
GPA Reference Manual

mbp2103: Michael Pierorazio, Project Manager
vaz2001: Vincenzo Zarrillo, Systems Integrator
dg2267: Dmitry Gimzelberg, Systems Architect
jmg2105: Juan Gutierrez, Quality Assurance

1. Introduction
GPA is a light weight, general purpose language whose design incorporates the
low-level understanding of assembly language while allowing the use of high
level constructs such as functions and loops. The premise behind GPA comes
from programmers who are used to working close to hardware but require some
high level constructs, and as a result, GPA falls somewhere between assembly
code and the C language in terms of abstraction. GPA is simple to learn for those
who know another language, but due to its high level syntax, it is also easy for
beginners to understand. The goal of GPA is to be simple, powerful, and fast.

2. Lexical Conventions

2.1 Comments
GPA accepts two different types of comments:

2.1.1 Single Line Comments
The characters // begin a single line comment. Everything to the
right side of these characters on the same line is ignored by the
compiler.

 2.1.2 Multiple Line Comments

The characters /* begin a multiple line comment and the
characters */ will end the comment.

2.2 Identifiers
Identifiers are made of at least one letter and then may be followed by any
number or combination of letters, numbers or underscores.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be
used otherwise (note: if the language has a shorthand equivalent defined
for a keyword it is noted in the second column):

 Keyword Shorthand (if it exists)
 variable v

 procedure p
 go
 return r
 loop l
 break

 if
 elsif
 else
 print
 println

2.4 Variables
There are two different types of objects stored by using the variable
identifier.

 2.4.1 Integers
 An integer is a sequence of digits.

 2.4.2 Strings

A string is a sequence of characters started and terminated by the
single quote character (‘). Strings refer to an area of storage
initialized with the given characters. The compiler places a null byte
(\0) at the end of each string so that programs which scan the string
can find its end. Within a string a single quote must be preceded
another single-quote (‘). Certain non-graphic characters may be
escaped according to the following table:

 ‘ ‘’
 \ \\
 BS \b
 NL \n
 CR \r
 HT \t

3. Syntax Notation
The syntax notation used in this manual, syntactic categories are indicated by
italic type, and literal and characters in Courier. Alternatives are listed on
separate lines. An optional terminal or non-terminal symbol is indicated by the
subscript “opt,” so that

 { expressionopt }
would indicate an optional expression in braces.

4. lvalues & procedures
There is only one type of lvalue in GPA which is an identifier.

procedures take at most three arguments of type integer and return an integer
type only.

They are defined outside of the go procedure like this:

procedure foo(a, b, c)

{
 …
}

And are used within a procedure like this:

{ x =opt } foo(a, b, c)

5. Conversions
No conversions can be done because operations can only be done on either a
single constant expression or a set of homogenous ‘variable’ therefore there is
no need to do any conversions.

6. Expressions
The precedence of expression operators (see chart)

 6.1 Primary expressions
 Primary expressions involving function calls group left to right.

6.1.1 identifier
 An identifier is a primary expression once it has been declared.

 6.1.2 variable

An integer and a string are both primary expression each of their
own respective type.

 6.1.3 (expression)

A parenthesized expression is a primary expression whose type
and value are identical the same expression without parentheses.

 6.1.4 primary-expression (expression-listopt)

A function call is a primary expression followed by an optional
listing of comma-separated expressions which serve as the
arguments to the function.

 6.2 Unary operators

Expressions with unary operators group right-to-left (these operators only
apply to variables of integer type).

 6.2.1 – expression

The result of the ‘– ‘ operator is the negative of the expression and
is the same type.

 6.2.2 ! expression

The result of the ‘!’ operator is the one’s complement of the
expression.

 6.2.3 expression ++
The result of the postfix ‘++’ operator is the value of the expression
incremented by 1.

 6.2.4 expression --

The result of the postfix ‘-- ‘ operator is the value of the expression
decremened by 1.

 6.3 Multiplicative Expressions

The multiplicative operators * and / group left-to-right (these operators only
apply to variables of integer type).

6.3.1 expression * expression
The ‘*’ operator yields the product of the two expressions.

 6.3.2 expression / expression
 The ‘/’ operator yields the (integer) quotient of the two expressions.

 6.4 Additive Operators

The additive operators + and – group left-to-right (these operators only
apply to variables of integer type).

 6.4.1 expression + expression

The ‘+’ operator yields the sum of the two expressions.

 6.4.2 expression – expression

The ‘-‘ operator yields the difference of the two expressions.

 6.5 Shift Operators
The shift operators << and >> group left-to-right (these operators only
apply to variables of integer type).

 7.5.1 expression << expression
 7.5.2 expression >> expression

 6.6 Relational Operators

The relational operators group left-to-right, but this is not useful because if
“a<b” is true then “a<b<c” is breaks down to “1<c” which is probably not
what a programmer wanted to write (these operators only apply to
variables of integer type).

 6.6.1 expression < expression
 6.6.2 expression > expression

6.6.3 expression <= expression
6.6.4 expression >= expression

For each of these operators, the result is 0 if the relation between
each expression is false, 1 if true.

 6.7 Equality operators

These operators only apply to variables of integer type.

 6.7.1 expression == expression
 6.7.2 expression != expression

The == (equal to) and the != (not equal to) operators are exactly
analogous to the relational operators except that they have a lower
precedence.

 6.8 expression & expression

These operators only apply to variables of integer type.
The ‘&’ operator groups from left-to-right and gives the bitwise ‘and’ of the
two expressions.

 6.9 expression | expression

These operators only apply to variables of integer type.
The ‘|’ operator groups from left-to-right and gives the bitwise ‘or’ of the
two expressions.

6.10 expression && expression
These operators only apply to variables of integer type.
The ‘&&’ operator groups from left-to-right and yields 1 if both its operands

 are 1, otherwise, 0.

 6.11 expression || expression

These operators only apply to variables of integer type.
The ‘||’ operator groups from left-to-right and yields 1 if one or both of its
operands are 1 and 0 otherwise.

 6.12 identifier = expression

The value of the expression replaces the value of the identifier (if it has
already been defined).

7. Declarations
Declarations have the form:

7.1 variable identifier = expression, identifier = expression, …
A set of variables can be created and defined in one line, separating each
identifier with a comma.

7.2 variable identifier = expression
A single identifier is created and defined on the same line.

7.3 variable identifier, identifier …
A set of identifiers can be created all at once, separating each identifier
name with a comma. These identifiers are assumed to be defined later.

7.4 variable identifier

 A single identifier is created and is assumed to be defined later on.

8. Statements
Except as indicated, statements are executed in sequence.
 8.1 expression statement

expression \n

 8.2 compound statement
 compound-statement:
 { statement-list }

 statement-list:
 statement
 statement \n statement-list

 8.3 Conditional statement
 There are multiple forms of the conditional statement:

 if (expression) statement
 if (expression) statement elsif (expression) statement … else statement
 if (expression) statement else statement

Both ‘if’ and ‘elsif’ must have their expressions evaluate to 1 in order for
their respective statements (or { statement-list }) to be executed, otherwise
they jump down to the next ‘elsif,’ ‘else’, or continue. The ‘else’ ambiguity
is resovled by connecting it to the last elseless ‘if.’

 8.4 loop statement
 The loop statement has the form:

 loop expression (or null) : expression (or 1) : expression (or null)

statement

The loop statement can take up to three arguments (in this order): an
initialization expression, a conditional expression, and finally a
increment/decrement expression. The second and third expression are
evaluated at the end of each loop. If no second expression is defined, the
loop condition is assumed to always be true.

 8.5 Break statement
 The break statement causes termination of the smallest enclosing loop.
 break

 8.6 Continue statement

The continue statement causes control to pass to the end of the loop.
 continue

 8.7 return statement
 The return statement can have two forms:

return
 return expression

Both statements exit out of a function back to the calling procedure. The
second form is used to return a value computed by the function that the
calling procedure is using in an expression.

9. Scope Rules
Variables are local to the procedure in which they are declared unless defined in
the go function, which makes them global.

10. Constant Expressions
All expressions evaluate to constants.

16. Examples

procedure foo(a, b)
{
 variable c=0
 if(a > b)
 return 0;
 loop : a <= b : a++
 {
 c=c+1
 }

 return c
}

procedure loopDemo(a, b)
{
 v z,d,i=0;
 d = 10;
 z = a + b - d;
 loop : z != b :
 {
 z--;
 if (z <= 0)
 break;
 else
 i++;
 }
}

procedure:gcd(a,b)

{
 if(a == 0 && b == 0)
 b = 1
 elsif (b == 0)
 b = a
 elsif (a != 0)
 loop : (a != b) :
 {
 if (a <b)
 b -= a
 else
 a -= b
 }
return b
}

go()
{
 variable a=4, b=9, c
 c=foo(a,b)
 if(c == 0)
 println ‘b is less than or greater than a.’
 else
 {
 print ‘The difference of a and b is ‘
 print c
 println ‘.’
 }

 loopDemo(c, a)

 v x=18, y=12, z
 z = gcd(x, y)
 print ‘the gcd of ‘
 print x
 print ‘and ‘
 print y
 print ‘is ‘
 println z
}

