

IPL Language Reference Manual

Jianning.Yue
Wookyun.Kho
Youngjin.Yoon

1. General Information
 IPL is a computer language that enables users to easily describe and show the pictures and decent
animations, and create those images by using the functions such as image displaying, rotation, color
modification, or repeat of images.

Moreover, users easily can make simple animations such as movement of images from location A to B, and
making an animation with many images.

By using IPL, users can define (or import) images, and with these images, users can display and modify
their own image very easily.

2. Lexical Conventions
 There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other
separators. In general blanks, tabs, newlines, and comments as described below are ignored except as they
serve to separate tokens. At least one of these characters is required to separate otherwise adjacent identifiers,
constants, and certain operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the
longest string of characters which could possibly constitute a token.

2.1 Comments

The characters /* introduce a comment, which terminates with the characters */.

2.2 Identifiers (Names)
A n identifier is a sequence of letters and digits; the first character m ust be alphabetic. T he underscore „„_‟‟

counts as alphabetic. Upper and lower case letters are considered different.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

 break
 continue
 if
 while
 return
 defunc

2.4 Constants

There is only one kind of constants: integer constants. An integer constant is a sequence of digits.

2.5 Strings

 A string is a sequence of characters surrounded by double quotes “ `` ”. A string is only used as a filename.
(In the future, displaying strings with images might be possible)

3. Syntax notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal words

and characters in gothic. Alternatives are listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript “opt,” so that

 { expressionopt }

would indicate an optional expression in braces.

4. What’s in a Name?

IPL bases the interpretation of an identifier upon contents of the identifier: image, constants, coordination,
or list. If variables are invoked inside of a function, variables are local to each invocation of a function, and
are discarded on return. Independently of invocations of the function; external variables are independent of
any function.

IPL supports four fundamental types of objects: integers, strings, images, and coordinations,

Besides the four fundamental types there is a conceptually infinite class of derived types constructed from
the fundamental types in the following ways:

 lists of objects of most types;

 functions which return objects of a given type;

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues
 An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An obvious
example of an lvalue expression is an identifier. The name “value” comes from the assignment expression
‘‘E1 = E2’’ in which the left operand E1 must be an lvalue expression. The discussion of each operator below
indicates whether it expects lvalue operands and whether it yields an lvalue.

6. Conversions
 In IPL, conversion is not available.

7. Expressions
 The precedence of expression operators is the same as the order of the major subsections of this section
(highest precedence first). Thus the expressions referred to as the operands of + (§7.5) are those expressions
defined in §§7.1_7.4. Within each subsection, the operators have the same precedence. Left- or right-
associativity is specified in each subsection for the operators discussed therein. The precedence and
associativity of all the expression operators is summarized in an appendix.

 Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers itself
free to compute subexpressions in the order it believes most efficient, even if the subexpressions involve side
effects.

7.1 Primary Expressions
 Primary expressions involving subscripting, and function calls group left to right.

7.1.1 identifier
 An identifier is a primary expression. Its type is specified at the first time when it is used.

7.1.2 constant
 A decimal, octal, or floating constant is a primary expression whose type is integer.

7.1.3 string
 A string is primary expression. It is formed by a single or a number of characters. String is used for
denoting the path name when importing an image object.

7.1.4 coordination
 A coordination is a primary expression whose type is two identifiers of integer type or constant with
brackets, such as [3, a]. It denotes the coordination information on the screen.

7.1.5 primary-expression (primary-listopt)
 A function call is a primary expression followed by parentheses containing a possibly empty, comma-
separated list of expression which constitute the actual argument to the function. The primary expression is of
type the function call returns.

7.1.6 primary-expression [primary]
 A primary expression followed by an expression within square brackets is a primary expression. It denotes
a list of integers, images or coordinates. The type of expression is determined by what type of the object it
stores. The primary-expression is an identifier and the type of primary expression in the bracket should only
be arithmetic expression of integers or integer identifiers.

7.1.7 primary coordination
 A primary expression followed by a coordinates is a primary expression. Its type is image which has been
modified with the coordinate operand. The type of the primary should only be image type.

7.2 Unary operator
 Expressions with unary operators group right-to-left

7.2.1 ! expression
 The result of the logical operator ! is 1 if the value of the expression is 0, 0 if the value of the expression is
non-zero. The type of the result is integer. This operator is applicable only to integer.

7.3 Image operators
 Image operators are used for transforming the show of pictures. It provides the user with easy and direct
ways to modify the picture appearance with high flexibility. The operators will return the type image after
being transformed according the operands. The image operators includes ^ operator used for scaling pictures,
and @ operator used for rotating pictures by how many degrees.

7.3.1 expression ^ expression
 The ^ operator indicates scaling. The first operand must be image type which is the picture needed scaling,
and second operand must be integer type denotes how many times the picture will be scaled. Whether
enlarging or shrinking the image is determined by the value of the second operand. The result is the image
type object that has been scaled.

7.3.2 expression @ expression
 The @ operator indicates rotating. The first operand must be image type which is the picture needed
rotating, and second operand must be integer type denotes how degrees the picture will be rotated. The result

is the image type object that has been scaled.

7.4 Multiplicative operators
 Arithmetic Operator is used for arithmetic calculation of integers. The binary operators *, /, %, +, - group
left-to-right.

7.4.1 expression * expression
 The * operator indicates arithmetic multiplication.

 For expression * expression, the result type is an integer or an integer list. If the operands are both integer
type, the result type is integer. If one of the operands is integer, and the other is image, the return type is
image.

7.4.2 expression / expression
 The / operator indicates arithmetic division. The same type considerations as for multiplication apply.

7.4.3 expression % expression
 The binary % operator yields the reminder from the division of the first expression by the second. The same
type considerations as for multiplication apply.

7.5 Additive operators
 The additive operators + and - group left-to-right.

7.5.1 expression + expression
 The + operator indicates arithmetic addition. The result is the sum of the expressions. The same type
considerations as for multiplication apply.

7.5.2 expression – expression
 The result is the difference of the expressions. The same type considerations as for addition apply.

7.6 Display operators
 Display operators group left-to-right.

7.6.1 expression $ expression
 $ operator indicates the horizontal combination of the two operands. Both operands must be of type image.
The operator returns an image. The result will look like first image combine the second abreast.

7.6.2 expression # expression
 # operator indicates the vertical combination of the two operands. Both operands must be of type image.
The operator returns an image. The result will look like that the first image stands above the second.

7.7 Assignment operators
 Assignment operator groups right-to-left. It requires a lvalue as their left operand, and the type of an
assignment expression is that of its left operand. The value is the value stored in the left operand after the
assignment has taken place.

7.7.1 lvalue = expression
 The assignment operator requires a lvalue as its left operand, and the type of an assignment expression is
that of its left operand. The value is the value stored in the left operand after the assignment has taken place.
lvalue is an expression referring to an object which is a manipulatable region of storage. The value of the
expression replaces that of the object referred to by the lvalue. An obvious example of an lvalue expression is
an identifier.

 The = operator supports the automatic type transformation, which means that the lvalue type will
automatically change to the type of the right operand if the two are different types, which is a default
operation.

7.8 Relational operators
 The relational operators group left-to-right, the following are the relational operators:

7.8.1 expression > expression (larger)
7.8.2 expression >= expression (larger than equal)
7.8.3 expression < expression (smaller)
7.8.4 expression <= expression (smaller than equal)

 The relational operators all yield 0 if the specified relation is false and 1 if it is true.

7.9 Equality operators
7.9.1 expression == expression
7.9.2 expression != expression

 The == (equal to) and the != (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth
value).

7.10 Logical operators
7.10.1 expression | expression
 The | operator groups left-to-right. The operands must be integer type. The result is an integer which is the
bit-wise inclusive or of its operands.

7.10.2 expression & expression
 The & operator groups left-to-right. Both operands must be integer type. The result is an integer which is
the bit-wise logical and of the operands.

8. Statements
 Except as indicated, statements are executed in sequence. Statements can be categorized as defunc
statements and others, named as normal statements. Normal statements tells what should be executed in IPL,
while defunc statements describe what the specific function does in IPL. Defunc statements starts with defunc
words, while normal statements does not. It is described as follows:

 statement :

 expression
 { statement-list }
 if (primary) statement
 while (primary) statement
 defunc func_identifier (param-listopt) return-identifier statement
 break;
 continue;

 statement-list :
 statement
 statement statement-list

 param-list :

 identifier
 identifier param-list

 return-identifier :
 identifier
 VOID

8.1. Normal statements
 Normal statements can be divided into expressions, conditional statements, loop statements, break
statements and continue statements. Because each statement will be executed by sequence in IPL, it is
important to control the various data using conditional statements and loop statements.

8.1.1. Expression statement
 Most statements are expression statements, which have the form:

 expression ;

 It is defined in chapter 7. Usally expression statements are assignment or function calls.

8.1.2 Conditional statement
 Conditional statement can be described as follows:

 if (primary) statement

 It executes one or more statements if the return value of primary in parenthesis is true. statement after close
parenthesis describes what to do if the primary is true. It can be expressed as both single statement or,
multiple statements surrounded by brace such as:

{ statement-list }

 statement-list can be defined as:

 statement-list :

 statement

 statement statement-list

8.1.3. Loop statement
 Syntactically, there is only one loop statement in IPL. It is while loop expressed as:

 while (primary) statement

It executes statements in braces iteratively until the return of primary in parenthesis becomes false.
statement after close parenthesis describes what to do while the primary is true. It can be expressed as both
single statement or, multiple statement surrounded by brace such as:

 { statement-list }

 statement-list can be defined as:

 statement-list :

 statement

 statement statement-list

 A s m entioned, the IP L does not support „for loop‟ in C . H ow ever, anything w ith for loop can be done by
while loop such as:

 for (i=0; i<3; i++) {<statements>} - for loop in C

 i=0; while (i<3) {<statements> i++;} - in IPL with while loop.

8.1.4. break statement
 The statement

break;

causes termination of the smallest enclosing while statement; control passes to the statement follow the
terminated statement.

8.1.5. continue statement
 The statement

 continue;

causes control to pass to the loop-continuation portion of the smallest elosing while statement; the is to the
end of the loop.

8.2. defunc statement
 Defunc statement starts with „defunc‟ reserved words which represents the definition of the function. It is
free where you define function using defunc in IPL. However, the function should be defined before used in
IP L . If you don‟t, It w ill cause the error. The syntax of defunc can be described as:

 defunc func_identifier (param-listopt)) return-identifier statement

 It defines the func_identifier as a name of function which has param-list as an optional parameters with
parenthesis and return_value as a return value. Moreover, statement after return-identifier represents what to
do in the function. It should have return_value at least once so that the function returns the last updated value
of the return_value.

8.3. Miscellaneous
 param-list represents the parameter list for the function. It can be represented only one or more variables as
follows:

 param-list:

 identifier

 identifier param-list

 return_value represents the return value of the function. It can be represented only one variable or empty if
not needed defined as:

 return-identifier:

 identifier

 VOID

9. Scope rules
 Because IPL allows a block-structure surrounded by braces in case of defunc, if and while statements,
it is important to define the scope of the variables. Because there is no declaration for variables, variables in
braces is restricted as local variable in brace only. For example, following causes an error because imgB
defined as a local scope:

 imgA = “./bar.jpg”;
 if (numA > 3)
 {
 imgB = “./foo.jpg”;
 }
 print(imgB);

 It also is applied between languages imported from file using a load function and languages written in
interpreter. For example, suppose you type such as:

 imgA = “./bar.jpg”;
 load(“foo.ipl”);
 imgC = imgA + imgB;

 While in foo.ipl:

 if (numA > 3)
 {
 imgB = “./foo.jpg”;
 }

 As a result, it causes an error in line 3 because it is treated as same as follows:

 imgA = “./bar.jpg”;
 if (numA > 3)
 {
 imgB = “./foo.jpg”;
 }
 imgC = imgA + imgB;

10. Boolean expressions
 In several places in IPL requires expressions which evaluate true or false: in if statements and loop(while)
statements. In IPL, constants and variables consisting only single integer are only allowed to compare with
operator such as:

 | & == != < > <= >=

 Or by the unary operators:

 !

 Even there is no such a boolean type in IPL, the result of those operation is both true or false. As a result, in
IPL, those expression is allowed only in parenthesis of if statements and loop(while) statements.

 Parenthesis can be used for grouping, but not for function calls.

11. Examples
11.1 Example 1 – defunc and while

defunc fall3 (imgA startTime endTime) imgB
{
 coordA = <xof(imgA),yof(imgA)-3>;
 imgB = move (imgA coordA startTime endTime);
}

imgA[0] = “./small_circle.jpg”;
imgB = “./triangle.jpg”;

imgC = “./rect.jpg”;
imgA[1] = “./mid_circle.jpg”;
imgA[2] = “./big_circle.jpg”;

numA = 0;
while(numA < 3)
{
 imgA[numA] = imgA[numA] <numA,numA> @ numA * 30;
 numA = numA + 1;
}

imgC = imgA $ imgB;
imgC = imgC<-3,4>;
imgD = fall3 (imgC[0] 1 3);

print(imgD);

 define a function which moves image down to 3 point as fall3. imgA is defined as a list of circles, while
imgB is triangle and imgC is rectangle. Rotate each element of imgA with 0, 30, and 60. Then combine imgA
and imgB as imgC. After creating imgC, imgC set to (-3,4) coordination and call the fall3 function with
imgC[0], 1, 3. return value is assigned to imgD and it will be shown by print() function.

11.2 Example 2 – Escher picture

imgA = "./lizardWhite.jpg";
imgB = "./lizardBlack.jpg";
imgC = (imgA $ (imgB @-90)) # (imgB @90 $ imgA @180);
imgD = (imgC @180 # imgC @180) $ (imgC # imgC);
print(imgD)

 img1 img2

 (Assume that each triangle with edge 1)
 img1 = “./fishL.jpg”
 img2 = “./fishR.jpg”
 imglist[1] = img1 <0,0>
 imglist[2] = img2 <squr(3)/2, -1/2>
 imglist[3] = img2 <0,0> @ 120
 imglist[4] = img1 < squr(3)/2, -1/2> @ 120
 imglist[5] = img1<0, -1> @ -120
 imglist[6] = img2 <….
 defunc showall (imagelist[]) imgX
 {
 intA = 1;
 imgX=null;
 while (intA<sizeof(imglist[]))
 {
 imgX = combine (imgX, img[intA]);
 }
 }
 img = showall (imglist[]);

 imglist[1] = img <0,0>
 ………………

11.3 Example 3 – animation

 If you want to display this Bitmap Images like an animation, you can easily use the animation function,
which is one of the built-in functions in IPL:

 imgA[0] = “./ani00.jpg”;
 imgA[1] = “./ani01.jpg”;
 imgA[2] = “./ani02.jpg”;
 imgA[3] = “./ani03.jpg”;
 imgA[4] = “./ani04.jpg”;
 imgA[5] = “./ani05.jpg”;
 imgA[6] = “./ani06.jpg”;
 imgA[7] = “./ani07.jpg”;
 imgA[8] = “./ani08.jpg”;
 imgB = animate imgA 0.3;

APPENDIX 1
Syntax Summary

1. Expressions
 expression:
 primary
 lvalue asgnop primary

 primary:
 identifier
 constant
 string
 coordination
 primary (primary-listopt)
 primary [primary]
 primary coordination
 primary binop primary

 lvalue:
 identifier
 primary [primary]

 coordination:
 < primary , primary >

 The primary-expression operators

 [] { }

have highest priority and group left– to right

 Unary operator

 !

has priority below the primary operators but higher than any binary operator, and groups right-to-left. Binary
operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

 binop:
 / divide % mod * multiply
 + plus - minus
 ^ Scale @ Rotate
 $ Horizontal # Vertical
 < > <= >=
 == !=
 | &

 Assignment operator has the same priority, and groups right-to-left.

 asgnop:
 =

 The comma operator has the lowest priority, and groups left-to-right.

 statement:
 expression
 { statement-list }

 if (primary) statement
 while (primary) statement
 defunc func_identifier (param-listopt) return-identifier statement
 break;
 continue;

 statement-list:
 statement
 statement statement-list

 param-list:
 identifier
 identifier parameter-list

 return-identifier:
 identifier
 VOID

