{ s = null; Expr e; }

 : #(EQUALS IDENTIFIER e=expr

 {

 Id var = stack.get(#IDENTIFIER.getText());

 if (var == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 else s = new Set(#EQUALS.getText(), var, e);

 }

)

 | #(OPEQUALS IDENTIFIER e=expr

 {

 Id var = stack.get(#IDENTIFIER.getText());

 if (var == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 else s = new Set(#OPEQUALS.getText(), var, e);

 }

)

 | #(DBL_OP IDENTIFIER

 {

 Id var = stack.get(#IDENTIFIER.getText());

 if (var == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 else s = new Set(#DBL_OP.getText(), var, null);

 }

)

 ;

stmt returns [Stmt s]

{ s = null; Stmt s1 = null; Set f1, f2; Type t; Expr e = null; ExprList args = new ExprList();}

 : s=decl

 | #("print" e=expr

 {

 s = new printFunction(e);

 }

)

 | #("input" IDENTIFIER

 {

 Id var = stack.get(#IDENTIFIER.getText());

 if (var == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 else s = new Input(var);

 }

)

 | s=assign

 | #("if" e=expr (s=stmt | s=functionbody) (s1=stmt | s1=functionbody)?

 {

 s = new Cond(e, s, s1);

 }

SIMPLEX: Final Report

40

)

 | #("while" e=expr

 {

 LoopLevel++;

 }

 (s=stmt | s=functionbody)

 {

 s = new While(e, s);

 LoopLevel--;

 }

)

 | #("for" f1=assign e=expr f2=assign

 {

 LoopLevel++;

 }

 (s=stmt | s=functionbody)

 {

 s = new For(f1, e, f2, s);

 LoopLevel--;

 }

)

 | e=funccall

 {

 s = new FuncCallStmt((FuncCall)e);

 }

 | #("return" (e=expr)?

 {

 s = new Return(stack.getReturnType(), e);

 }

)

 | #("break"

 {

 if (LoopLevel > 0) {

 s = new Stmt("break");

 }

 else {

 System.err.println("Error: Cannot use BREAK statement outside a For or a While

loop.");

 }

 }

)

 | #("continue"

 {

 if (LoopLevel > 0) {

 s = new Stmt("continue");

 }

 else {

 System.err.println("Error: Cannot use CONTINUE statement outside a For or a While

loop.");

 }

 }

)

 ;

funccall returns [Expr e]

{ e = null; ExprList args = new ExprList(); }

 : #(FUNC IDENTIFIER (args=exprs)?

 {

 Id func = stack.get(#IDENTIFIER.getText());

 if (func == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 else {

 e = new FuncCall(func, args);

 }

 }

)

 ;

decl returns [Decl d]

SIMPLEX: Final Report

41

{ d = null; Type t; }

 : #(DECL t=type IDENTIFIER

 {

 if (stack.get(#IDENTIFIER.getText()) != null) {

 System.err.println("Variable already declared: " + #IDENTIFIER.getText());

 System.exit(0);

 }

 stack.put(#IDENTIFIER.getText(), t);

 d = new Decl(t, #IDENTIFIER.getText());

 }

)

 ;

//TODO: add boolean

type returns [Type t]

{ t = null; }

 : ("number" { t = Type.Number; }

 |"rate" { t = Type.Rate; }

 |"day" { t = Type.Day; }

 |"month" { t = Type.Month; }

 |"year" { t = Type.Year; }

 |"string" { t = Type.String; }

 |"USD" { t = Type.USD; }

 |"EUR" { t = Type.EUR; }

 |"CAD" { t = Type.CAD; }

 |"GBP" { t = Type.GBP; }

 |"AUD" { t = Type.AUD; }

 |"ILS" { t = Type.ILS; }

 |"CNY" { t = Type.CNY; }

 |"MXN" { t = Type.MXN; }

 |"SOS" { t = Type.SOS; }

 |"YEN" { t = Type.YEN; }

)

 ;

exprs returns [ExprList e]

{ e = new ExprList(); Expr e1; ExprList e2; }

 : e1=expr

 {

 e.add(e1);

 }

 (e2=exprs { e.copy(e2); })?

 ;

expr returns [Expr e]

{ Expr a, b; e = null; Type t;}

 :

 #(OR a=expr b=expr { e = new Rel("||", a, b); })

 | #(AND a=expr b=expr { e = new Rel("&&", a, b); })

 | #(EQ_TO a=expr b=expr { e = new Rel("==", a, b); })

 | #(NOT_EQ_TO a=expr b=expr { e = new Rel("!=", a, b); })

 | #(L_THAN a=expr b=expr { e = new Rel("<", a, b); })

 | #(LT_EQ_TO a=expr b=expr { e = new Rel("<=", a, b); })

 | #(G_THAN a=expr b=expr { e = new Rel(">", a, b); })

 | #(GT_EQ_TO a=expr b=expr { e = new Rel(">=", a, b); })

 | e=funccall

 | #(PLUS a=expr b=expr { e = new Arith("+", a, b); })

 | #(MINUS a=expr b=expr { e = new Arith("-", a, b); })

 | #(ASTERISK a=expr b=expr { e = new Arith("*", a, b); })

 | #(SLASH a=expr b=expr { e = new Arith("/", a, b); })

 | #(CARAT a=expr b=expr { e = new Arith(",", a, b); })

 | #(PERCENT a=expr { e = new Arith("/", a, new Constant(100)); })

 | #(NOT a=expr { e = new Not(a); })

 | #(NEG a=expr { e = new Unary("-", a); })

 | #(CAST t=type a=expr { e = new Cast(t, a); })

 | #(IDENTIFIER

 {

 e = stack.get(#IDENTIFIER.getText());

 if (e == null) {

 System.err.println("Error: Undeclared Identifier: " + #IDENTIFIER.getText());

 System.exit(0);

SIMPLEX: Final Report

42

 }

 }

)

 | NUMBER { e = new Constant(#NUMBER.getText(), Type.Number); }

 | "true" { e = Constant.True; }

 | "false" { e = Constant.False; }

 | STRING { e = new Constant(#STRING.getText()); }

 ;

SIMPLEX: Final Report

43

Main.java
author: Eric Zhang, Kelvin Jiang

import java.io.*;

import antlr.CommonAST;

//import antlr.collections.AST;

import antlr.debug.misc.ASTFrame;

class Main {

 public static void main(String[] args) {

 try {

 File f;

 String filename = " ";

 while (true) {

 do {

 System.out.print("File Name: ");

 BufferedReader in = new BufferedReader(

 new InputStreamReader(System.in));

 filename = in.readLine();

 f = new File(filename);

 if (filename.equals("q")) {

 System.out.println("Quit.");

 return;

 }

 } while (!f.exists());

 SimplexLexer lexer = new SimplexLexer(new DataInputStream(

 new FileInputStream(filename)));

 SimplexParser parser = new SimplexParser(lexer);

 parser.start();

 // Get the AST from the parser

 CommonAST parseTree = (CommonAST) parser.getAST();

 // Print the AST in a human-readable format

 System.out.println(parseTree.toStringList());

 // Open a window in which the AST is displayed graphically

 ASTFrame frame = new ASTFrame("AST from the Simp parser",

 parseTree);

 frame.setVisible(true);

 simplexWalker walker = new simplexWalker();

 Stmt s = walker.main(parseTree);

 //TODO: add these to the console class, etc.

 System.out.println("import java.util.*;");

 System.out.println("import java.io.*;");

 System.out.println("public class Main {");

 System.out.println("public static BufferedReader stdin = new

BufferedReader(new InputStreamReader(System.in));");

 System.out.println("public static double readDouble() {");

 System.out.println("while (true) {");

 System.out.println("try { return

Double.parseDouble(stdin.readLine()); }");

 System.out.println("catch (NumberFormatException e) {

System.out.println(\"That is not a valid number, please reenter.\"); }");

 System.out.println("catch (IOException e) {

System.out.println(\"I/O Error, terminating program.\"); System.exit(0); }");

 System.out.println("}}");

 s.gen();

 System.out.println("}");

 }

 } catch (Exception e) {

 System.err.println("exception: " + e);

 }

 }

}

SIMPLEX: Final Report

44

Arglist.java
author: Eric Zhang

import java.util.*;

public class Arglist extends Decl {

 public Vector decls;

 public Arglist() {

 decls = new Vector();

 }

 public void add(Decl d) {

 decls.add(d);

 }

 public void copy(Arglist a1) {

 for (int i = 0; i < a1.decls.size(); i++) {

 decls.add(a1.decls.get(i));

 }

 }

 public int size() {

 return decls.size();

 }

 public Type getType(int i) {

 return ((Decl)(decls.get(i))).type;

 }

 public void gen() {

 if (decls.size() > 0) {

 ((Decl)(decls.get(0))).gen2();

 for (int i = 1; i < decls.size(); i++) {

 System.out.print(", ");

 ((Decl)(decls.get(i))).gen2();

 }

 }

 }

}

SIMPLEX: Final Report

45

Arith.java
author: Kelvin Jiang

public class Arith extends Expr {

 public Expr expr1, expr2;

 public Arith(String op, Expr x1, Expr x2) {

 super(op, null);

 expr1 = x1;

 expr2 = x2;

 //Set the type of this expression

 // If the expressions are of different types

 if (expr1.type.classId != expr2.type.classId) {

 //First check for string concatenation

 if (expr1.type == Type.String) {

 if (op != "+") error("Error: Cannot use string expression in

arithmetic operation.");

 else if (expr2.type.isNumeric()){

 type = Type.String;

 expr2 = new Cast(Type.String, expr2);

 }

 }

 else if (expr2.type == Type.String) {

 if (op != "+") error("Error: Cannot use string expression in

arithmetic operation.");

 else if (expr1.type.isNumeric()){

 type = Type.String;

 expr1 = new Cast(Type.String, expr1);

 }

 }

 //If no concatentation, then you can't do arithmetic ops on booleans

 else if (expr1.type == Type.Boolean || expr2.type == Type.Boolean) {

 error("Error: Cannot use boolean expression in arithmetic

operation.");

 }

 //Check for number or rates

 // Always convert currencies and dates to USD and Days to maintain

consistency

 else if (expr1.type.classId == Type.NUMBER || expr1.type.classId ==

Type.RATE) {

 if (expr2.type.classId == Type.CURRENCY) type = Type.USD;

 else if (expr2.type.classId == Type.DATE) type = Type.Day;

 else if (expr1.type == Type.Number) type = expr2.type;

 else type = expr1.type;

 }

 else if (expr2.type.classId == Type.NUMBER || expr2.type.classId ==

Type.RATE) {

 if (expr1.type.classId == Type.CURRENCY) type = Type.USD;

 else if (expr1.type.classId == Type.DATE) type = Type.Day;

 else if (expr2.type == Type.Number) type = expr1.type;

 else type = expr2.type;

 }

 // If here, then either:

 // expr1 = currency && expr2 = date

 // or

 // expr1 = date && expr2 = currency

 else if (expr1.type.classId == Type.CURRENCY) {

 if (op == "*" || op == "/") type = Type.USD;

 else type = Type.Number;

 }

 else if (expr1.type.classId == Type.DATE) {

 if (op == "*") type = Type.USD;

 else if (op == "/") type = Type.Day;

 else type = Type.Number;

 }

 else {

 type = Type.Number;

 }

 }

 // If both expressions are of the same type

SIMPLEX: Final Report

46

 else {

 if (expr1.type.classId == Type.CURRENCY) {

 if (op == "+" || op == "-") type = Type.USD;

 else if (op == "/") type = Type.Rate;

 else type = Type.Number;

 }

 else if (expr1.type.classId == Type.DATE) {

 if (op == "+" || op == "-") type = Type.Day;

 else if (op == "/") type = Type.Rate;

 else type = Type.Number;

 }

 else if (expr1.type.classId == Type.BOOLEAN) {

 error("Error: Cannot use boolean expression in arithmetic

operation.");

 }

 else if (expr1.type.classId == Type.STRING) {

 if (op != "+") error("Error: Cannot use string expression in

arithmetic operation.");

 else type = Type.String;

 }

 else {

 type = expr1.type;

 }

 }

 }

 public Expr calculate() {

 if (expr1 instanceof Constant && expr2 instanceof Constant) {

 Constant c = new Constant(0);

 //Do type checks!

 switch(s.charAt(0)) {

 case '+':

 c = new Constant(Double.parseDouble(expr1.s) +

Double.parseDouble(expr2.s));

 break;

 case '-':

 c = new Constant(Double.parseDouble(expr1.s) -

Double.parseDouble(expr2.s));

 break;

 case '*':

 c = new Constant(Double.parseDouble(expr1.s) *

Double.parseDouble(expr2.s));

 break;

 case '/':

 c = new Constant(Double.parseDouble(expr1.s) /

Double.parseDouble(expr2.s));

 break;

 case ',':

 c = new Constant(Math.pow(Double.parseDouble(expr1.s),

Double.parseDouble(expr2.s)));

 break;

 }

 return c;

 }

 return this;

 }

 public Expr reduce() {

 return (new Arith(s, expr1.reduce(), expr2.reduce())).calculate();

 }

 public String toString() {

 String result = "(";

 if (s == ",") {

 result = "Math.pow(";

 }

 if (expr1.round) {

 result += "(Math.round(" + expr1.toString() + "*100)/100.0)";

 }

 else {

SIMPLEX: Final Report

47

 result += expr1.toString();

 }

 result += " " + s + " ";

 if (expr2.round) {

 result += "(Math.round(" + expr2.toString() + "*100)/100.0)";

 }

 else {

 result += expr2.toString();

 }

 result += ")";

 return result;

// return "(" + expr1.toString() + " " + s + " " + expr2.toString() + ")";

 }

 public void gen() {

// System.out.print(type.toString());

 System.out.print(reduce().toString());

 }

}

SIMPLEX: Final Report

48

Cast.java
author: Eric Zhang

public class Cast extends Expr {

 //Because Java is pass by reference, there is only

 // one copy of the underlying expressions (identifiers, for example)

 Expr expr;

// Expr outerexpr;

 public Cast(Type t, Expr e) {

 super("CAST", t);

 if (t == Type.String) {

 if (!e.type.isNumeric()) {

 expr = e;

 }

 else {

 Type temp = e.type;

 if (temp.classId == Type.CURRENCY) {

 e.type = Type.String;

 e.round = true;

 expr = new Arith("+", new Constant("\"" + temp.symbol +

"\""), e);

 }

 else if (temp.classId == Type.DATE) {

 e.type = Type.String;

 e.round = true;

 expr = new Arith("+", e, new Constant("\"" + temp.symbol +

"\""));

 }

 else if (temp.classId == Type.RATE) {

 e.type = Type.Number;

 Arith convert = new Arith("*", e, new Constant(100));

 convert.type = Type.String;

 expr = new Arith("+", convert, new Constant("\"%\""));

 }

 else {

 expr = e;

 }

 }

 }

 else if (!(t.isNumeric() && e.type.isNumeric())) {

 error("Error: No valid cast defined between " + t + " and " + e.type);

 }

 else if (t.classId == e.type.classId) {

 if (!(t == Type.USD || t == Type.Day)) {

 expr = new Arith("*", new Constant(1/t.conversion), e);

 expr.type = t;

 }

 else {

 expr = e;

// expr.type = t;

 }

 }

 else {

 e.type = Type.Number;

 expr = e;

 expr.type = t;

 }

 }

 public Expr reduce() {

 return expr.reduce();

 }

 public String toString() {

 return expr.toString();

 }

 public void gen() {

 expr.gen();

 }

SIMPLEX: Final Report

49

}

SIMPLEX: Final Report

50

Cond.java
author: Eric Zhang

public class Cond extends Stmt {

 Expr expr;

 Stmt ifstmt, elsestmt;

 public Cond(Expr e, Stmt s1, Stmt s2) {

 if (e.type != Type.Boolean) {

 error("Error: Argument to if statment must be a boolean expression");

 }

 expr = e;

 ifstmt = s1;

 elsestmt = s2;

 }

 public void gen() {

 System.out.print("if (");

 expr.gen();

 System.out.println(") {");

 if (ifstmt != null) ifstmt.gen();

 System.out.println("}");

 if (elsestmt != null) {

 System.out.println("else {");

 if (elsestmt != null) elsestmt.gen();

 System.out.println("}");

 }

 }

}

SIMPLEX: Final Report

51

Console.java
author: Kelvin Jiang

import java.io.*;

import java.util.*;

import java.text.*;

import antlr.CommonAST;

import antlr.collections.AST;

import antlr.debug.misc.ASTFrame;

import antlr.*;

public class Console {

 public static void printUsage(boolean err) {

 if (err) {

 System.out.println("You did not enter a valid command.");

 System.out.println("Type help to list all available commands.");

 } else {

 System.out.println("Commands:");

 System.out.println("compile <filename>");

 System.out.println("run <filename>");

 System.out.println("exit");

 System.out

 .println("<filename> must a string of alphabets followed by

the extension .spx");

 }

 }

 public static String getFilename(String path) {

 String[] s = path.split("/");

 return s[s.length - 1];

 }

 public static boolean checkFilename(String path, boolean checkSpx) {

 if (checkSpx) {

 String file = getFilename(path);

 StringTokenizer st = new StringTokenizer(file, ".");

 if (st.countTokens() != 2)

 return false;

 char c[] = st.nextToken().toLowerCase().toCharArray();

 for (int i = 0; i < c.length; i++)

 if (c[i] < 'a' || c[i] > 'z')

 return false;

 return true;

 } else {

 char c[] = path.toLowerCase().toCharArray();

 for (int i = 0; i < c.length; i++)

 if (c[i] < 'a' || c[i] > 'z')

 return false;

 return true;

 }

 }

 public static Process cmdExec(String cmd) throws IOException,

 InterruptedException {

 Process p = null;

 p = Runtime.getRuntime().exec(cmd);

 p.waitFor();

 return p;

 }

 public static void run(String file) throws IOException,

 InterruptedException {

 File f = new File(file + ".class");

 if (!f.exists()) {

 System.out.println(file

 + ".spx has not been compiled. Please compile it first.");

 return;

 }

SIMPLEX: Final Report

52

 String str;

 BufferedReader br = new BufferedReader(new InputStreamReader(cmdExec(

 "cmd /c start cmd /k\"java -classpath . " +

file+"\"").getInputStream()));

 while ((str = br.readLine()) != null)

 System.out.println(str);

 }

 public static void compile(String path) throws FileNotFoundException,

 IOException, InterruptedException, RecognitionException,

 TokenStreamException {

 String file = getFilename(path);

 StringTokenizer st = new StringTokenizer(file, ".");

 String t = st.nextToken();

 // redirect stdout to file

 File f = new File(t + ".java");

 PrintStream printStream = new PrintStream(new BufferedOutputStream(

 new FileOutputStream(f)), true);

 // System.setErr(printStream);

 System.setOut(printStream);

 // translate .spx to .java

 // filename = args[0];

 SimplexLexer lexer = new SimplexLexer(new DataInputStream(

 new FileInputStream(path)));

 SimplexParser parser = new SimplexParser(lexer);

 parser.start();

 CommonAST parseTree = (CommonAST) parser.getAST();

 simplexWalker walker = new simplexWalker();

 Stmt s = walker.main(parseTree);

 System.out.println("import java.util.*;");

 System.out.println("import java.io.*;");

 System.out.println("public class " + t + " {");

 System.out

 .println("public static BufferedReader stdin = new

BufferedReader(new InputStreamReader(System.in));");

 System.out.println("public static double readDouble() {");

 System.out.println("while (true) {");

 System.out

 .println("try { return Double.parseDouble(stdin.readLine()); }");

 System.out

 .println("catch (NumberFormatException e) {

System.out.println(\"That is not a valid number, please reenter.\"); }");

 System.out

 .println("catch (IOException e) {

System.out.println(\"IOException\"); }");

 System.out.println("}}");

 s.gen();

 System.out.println("}");

 // redirect stdout to console

 System.setOut(new PrintStream(new BufferedOutputStream(

 new FileOutputStream(java.io.FileDescriptor.out), 128), true));

 cmdExec("cmd /c javac " + t + ".java");

 File classCheck = new File(t + ".class");

 if (classCheck.exists())

 System.out.println(file + " successfully compiled.");

 else

 System.out

 .println(file

 + " did not compile successfully. Please

check your syntax.");

 }

 public static void main(String[] args) {

 String cmd;

SIMPLEX: Final Report

53

 try {

 System.out.print("> ");

 BufferedReader in = new BufferedReader(new InputStreamReader(

 System.in));

 cmd = in.readLine();

 StringTokenizer st = new StringTokenizer(cmd);

 if (st.countTokens() == 2) {

 String t = st.nextToken();

 if (t.equals("compile")) {

 String t2 = st.nextToken();

 if (checkFilename(t2, true)) {

 compile(t2);

 } else {

 printUsage(true);

 }

 } else if (t.equals("run")) {

 String t2 = st.nextToken();

 if (checkFilename(t2, false)) {

 run(t2);

 } else {

 printUsage(true);

 }

 }

 } else if (st.countTokens() == 1) {

 String t = st.nextToken();

 if (t.equals("exit")) {

 System.out.println("Goodbye!");

 return;

 } else if (t.equals("help")) {

 printUsage(false);

 } else {

 printUsage(true);

 }

 } else {

 printUsage(true);

 }

 } catch (FileNotFoundException e) {

 System.setOut(new PrintStream(new BufferedOutputStream(

 new FileOutputStream(java.io.FileDescriptor.out), 128),

 true));

 System.err.println("This file does not exist.");

 }

 catch (Exception e) {

 System.out.println("hi");

 System.err.println("exception: " + e);

 }

 }

}

SIMPLEX: Final Report

54

Constant.java
author: Eric Zhang

public class Constant extends Expr {

 public Constant(String tok, Type p) {

 super(tok, p);

 }

 public Constant(double i) {

 super(String.valueOf(i), Type.Number);

 }

 public Constant(String s) {

 super(s, Type.String);

 }

 public static final Constant True = new Constant("true", Type.Boolean),

 False = new Constant("false", Type.Boolean);

 public void jumping(int t, int f) {

 if (this == True && t != 0)

 emit("goto L" + t);

 else if (this == False && f != 0)

 emit("goto L" + f);

 }

}

SIMPLEX: Final Report

55

Decl.java
author: Eric Zhang

public class Decl extends Stmt {

 public String ident;

 public Type type;

 String javatype;

 //Need to define an empty constructor since Arglist extends this

 public Decl() {}

 public Decl(Type t, String id) {

 ident = id;

 type = t;

 if (t.classId == Type.BOOLEAN) {

 javatype = "boolean";

 } else if (t.classId == Type.CURRENCY || t.classId == Type.DATE

 || t.classId == Type.CURRENCY || t.classId == Type.RATE

 || t.classId == Type.NUMBER) {

 javatype = "double";

 } else if (t.classId == Type.STRING) {

 javatype = "String";

 }

 }

 public void gen() {

 System.out.print(javatype + " " + ident);

 if (type.isNumeric()) {

 System.out.println(" = 0;");

 }

 else if (type == Type.String) {

 System.out.println(" = \"\";");

 }

 else if (type == Type.Boolean) {

 System.out.println(" = false;");

 }

 else {

 System.out.println(";");

 }

 }

 //This is used only in 'Arglist' to not add the semicolon

 public void gen2() {

 System.out.print(javatype + " " + ident);

 }

}

SIMPLEX: Final Report

56

Expr.java
author: Eric Zhang

public class Expr extends Node {

 public String s;

 public Type type;

 public boolean round = false;

 //Empty constructor to allow ExprList to extend

 Expr() {}

 Expr(String token, Type p) {

 s = token;

 type = p;

 }

 public void gen() {

 System.out.print(reduce().toString());

 }

 public Expr reduce() {

 return this;

 }

 public void jumping(int t, int f) {

 emitjumps(toString(), t, f);

 }

 public void emitjumps(String test, int t, int f) {

 if (t != 0 && f != 0) {

 emit("if " + test + " goto L" + t);

 emit("goto L" + f);

 } else if (t != 0)

 emit("if " + test + " goto L" + t);

 else if (f != 0)

 emit("iffalse " + test + " goto L" + f);

 }

 public String toString() {

 if ((type.classId == Type.CURRENCY || type.classId == Type.DATE) && !(type ==

Type.USD || type == Type.Day)) {

 return "(" + type.conversion + "*" + s + ")";

 }

 else {

 return s;

 }

 }

}

SIMPLEX: Final Report

57

ExprList.java
author: Eric Zhang

import java.util.*;

public class ExprList extends Expr {

 public Vector exprs;

 public Vector args;

 public ExprList() {

 exprs = new Vector();

 }

 public void add(Expr e) {

 exprs.add(e);

 }

 public void copy(ExprList e) {

 for (int i = 0; i < e.exprs.size(); i++) {

 exprs.add(e.exprs.get(i));

 }

 }

 public int size() {

 return exprs.size();

 }

 public Type getType(int i) {

 return ((Expr)(exprs.get(i))).type;

 }

 public void genExpr(int i) {

 Expr temp = (Expr)(exprs.get(i));

 Decl dest = (Decl)(args.get(i));

 if (temp.type.classId == dest.type.classId && temp.type != dest.type

 && (dest.type != Type.USD && dest.type != Type.Day)) {

 System.out.print(1/(dest.type.conversion) + "*");

 }

 ((Expr)(exprs.get(i))).gen();

 }

 public void gen() {

 if (exprs.size() > 0) {

 genExpr(0);

 for (int i = 1; i < exprs.size(); i++) {

 System.out.print(", ");

 genExpr(i);

 }

 }

 }

}

SIMPLEX: Final Report

58

For.java
author: Eric Zhang

public class For extends Stmt {

 Set init, incr;

 Expr expr;

 Stmt body;

 public For(Set s1, Expr e, Set s2, Stmt b) {

 init = s1;

 incr = s2;

 if (e.type != Type.Boolean) {

 error("Error: Second argument of for loop must be a boolean expression");

 }

 expr = e;

 body = b;

 }

 public void gen() {

 System.out.print("for(");

 init.gen2();

 System.out.print("; ");

 expr.gen();

 System.out.print("; ");

 incr.gen2();

 System.out.println(") {");

 if (body != null) body.gen();

 System.out.println("}");

 }

}

SIMPLEX: Final Report

59

Func.java
author: Eric Zhang

public class Func extends Stmt {

 String ident;

 String type;

 Arglist args;

 Stmt body;

 int classId;

 public Func(Type t, String id, Arglist a, Stmt b) {

 ident = id;

 if (t.classId == Type.BOOLEAN) {

 type = "boolean";

 } else if (t.classId == Type.CURRENCY || t.classId == Type.DATE

 || t.classId == Type.CURRENCY || t.classId == Type.RATE

 || t.classId == Type.NUMBER) {

 type = "double";

 } else if (t.classId == Type.STRING) {

 type = "String";

 } else if (t.classId == Type.CUSTOM) {

 type = t.name;

 }

 classId = t.classId;

 args = a;

 body = b;

 }

 public void gen() {

 if (type.indexOf("static") < 0) {

 System.out.print("static ");

 }

 System.out.print(type + " " + ident + "(");

 if (args.size() != 0) args.gen();

 System.out.println(") {");

 if (body != null) body.gen();

 if (type == "double") System.out.println("return 0;");

 else if (type == "boolean") System.out.println("return true;");

 else if (type == "String") System.out.println("return \"\";");

 else System.out.println("return;");

 System.out.println("}");

 }

}

SIMPLEX: Final Report

60

FuncCall.java
author: Eric Zhang

public class FuncCall extends Expr {

 String ident;

 String javatype;

 ExprList args;

 public FuncCall(Id func, ExprList a) {

 ident = func.s;

 type = func.type;

 if (type.classId == Type.BOOLEAN) {

 javatype = "boolean";

 } else if (type.classId == Type.CURRENCY || type.classId == Type.DATE

 || type.classId == Type.CURRENCY || type.classId == Type.RATE

 || type.classId == Type.NUMBER) {

 javatype = "double";

 } else if (type.classId == Type.STRING) {

 javatype = "String";

 } else if (type.classId == Type.CUSTOM) {

 javatype = type.name;

 }

 args = a;

 if (args.size() != func.args.size()) {

 error("Error: Wrong number of arguments to function " + func);

 }

 for (int i = 0; i < args.size(); i++) {

 if (args.getType(i) == Type.Void) {

 error("Error: Passing void type as function argument");

 }

 if (args.getType(i).isNumeric() != func.args.getType(i).isNumeric() &&

func.args.getType(i) != Type.String) {

 error("Error: Passing incompatible type to function " + func);

 }

 }

 //Send the decls vector to the ExprList for generation

 // This is so args.gen() produces the correct currency conversion factors

 args.args = func.args.decls;

 }

 public void gen() {

 if ((type.classId == Type.CURRENCY || type.classId == Type.DATE) && !(type ==

Type.USD || type == Type.Day)) {

 System.out.print(type.conversion + "*");

 }

 gen2();

 }

 public void gen2() {

 System.out.print(ident + "(");

 if (args.size() != 0)

 args.gen();

 System.out.print(")");

 }

}

SIMPLEX: Final Report

61

FuncCallStmt.java
author: Eric Zhang

public class FuncCallStmt extends Stmt {

 FuncCall func;

 public FuncCallStmt(FuncCall f) {

 func = f;

 }

 public FuncCallStmt(Id f, ExprList a) {

 func = new FuncCall(f, a);

 }

 public void gen() {

 func.gen2();

 System.out.println(";");

 }

}

SIMPLEX: Final Report

62

Id.java
author: Eric Zhang

public class Id extends Expr {

 public Arglist args = new Arglist();

 public Id(String id, Type p) {

 super(id, p);

 }

 public Id(String id, Type p, Arglist a) {

 super(id, p);

 args = a;

 }

 public void gen() {

 if ((type.classId == Type.CURRENCY || type.classId == Type.DATE) && !(type ==

Type.USD || type == Type.Day)) {

 System.out.print(type.conversion + "*");

 }

 System.out.print(s);

 }

 //Used for left side of assignment

 public void gen2() {

 System.out.print(s);

 }

}

SIMPLEX: Final Report

63

Input.java
author: Eric Zhang

public class Input extends Stmt {

 Id var;

 public Input(Id v) {

 var = v;

 if (var.type == Type.Boolean) {

 error("Error: Boolean variables cannot be read from the console.");

 }

 }

 public void gen() {

 var.gen2();

 if (var.type == Type.String) {

 System.out.println(" = stdin.readLine();");

 }

 else if (var.type == Type.Rate){

 System.out.println(" = readDouble()/100.0;");

 }

 else {

 System.out.println(" = readDouble();");

 }

 }

}

SIMPLEX: Final Report

64

Node.java
author: Eric Zhang

public class Node {

 void error(String s) {

 System.err.println(s);

 System.exit(0);

 }

 public static void emit(String s) {

 System.out.println("\t" + s);

 }

}

SIMPLEX: Final Report

65

Not.java
author: Eric Zhang

public class Not extends Expr {

 Expr expr;

 public Not(Expr e) {

 super("!", Type.Boolean);

 if (e.type != Type.Boolean) {

 error("Error: Argument to Not operator must be a boolean expression");

 }

 expr = e;

 }

 public void gen() {

 System.out.print("!(");

 expr.gen();

 System.out.print(")");

 }

}

SIMPLEX: Final Report

66

printFunction.java
author: Eric Zhang

public class printFunction extends Stmt {

 Expr line;

 public printFunction(Expr e) {

 line = new Cast(Type.String, e);

 }

 public void gen() {

 System.out.print("System.out.println(");

 System.out.println(line + ");");

 }

}

SIMPLEX: Final Report

67

Rel.java
author: Eric Zhang

public class Rel extends Expr {

 Expr expr1, expr2;

 public Rel(String op, Expr e1, Expr e2) {

 super(op, Type.Boolean);

 //If operator is AND or OR, only boolean expressions are ok

 if (op == "&&" || op == "||") {

 if (!(e1.type == Type.Boolean && e2.type == Type.Boolean)) {

 error("Error: && and || operators must take boolean expressions as

operands");

 }

 }

 //If both are numerics, all operations are ok

 //Otherwise:

 if (!(e1.type.isNumeric() && e2.type.isNumeric())) {

 if (!(e1.type == e2.type && op == "==")) {

 error("Error: Incompatible types in comparison");

 }

 }

 expr1 = e1;

 expr2 = e2;

 if (expr1.type.classId != expr2.type.classId) {

 if (expr1.type == Type.Number) {

 expr1.type = expr2.type;

 }

 else if (expr2.type == Type.Number) {

 expr2.type = expr1.type;

 }

 }

 }

 public void gen() {

 //If either expression is a currency, do the rounding

 // round to three decimal places, and then compare.

 boolean round = false;

 if (expr1.type.classId == Type.CURRENCY || expr2.type.classId == Type.CURRENCY) {

 round = true;

 System.out.print("Math.round((");

 }

 expr1.gen();

 if (round) {

 System.out.print(")*1000)");

 }

 System.out.print(" " + s + " ");

 if (round) {

 System.out.print("Math.round((");

 }

 expr2.gen();

 if (round) {

 System.out.print(")*1000)");

 }

 }

}

SIMPLEX: Final Report

68

Return.java
author: Eric Zhang

public class Return extends Stmt {

 Expr returnValue;

 Type returnType;

 public Return(Type t, Expr e) {

 //Check to make sure return value is consistent with function type

 if (t == Type.Void) {

 if (e != null) {

 error("Error: Void function cannot return value");

 }

 }

 else {

 if (e == null) {

 error("Error: Null value in return statement of function of type "

+ t);

 }

 else if (t != Type.String) {

 if (t.isNumeric() != e.type.isNumeric()) {

 error("Error: Return type not consistent with function

type");

 }

 }

 }

 returnType = t;

 returnValue = e;

 hasReturn = true;

 }

 public void gen() {

 System.out.print("if (true) return");

 if (returnValue != null) {

 if (returnType.classId == returnValue.type.classId && returnType !=

returnValue.type) {

 System.out.print(1/(returnType.conversion) + "*");

 }

 System.out.print(" ");

 returnValue.gen();

 }

 System.out.println(";");

 }

}

SIMPLEX: Final Report

69

Seq.java
author: Eric Zhang

public class Seq extends Stmt {

 Stmt stmt1;

 Stmt stmt2;

 public Seq(Stmt s1, Stmt s2) {

 stmt1 = s1;

 stmt2 = s2;

 if (s1.hasReturn || s2.hasReturn) hasReturn = true;

 }

 public void gen() {

 stmt1.gen();

 stmt2.gen();

 }

}

SIMPLEX: Final Report

70

Set.java
author: Eric Zhang

public class Set extends Stmt {

 public Id var;

 public Expr e;

 public String op;

 public Set(String o, Id lhs, Expr rhs) {

 op = o;

 var = lhs;

 e = rhs;

 if (e == null) {

 if (op.charAt(1) == '+') {

 op = "+=";

 e = new Constant(1);

 }

 else if (op.charAt(1) == '-') {

 op = "-=";

 e = new Constant(1);

 }

 }

 if (op.charAt(0) == '^') {

 e = new Arith(",", var, e);

 op = "=";

 }

 if (var.type.isNumeric() != e.type.isNumeric() && var.type != Type.String) {

 error("Error: Assignment of incompatible types");

 }

 }

 public void gen() {

 gen2();

 System.out.println(";");

 }

 //Used for For loop to not output semicolon

 public void gen2() {

 var.gen2();

 System.out.print(" " + op + " ");

 //Add conversion factor if needed

 if (var.type.classId == e.type.classId && var.type != e.type

 && (var.type != Type.USD && var.type != Type.Day)) {

 System.out.print(1/(var.type.conversion) + "*");

 }

 e.gen();

 }

}

SIMPLEX: Final Report

71

Stmt.java
author: Eric Zhang

public class Stmt extends Node {

 public boolean hasReturn = false;

 String str;

 public Stmt() {

 }

 public Stmt(String s) {

 str = s;

 }

 public void gen() {

 System.out.println(str + ";");

 }

}

SIMPLEX: Final Report

72

SymbolTable.java
author: Eric Zhang, Gilbert Hom

import java.util.*;

public class SymbolTable {

 private Hashtable table;

 protected SymbolTable outer;

 public Type returnType = null;

 public SymbolTable(SymbolTable st) {

 table = new Hashtable();

 outer = st;

 }

 public SymbolTable(SymbolTable st, Type t) {

 table = new Hashtable();

 outer = st;

 returnType = t;

 }

 public void put(String token, Type t) {

 if (get(token) != null) {

 System.out.println("Variable already declared: " + token);

 System.exit(0);

 }

 table.put(token, new Id(token, t));

 }

 public void put(String token, Type t, Arglist a) {

 table.put(token, new Id(token, t, a));

 }

 public Id get(String token) {

 for (SymbolTable thisTable = this; thisTable != null; thisTable = thisTable.outer)

{

 Id id = (Id) (thisTable.table.get(token));

 if (id != null) {

 //create a new Id in the return so that each Id in the IR is a

separate instance

 Id result = new Id(id.s, id.type);

 result.args = id.args;

 return result;

 }

 }

 return null;

 }

 public Type getReturnType() {

 SymbolTable temp = this;

 while (temp.returnType == null) {

 temp = this.outer;

 }

 return temp.returnType;

 }

}

SIMPLEX: Final Report

73

TestSuite.java
author: Kelvin Jiang

import java.io.*;

import java.util.*;

public class TestSuite {

 public static void main(String[] args) {

 try {

 Vector tests = new Vector();

 Process p = Console.cmdExec("cmd /c dir /b tests");

 BufferedReader br = new BufferedReader(new

InputStreamReader(p.getInputStream()));

 String str;

 while ((str = br.readLine()) != null)

 tests.add((String) str);

 for(int i=0;i<tests.size();i++) {

 String file = (String)tests.elementAt(i);

 Console.compile("tests/"+file);

 StringTokenizer st =new StringTokenizer(file,".");

 file = st.nextToken();

 Console.run(file);

 Console.cmdExec("cmd /c del "+file+".java "+file+".class");

 }

 System.out.println("Testing Completed.");

 } catch (Exception e) {

 }

 }

}

SIMPLEX: Final Report

74

Type.java
author: Eric Zhang

public class Type {

 public String name = "";

 public int classId = 0;

 public double conversion = 1;

 public String symbol = "";

 public Type(String s, int cls, double conv, String symb) {

 name = s;

 classId = cls;

 conversion = conv;

 symbol = symb;

 }

 // Type Classes

 public static final int CUSTOM = -1;

 public static final int NUMBER = 0;

 public static final int RATE = 1;

 public static final int DATE = 2;

 public static final int CURRENCY = 3;

 public static final int BOOLEAN = 4;

 public static final int STRING = 5;

 // Types

 public static final Type

 Void = new Type("void", CUSTOM, 1, ""),

 Number = new Type("number", NUMBER, 1, ""),

 Rate = new Type("rate", RATE, 1, ""),

 Day = new Type("day", DATE, 1, "d"),

 Month = new Type("month", DATE, 30, "m"),

 Year = new Type("year", DATE, 365, "y"),

 USD = new Type("USD", CURRENCY, 1, "$"),

 EUR = new Type("EUR", CURRENCY, 1.3252, "\u20AC"),

 CAD = new Type("CAD", CURRENCY, 0.867302689, "CAD"),

 GBP = new Type("GBP", CURRENCY, 1.9692, "\u00A3"),

 AUD = new Type("AUD", CURRENCY, 0.7876, "AUD"),

 ILS = new Type("ILS", CURRENCY, 0.238766057, "ILS"),

 CNY = new Type("CNY", CURRENCY, 0.127785729, "CNY"),

 MXN = new Type("MXN", CURRENCY, 0.0922653922, "MXN"),

 SOS = new Type("SOS", CURRENCY, 0.0008037, "SOS"),

 YEN = new Type("YEN", CURRENCY, 0.00853679358, "\u00A5"),

 Boolean = new Type("boolean", BOOLEAN, 1, ""),

 String = new Type("string", STRING, 1, "");

 public boolean isNumeric() {

 return classId == Type.NUMBER || classId == Type.RATE

 || classId == Type.DATE || classId == Type.CURRENCY;

 }

 public static Type max(Type p1, Type p2) {

 if (p1 == Type.String || p2 == Type.String)

 return Type.String;

 else if (p1 == p2)

 return p1;

 else if (p1.isNumeric() && p2.isNumeric())

 return Type.Number;

 else

 return null;

 }

 public String toString() {

 return name;

 }

SIMPLEX: Final Report

75

}

SIMPLEX: Final Report

76

Unary.java
author: Eric Zhang

public class Unary extends Expr {

 Expr expr;

 public Unary(String op, Expr e) {

 super(op, null);

 if (e.type.classId == Type.CURRENCY) {

 type = Type.USD;

 }

 else if (e.type.classId == Type.DATE) {

 type = Type.Day;

 }

 else {

 type = e.type;

 }

 if (!e.type.isNumeric()) {

 error("Error: Argument to negation operator must be a numeric

expression");

 }

 expr = e;

 }

 public void gen() {

 System.out.print("(");

 if (s == "-") System.out.print(s);

 System.out.print("(");

 expr.gen();

 System.out.print(")");

 if (s == "++" || s == "--") System.out.print(s);

 System.out.print(")");

 }

}

SIMPLEX: Final Report

77

While.java
author: Eric Zhang

public class While extends Stmt {

 Expr expr;

 Stmt body;

 public While(Expr e, Stmt s) {

 if (e.type != Type.Boolean) {

 error("Error: Argument to if statment must be a boolean expression");

 }

 expr = e;

 body = s;

 }

 public void gen() {

 System.out.print("while (");

 expr.gen();

 System.out.println(") {");

 if (body != null) body.gen();

 System.out.println("}");

 }

}

