
MARS - a music mixing language

Overview

● What's the point?
– A lot of music is repetitive

● Mozart
● Britney Spears

– Why not let a computer handle the repetition?
● predefined loops
● MARS language
● Creativity

● Problem with professional software?
– too confusing!
– grad students don't have any money :(

Overview

● Data Structures vs Music Compositions

– Complex data structures
● Collection of primitives
● Executed in certain order or concurrently

– Complex music composition
● Collection of music tracks or parts
● Played in certain order or concurrently

Overview

● Define music entities
– Composition

● Sections
● Groups
● Tracks

● Add behaviors
– Play
– Delay
– Loop
– Mix
– Volume control

Composition

Section BSection A

Track 1

Track 2

Track 3

Track 4
Group G1

Your first composition

Everything is wrapped in a composition

def composition HelloOpus
track swapneel = “HelloWorld.wav”
track ritika = “Nifty.wav”

def section MainSection
swapneel.play()
ritika.play()
mix(swapneel.play(), ritika.play())

end

playOrder(MainSection)
end

Your first composition

● def composition / end
– Defines new composition
– Each composition is its own file

● Like Java!
– Compositions have

● Sections, groups, and tracks

Your first composition

● track swapneel = “HelloWorld.wav”
– Tracks are the building block – sound files

● def section MainSection / end
– Sections are defined subdivisions of a song
– Used to represent Musical Form

● Mozart – A B A form
● Britney Spears - Intro, Bridge, Chorus

– We only have one section here
– More complex song, more repeated sections

Your first composition

System Commands

● play(), play(double)
– Plays a given track at that moment
– Optional parameter to only play to certain portion

● mix(track, track..)
– Mixes tracks at same time (super-impose)

● Mix on play command

● Many other advanced commands
– fadeIn
– setVolume
– delay
– getLength

Your first composition

● playOrder(section...)
– Acts as a “main” for the composition
– Will play defined sections in a certain order
– Mandatory, even if there is only one section
– Sections can be repeated, common for songs

● Demo song has 4 sections, played in this order:
– Verse
– Bridge
– Chorus
– Guitar Solo
– Verse
– Bridge
– Chorus
– Rap Ending

More advanced features

● For loops
– The ability to loop tracks with traditional for loops

● Used to accomplish something on each iteration
– (i.e. Volume change)

● Groups
– Used to “Group” tracks

● Rhythm group consists of bass drum, cymbal, snare
– Useful for coding group once, used repeatedly

Even More advanced features

● Conditionals
– If statements, and If/Else statements
– Used to only play under certain conditions

● Perhaps only every other iteration?

● Scope
– Static scoping
– def / end defines scope
– Global scope

● Things not defined inside sections or groups

Implementation

● First half of process
– Generate Java code from MARS (*.mars)

composition

Implementation

● Second half of process
– Generate executable Java composition
– Interface with MARS Sound API

● Abstracted version of Java Sound API

Lessons Learned

● Unique language
– Had a hard time defining semantics
– Had a hard time understanding control flow

● Start with small subset of language
– It is easy to overshoot features
– Start small, then add...NOT the other way!

● Start earlier
– Easy to put PLT as last priority. Not a good idea!

Summary

● Fun language
– Creativity in language
– Fun to test because of sound
– Harder to test because of sound

● Makes life easier
– Easy to repeat thing like sections and groups
– Easy to iterate on your composition
– Easy to see relationship between tracks/sections

● Not very practical
– Very hard to “debug” a music language
– You need a good ear and a lot of patience

