
Board Game Generation Language

A Brief Introduction

 Overview of BGGL
 BGGL Language Highlights
 Implementing Tic-Tac-Toe with BGGL
 Summary

Matt Chu
Steve Moncada
Vitaliy Shchupak

Hrishikesh Tapaswi

BGGL Overview: Goals

 Capture the essential components of a
board game to assist game coders

 Specialize these components to provide
the programmer with a rich code palette

 Eliminate tedious error-checking
 Create an environment for the invention

of new board games

BGGL Overview: Strengths

 Versatile board game data types
integrated with conventional
programming language constructs

 Built-in language features tailored
specifically for board games

 Flexible, robust rule specification syntax

BGGL Overview: Weaknesses

 Domain-specificity restricts applicability
to other computational domains

 Extensive syntax steepens the learning
curve for even the most basic
functionality in BGGL

 No extensibility support

BGGL Highlights: Board

 Global variable
with convenient
manipulation
functions

board = <[W, B, W]

[B, W, B]
[W, B, W]>;

 /* specifies
the following
board:

 0 1 2
0 W B W
1 B W B
2 W B W
*/

BGGL Highlights: Rules

 Rules in BGGL act
like functions

 Pieces accepted as
targets

 Composed of
4-tuple custom
constraint syntax

rule pawn_capture(): BP, WP

{

return test 1, diag, false,
false;

}

/*

specifies rule for pawn capture on
black, white pawns:

length: 1, (how far can it move?)

direction: diag, (how can it move?)

jump: false, (hops another piece?)

emptysquare: false (lands on empty?)

*/

BGGL Highlights: Move

 Moves interface
with Pieces and
the Board via
4- or 6- tuples

piece G;

move m = :^:G:0:0:1:1;

/*

G _ _ _ _ _

_ _ _ moves to _ G _

_ _ _ _ _ _

move syntax = : <movetype> :
<piece> : <row_source> :
<col_source> : <row_target> :
<col_target>;

*/

BGGL Tutorial: Tic-Tac-Toe
Critical Code: Game Rule Declarations

rule no_overwrite(): X, O {
return test , , , true; // the only special constraint is that the destination

 // square should be empty
}

func getpiece(player p) returns piece {
 if (p == p1) { return X; } else { return O;}
}

func getwinner() returns player {
 int i;
 player winner;
 for (i = 0 to 2) {
 if (<_i> == [X,X,X] || <|i> == [X,X,X] ||

</0> == [X,X,X] || <\0> == [X,X,X]) {
 winner = p1;
 } else {
 if (<_i> == [O,O,O] || <|i> == [O,O,O] ||
 </0> == [O,O,O] || <\0> == [O,O,O]) {
 winner = p2;
 }
 }
 }
 return winner;
}

BGGL Tutorial: Tic-Tac-Toe
Critical Code: Game Block 1/2

game {
 board =
 <[_,_,_]
 [_,_,_]
 [_,_,_]>; //empty tic tac toe board stored in global variable

 boolean done = false;
 player thisplayer = p1;
 int row; int col;
 piece currpiece;
 print board;
 int countmoves=0;

while (!done) {

print "Player " + thisplayer + ": " + getpiece(thisplayer);
 row = input "Enter row coordinate: ", int;
 col = input "Enter col coordinate: ", int;

 currpiece = getpiece(thisplayer);
 move m = :+:currpiece:row:col;

BGGL Tutorial: Tic-Tac-Toe
 if (no_overwrite():m) {
 apply m;
 if (thisplayer == p1) {
 thisplayer = p2;
 } else {
 thisplayer = p1;
 } countmoves = countmoves + 1;
 }
 else { print "Invalid coordinate"; }
 print board;

 player winner = getwinner();
 if (winner == p1 || winner == p2) {
 print "" + winner + " won!";
 done = true;
 }
 else {
 if (countmoves == 9) {
 print "It's a draw!";
 done = true;
 }
 }
 }
}

Critical Code: Game Block 2/2

BGGL Conclusion: Framework

Lexer

Exception Handler

Parser

input_file.bggl
Console OutputFront-end

Back-end

AST Walker
Semantic Analysis

Console Input

Test Execution

Symbol Table

Type System

Interpreter

Collection
of

Test Inputs

Test Framework

BGGL Conclusion: Wishlist

 The implementation of turn{ } blocks as a
specialized control flow mechanism

 Additional attention to usability via
condensed syntax and semantics

 Better support for non-domain-specific
tasks

BGGL Conclusion: Take-aways

The next time we build a programming
language, we'll...

 Utilize similar directory organization,
version control, and testing processes

 Emphasize the importance of initial
planning by spending very late nights
early in the process, not just at the end

