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1.  General Information 
  IPL is a computer language that enables users to easily describe and show the pictures and decent 
animations, and create those images by using the functions such as image displaying, rotation, color 
modification, or repeat of images. 

Moreover, users easily can make simple animations such as movement of images from location A to B, and 
making an animation with many images. 

By using IPL, users can define (or import) images, and with these images, users can display and modify 
their own image very easily. 

 
2.  Lexical Conventions 
  There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other 
separators. In general blanks, tabs, newlines, and comments as described below are ignored except as they 
serve to separate tokens. At least one of these characters is required to separate otherwise adjacent identifiers, 
constants, and certain operator-pairs. 

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the 
longest string of characters which could possibly constitute a token. 

 
2.1 Comments 

The characters /* introduce a comment, which terminates with the characters */. 
 

2.2 Identifiers (Names) 
A n identifier is a sequence of letters and digits; the first character m ust be alphabetic. T he underscore „„_‟‟ 

counts as alphabetic. Upper and lower case letters are considered different. 
 

2.3 Keywords 
The following identifiers are reserved for use as keywords, and may not be used otherwise: 
 

 break 
 continue 
 if 
 while 
 return 
 defunc 
 
2.4 Constants 

There is only one kind of constants: integer constants. An integer constant is a sequence of digits. 
 
2.5 Strings 



  A string is a sequence of characters surrounded by double quotes “ `` ”. A string is only used as a filename. 
(In the future, displaying strings with images might be possible) 

 

3.  Syntax notation 
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal words 

and characters in gothic. Alternatives are listed on separate lines. An optional terminal or nonterminal 
symbol is indicated by the subscript “opt,” so that 

 { expressionopt } 

would indicate an optional expression in braces. 

 
4.  What’s in a Name? 

IPL bases the interpretation of an identifier upon contents of the identifier: image, constants, coordination, 
or list. If variables are invoked inside of a function, variables are local to each invocation of a function, and 
are discarded on return. Independently of invocations of the function; external variables are independent of 
any function. 

IPL supports four fundamental types of objects: integers, strings, images, and coordinations, 

Besides the four fundamental types there is a conceptually infinite class of derived types constructed from 
the fundamental types in the following ways: 

 lists of objects of most types; 

 functions which return objects of a given type; 

In general these methods of constructing objects can be applied recursively. 

 
5.  Objects and lvalues 
  An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An obvious 
example of an lvalue expression is an identifier. The name “value” comes from the assignment expression 
‘‘E1 = E2’’ in which the left operand E1 must be an lvalue expression. The discussion of each operator below 
indicates whether it expects lvalue operands and whether it yields an lvalue. 

 

6.  Conversions 
  In IPL, conversion is not available. 

 

7.  Expressions 
  The precedence of expression operators is the same as the order of the major subsections of this section 
(highest precedence first). Thus the expressions referred to as the operands of + (§7.5) are those expressions 
defined in §§7.1_7.4. Within each subsection, the operators have the same precedence. Left- or right-
associativity is specified in each subsection for the operators discussed therein. The precedence and 
associativity of all the expression operators is summarized in an appendix. 

  Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers itself 
free to compute subexpressions in the order it believes most efficient, even if the subexpressions involve side 
effects. 

 
7.1 Primary Expressions 
  Primary expressions involving subscripting, and function calls group left to right. 



 
7.1.1 identifier 
  An identifier is a primary expression. Its type is specified at the first time when it is used. 
 
7.1.2 constant 
  A decimal, octal, or floating constant is a primary expression whose type is integer. 
 
7.1.3 string 
  A string is primary expression. It is formed by a single or a number of characters. String is used for 
denoting the path name when importing an image object. 
 
7.1.4 coordination 
  A coordination is a primary expression whose type is two identifiers of integer type or constant with 
brackets, such as [3, a]. It denotes the coordination information on the screen. 
 
7.1.5 primary-expression ( primary-listopt ) 
  A function call is a primary expression followed by parentheses containing a possibly empty, comma-
separated list of expression which constitute the actual argument to the function. The primary expression is of 
type the function call returns. 
 
7.1.6 primary-expression [ primary ] 
  A primary expression followed by an expression within square brackets is a primary expression. It denotes 
a list of integers, images or coordinates. The type of expression is determined by what type of the object it 
stores. The primary-expression is an identifier and the type of primary expression in the bracket should only 
be arithmetic expression of integers or integer identifiers. 
 
7.1.7 primary coordination 
  A primary expression followed by a coordinates is a primary expression. Its type is image which has been 
modified with the coordinate operand. The type of the primary should only be image type. 
 
7.2 Unary operator 
  Expressions with unary operators group right-to-left 
 
7.2.1 ! expression 
  The result of the logical operator ! is 1 if the value of the expression is 0, 0 if the value of the expression is 
non-zero. The type of the result is integer. This operator is applicable only to integer. 
 
7.3 Image operators 
  Image operators are used for transforming the show of pictures. It provides the user with easy and direct 
ways to modify the picture appearance with high flexibility. The operators will return the type image after 
being transformed according the operands. The image operators includes ^ operator used for scaling pictures, 
and @ operator used for rotating pictures by how many degrees. 
 
7.3.1 expression ^ expression 
  The ^ operator indicates scaling. The first operand must be image type which is the picture needed scaling, 
and second operand must be integer type denotes how many times the picture will be scaled. Whether 
enlarging or shrinking the image is determined by the value of the second operand. The result is the image 
type object that has been scaled. 
 
7.3.2 expression @ expression  
  The @ operator indicates rotating. The first operand must be image type which is the picture needed 
rotating, and second operand must be integer type denotes how degrees the picture will be rotated. The result 



is the image type object that has been scaled. 
 
7.4 Multiplicative operators 
  Arithmetic Operator is used for arithmetic calculation of integers. The binary operators *, /, %, +, - group 
left-to-right. 
 
7.4.1 expression * expression 
  The * operator indicates arithmetic multiplication.  

  For expression * expression, the result type is an integer or an integer list. If the operands are both integer 
type, the result type is integer. If one of the operands is integer, and the other is image, the return type is 
image. 

 
7.4.2 expression / expression 
  The / operator indicates arithmetic division. The same type considerations as for multiplication apply. 
 
7.4.3 expression % expression 
  The binary % operator yields the reminder from the division of the first expression by the second. The same 
type considerations as for multiplication apply. 
 
7.5 Additive operators 
  The additive operators + and - group left-to-right. 
 
7.5.1 expression + expression  
  The + operator indicates arithmetic addition. The result is the sum of the expressions. The same type 
considerations as for multiplication apply. 
 
7.5.2 expression –  expression  
  The result is the difference of the expressions. The same type considerations as for addition apply. 
 
7.6 Display operators 
  Display operators group left-to-right. 
 
7.6.1 expression $ expression  
  $ operator indicates the horizontal combination of the two operands. Both operands must be of type image. 
The operator returns an image. The result will look like first image combine the second abreast. 
 
7.6.2 expression # expression 
  # operator indicates the vertical combination of the two operands. Both operands must be of type image. 
The operator returns an image. The result will look like that the first image stands above the second. 
 
7.7 Assignment operators 
  Assignment operator groups right-to-left. It requires a lvalue as their left operand, and the type of an 
assignment expression is that of its left operand. The value is the value stored in the left operand after the 
assignment has taken place. 
 
7.7.1 lvalue = expression 
  The assignment operator requires a lvalue as its left operand, and the type of an assignment expression is 
that of its left operand. The value is the value stored in the left operand after the assignment has taken place.  
lvalue is an expression referring to an object which is a manipulatable region of storage. The value of the 
expression replaces that of the object referred to by the lvalue. An obvious example of an lvalue expression is 
an identifier. 



  The = operator supports the automatic type transformation, which means that the lvalue type will 
automatically change to the type of the right operand if the two are different types, which is a default 
operation. 
 
7.8 Relational operators 
  The relational operators group left-to-right, the following are the relational operators: 
 
7.8.1 expression > expression (larger) 
7.8.2 expression >= expression (larger than equal) 
7.8.3 expression < expression (smaller) 
7.8.4 expression <= expression (smaller than equal) 

  The relational operators all yield 0 if the specified relation is false and 1 if it is true. 

 
7.9 Equality operators 
7.9.1 expression == expression 
7.9.2 expression != expression 

  The == (equal to) and the != (not equal to) operators are exactly analogous to the relational operators 
except for their lower precedence. (Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth 
value). 

 
7.10 Logical operators 
7.10.1 expression | expression 
  The | operator groups left-to-right. The operands must be integer type. The result is an integer which is the 
bit-wise inclusive or of its operands. 
 
7.10.2 expression & expression 
  The & operator groups left-to-right. Both operands must be integer type. The result is an integer which is 
the bit-wise logical and of the operands. 

 

8.  Statements 
  Except as indicated, statements are executed in sequence. Statements can be categorized as defunc 
statements and others, named as normal statements. Normal statements tells what should be executed in IPL, 
while defunc statements describe what the specific function does in IPL. Defunc statements starts with defunc 
words, while normal statements does not. It is described as follows: 
 
 statement :  

 expression 
 { statement-list } 
 if ( primary ) statement 
 while ( primary ) statement 
 defunc func_identifier ( param-listopt ) return-identifier statement  
 break; 
 continue; 
 

 statement-list : 
 statement 
 statement  statement-list 
 

 param-list : 



 identifier  
 identifier param-list  
 

 return-identifier : 
 identifier 
 VOID 

 
8.1. Normal statements 
  Normal statements can be divided into expressions, conditional statements, loop statements, break 
statements and continue statements. Because each statement will be executed by sequence in IPL, it is 
important to control the various data using conditional statements and loop statements. 
 
8.1.1. Expression statement 
  Most statements are expression statements, which have the form: 

 expression ; 

  It is defined in chapter 7. Usally expression statements are assignment or function calls. 

 
8.1.2 Conditional statement 
  Conditional statement can be described as follows: 

 if ( primary ) statement  

  It executes one or more statements if the return value of primary in parenthesis is true. statement after close 
parenthesis describes what to do if the primary is true. It can be expressed as both single statement or, 
multiple statements surrounded by brace such as: 

{ statement-list } 

 statement-list can be defined as: 

 statement-list :  

 statement  

 statement statement-list 

 
8.1.3. Loop statement 
  Syntactically, there is only one loop statement in IPL. It is while loop expressed as: 

 while ( primary ) statement  

It executes statements in braces iteratively until the return of primary in parenthesis becomes false. 
statement after close parenthesis describes what to do while the primary is true. It can be expressed as both 
single statement or, multiple statement surrounded by brace such as: 

 { statement-list } 

 statement-list can be defined as: 

 statement-list :  

 statement  

 statement statement-list  

  A s m entioned, the IP L  does not support „for loop‟ in C . H ow ever, anything w ith for loop can be done by 
while loop such as: 



 for (i=0; i<3; i++) {<statements>}  - for loop in C 

 i=0; while (i<3) {<statements> i++;}  - in IPL with while loop. 

 
8.1.4. break statement 
  The statement 

break;  

causes termination of the smallest enclosing while statement; control passes to the statement follow the 
terminated statement. 

 
8.1.5. continue statement 
  The statement 

 continue; 

causes control to pass to the loop-continuation portion of the smallest elosing while statement; the is to the 
end of the loop. 

 
8.2. defunc statement 
  Defunc statement starts with „defunc‟ reserved words which represents the definition of the function. It is 
free where you define function using defunc in IPL. However, the function should be defined before used in 
IP L . If you don‟t, It w ill cause the error. The syntax of defunc can be described as: 

 defunc func_identifier ( param-listopt) ) return-identifier statement  

  It defines the func_identifier as a name of function which has param-list as an optional parameters with 
parenthesis and return_value as a return value. Moreover, statement after return-identifier represents what to 
do in the function. It should have return_value at least once so that the function returns the last updated value 
of the return_value. 

 
8.3. Miscellaneous 
  param-list represents the parameter list for the function. It can be represented only one or more variables as 
follows: 

 param-list:  

 identifier  

 identifier param-list 

  return_value represents the return value of the function. It can be represented only one variable or empty if 
not needed defined as: 

 return-identifier:  

 identifier  

 VOID 

 
9.  Scope rules 
  Because IPL allows a block-structure surrounded by braces in case of defunc, if and while statements, 
it is important to define the scope of the variables. Because there is no declaration for variables, variables in 
braces is restricted as local variable in brace only. For example, following causes an error because imgB 
defined as a local scope: 



 imgA = “./bar.jpg”; 
 if (numA > 3)  
 { 
  imgB = “./foo.jpg”; 
 } 
 print(imgB); 

  It also is applied between languages imported from file using a load function and languages written in 
interpreter. For example, suppose you type such as: 

 imgA = “./bar.jpg”; 
 load(“foo.ipl”); 
 imgC = imgA + imgB; 

  While in foo.ipl: 

 if (numA > 3)  
 { 
  imgB = “./foo.jpg”; 
 } 

  As a result, it causes an error in line 3 because it is treated as same as follows: 

 imgA = “./bar.jpg”; 
 if (numA > 3)  
 { 
  imgB = “./foo.jpg”; 
 } 
 imgC = imgA + imgB; 

 
10.  Boolean expressions 
  In several places in IPL requires expressions which evaluate true or false: in if statements and loop(while) 
statements. In IPL, constants and variables consisting only single integer are only allowed to compare with 
operator such as: 

 |   &   ==   !=   <   >   <=   >=  

  Or by the unary operators: 

 ! 

  Even there is no such a boolean type in IPL, the result of those operation is both true or false. As a result, in 
IPL, those expression is allowed only in parenthesis of if statements and loop(while) statements. 

  Parenthesis can be used for grouping, but not for function calls. 

 
11.  Examples 
11.1 Example 1 –  defunc and while 

defunc fall3 (imgA startTime endTime) imgB  
{ 
 coordA = <xof(imgA),yof(imgA)-3>; 
 imgB = move (imgA coordA startTime endTime); 
} 
 
imgA[0] = “./small_circle.jpg”; 
imgB = “./triangle.jpg”; 



imgC = “./rect.jpg”; 
imgA[1] = “./mid_circle.jpg”; 
imgA[2] = “./big_circle.jpg”; 
 
numA = 0; 
while(numA < 3) 
{ 
 imgA[numA] = imgA[numA] <numA,numA> @ numA * 30; 
 numA = numA + 1; 
} 
 
imgC = imgA $ imgB; 
imgC = imgC<-3,4>; 
imgD = fall3 (imgC[0] 1 3); 
 
print(imgD); 

 
  define a function which moves image down to 3 point as fall3. imgA is defined as a list of circles, while 
imgB is triangle and imgC is rectangle. Rotate each element of imgA with 0, 30, and 60. Then combine imgA 
and imgB as imgC. After creating imgC, imgC set to (-3,4) coordination and call the fall3 function with 
imgC[0], 1, 3. return value is assigned to imgD and it will be shown by print() function. 
 
11.2 Example 2 –  Escher picture 

  
imgA = "./lizardWhite.jpg"; 
imgB = "./lizardBlack.jpg"; 
imgC = (imgA $ (imgB @-90)) # (imgB @90 $ imgA @180); 
imgD = (imgC @180 # imgC @180) $ (imgC # imgC); 
print(imgD) 



  

  img1   img2 
  
 (Assume that each triangle with edge 1 ) 
 img1 = “./fishL.jpg” 
 img2 = “./fishR.jpg” 
 imglist[1] = img1 <0,0> 
 imglist[2] = img2 <squr(3)/2, -1/2> 
 imglist[3] = img2 <0,0> @ 120 
 imglist[4] = img1 < squr(3)/2, -1/2> @ 120 
 imglist[5] = img1<0, -1> @ -120 
 imglist[6] = img2 <…. 
 defunc showall ( imagelist[] ) imgX 
 {  
  intA = 1; 
  imgX=null; 
  while (intA<sizeof(imglist[])) 
  {  
   imgX = combine (imgX, img[intA]); 
  } 
 } 
 img = showall (imglist[]); 



 imglist[1] = img <0,0> 
 ……………… 
 
11.3 Example 3 –  animation 

 
 
  If you want to display this Bitmap Images like an animation, you can easily use the animation function, 
which is one of the built-in functions in IPL: 
 
 imgA[0] = “./ani00.jpg”; 
 imgA[1] = “./ani01.jpg”; 
 imgA[2] = “./ani02.jpg”; 
 imgA[3] = “./ani03.jpg”; 
 imgA[4] = “./ani04.jpg”; 
 imgA[5] = “./ani05.jpg”; 
 imgA[6] = “./ani06.jpg”; 
 imgA[7] = “./ani07.jpg”; 
 imgA[8] = “./ani08.jpg”; 
 imgB = animate imgA 0.3; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 1 
Syntax Summary 

 
1. Expressions 
 expression: 
  primary 
  lvalue asgnop primary 
 
 primary: 
  identifier 
  constant  
  string 
  coordination 
  primary ( primary-listopt ) 
  primary [ primary ] 
  primary coordination 
  primary binop primary 
 
 lvalue: 
  identifier 
  primary [ primary ] 
  
 coordination: 
  < primary , primary > 
  
  The primary-expression operators 

 [ ]  { } 

have highest priority and group left– to right 

  Unary operator 

 ! 

has priority below the primary operators but higher than any binary operator, and groups right-to-left. Binary 
operators and the conditional operator all group left-to-right, and have priority decreasing as indicated: 

 binop: 
  / divide  % mod  *  multiply 
  +  plus  - minus 
  ^ Scale  @ Rotate 
  $ Horizontal # Vertical 
  < > <= >=  
  == != 
  | & 

  Assignment operator has the same priority, and groups right-to-left. 

 asgnop: 
  = 

  The comma operator has the lowest priority, and groups left-to-right. 

 statement: 
  expression 
  { statement-list } 



  if ( primary ) statement 
  while ( primary ) statement 
  defunc  func_identifier ( param-listopt ) return-identifier statement 
  break; 
  continue; 
 
 statement-list: 
  statement 
  statement statement-list 
 
 param-list: 
  identifier 
  identifier parameter-list 
 
 return-identifier: 
  identifier 
  VOID 


