

BGGL (Board Game Generator Language)
Language Reference Manual
COMS W4115: Programming Languages and Translators
Professor Stephen Edwards
sedwards@cs.columbia.edu

{
Matt Chu (mwc2110)
Steve Moncada (sm2277)
Hrishikesh Tapaswi (hat2107)
Vitaliy Shchupak (vs2042)
}

Page 1� of 12�

BGGL Language Reference Manual

1. Lexical Conventions
1.1 Introduction

There are five classes of tokens used in BGGL. They are identifiers,
keywords, numbers, string literals, and other tokens. White space is used to
separate different tokens in BGGL. In the context of this language, white
space refers to spaces, tabs, and new lines.

1.2 Comments
Single-line comment-style introduced by two forward slashes “//” causes the
compiler to ignore the rest of the line.

// this is a comment

1.3 Identifiers
Identifiers in BGGL are any combination of letters, digits, and underscores
(“_”) whose first character is a letter.

king queen_3 P_

1.4 Keywords
The following words are reserved and therefore may not be used as
identifiers:

 General Keywords
boolean Domain-Specific Keywords
break board
continue col
else diagonal
false game
if jump
int move
print movement
return orthogonal
string piece
true row
while rule
 thisplayer
 winner

1.5 Numbers

Numbers in BGGL will consist of digits. All numbers will be treated as
standard 32-bit integer types.

1.6 String Literals

Page 2� of 12�

String literals are any characters enclosed by a set of double quotes (“<any
combination of characters>”). To include an opening or closing double quote
inside a string literal, type backslash + ”. (\”)

1.7 Other Tokens
There are a set of single characters that must be used correctly according to
BGGL’s syntax. They include:

{ } () []
+ - * / % < >
! : ; , # _

There are also a set of character pairs which must be used correctly according
to BGGL’s syntax. They include:

&& || == <= >= !=

2. Types
boolean : standard Booleans, true or false
int : standard 32-bit integers
string : a string of characters
move : BGGL type for action-level game specifications
piece : BGGL type for individual player-level specifications

3. Expressions
3.1 Introduction

The following section explains the behavior of expressions in BGGL. The
order of the subsections indicates expression operator precedence and the
specific linear associativity will be explicitly stated within each subsection.
For the most part, expressions in BGGL follow standard conventions almost
identically.

3.2 Primary Expressions
Primary expressions include identifiers, parenthesized expressions, function
calls, and BGGL-specific constructs. A function call contains a primary
expression followed by parentheses containing a possibly empty, comma-
separated list of expressions which constitute the arguments to a function.
The associativity of primary expressions is left-to-right.

3.3 Unary Operator
The unary operator includes the ! token. It produces the negation of the
adjacent expression. The associativity of the unary operator is right-to-left.

3.4 Multiplicative Operators

Multiplicative operators include the tokens *, /, and %. The binary * triggers

Page 3� of 12�

multiplication. The binary / triggers division. The binary % triggers the
modular division operator, which gives the remained from the division of the
first expression by the second expression. The associativity of multiplicative
operators is left-to-right.

3.5 Additive Operators

The additive operators include the tokens + and -. The binary + yields the
sum of the expressions and the binary – yields the difference of the
expressions. The associativity of additive operators is left-to-right.

3.6 Relational and Equality Operators

The relational and equality operators include the tokens <, >, <=, >=, ==, and
!=. Both sets of operators yield 0 if the binary relation is false and 1 if it is
true. The associativity of relational and equality operators is left-to-right or
right-to-left.

3.7 The Boolean AND Operator

The Boolean AND operator includes the token &&. It returns 1 if both
expressions surrounding the token are non-zero. It returns 0 is both
expressions are 0. The associativity of the Boolean AND is left-to-right.

3.8 The Boolean OR Operator

The Boolean OR operator includes the token ||. It returns 1 if either
expression surrounding the token are non-zero. It returns 0 is both
expressions are 0. The associativity of the Boolean OR is left-to-right. If the
first expression is non-zero, the second expression is not evaluated.

3.9 Assignment Operator

The assignment operator includes the token =. It requires that an l_value be
its left operand and that the type of the assignment expression is the same as
the left operand. After assignment, the resulting value is stored in the left
operand. The associativity of the assignment operator is right-to-left.

4. Statements
4.1 Introduction

Statements in BGGL are executed sequentially from top to bottom. For the
most part, statements in BGGL follow standard conventions almost
identically.

4.2 Expression statement

A majority of statements in BGGL are expression statements, which are of
the following form:

expression ;

4.3 Conditional statement

Page 4� of 12�

There are two forms of BGGL’s conditional statement:
if (expression) { [statement] * ; }
if (expression) { [statement] * ; }
else { [statement] * ; }

In both cases the expression is evaluated and if it is non-zero, the first sub-
statement is executed. In the second case the second sub-statement is
executed if the expression is 0. As per convention, ambiguity regarding the
else is resolved by connecting an else with the last-encountered “elseless if.”

4.4 Iterative Statements

BGGL supports a standard while loop structure. This statement will execute
the commands and statements inside the open and closed brackets while the
expression contained in parenthesis evaluates to a non-zero number using
BGGL’s Boolean support. This expression is checked when the statement is
first encountered in the program’s sequence, and at each time execution
reaches the final close-bracket. The loop will continue to repeat until the
expression evaluates to 0, at which time the execution will bypass the block
and proceed sequentially through the rest of the program.

while (expression) { [statement] * ; }

4.5 Return Statement

A function returns to the invocation token via a return statement, which may
have either of the following two forms:

return ;
return (expression) ;

In the first case nothing is returned. In the second case, the value of the
expression is returned to the caller of the function.

5. Functions
5.1 Introduction

A function gathers a sequence of BGGL statements into a named piece of
code. This section describes how functions are defined and how they are
invoked.

5.2 Function Declarations

The following structure illustrates the acceptable method of defining a
function:

return_type function_name (parameter_list) {
 [statement] * ;
 [return_statement] ;
}

Page 5� of 12�

Function_name is the name of the function that user has given and the
parameter list is a list of identifier of arguments, separated by commas.
Parameter list can be empty.

5.3 Function Invocations

Function calls are of the following form:

function_name (parameter) ;

A function must be defined before it is invoked, and the parameter list must
contain types identical to the ones expected according to the function
definition.

6. BGGL-Specific Conventions
6.1 Introduction

Two conventions which are used extensively in BGGL are ones which
pertain to board game layout’s coordinate system and rule-specification
syntax. The deviations from the aforementioned rule structure demonstrate
the way BGGL is tailored to the specific domain of board game generation.

6.2 Board Coordinate Conventions

A board may be declared in two ways:
Board(8,8); //all pieces are _ by default
Board = [

[#,B,#,B,#,B,#,B]
 [B,#,B,#,B,#,B,#]
 [#,B,#,B,#,B,#,B]
 [_,#,_,#,_,#,_,#]
 [#,_,#,_,#,_,#,_]
 [W,#,W,#,W,#,W,#]
 [#,W,#,W,#,W,#,W]
 [W,#,W,#,W,#,W,#]

];

 In both cases a board with eight regions across and eight regions down is
created. The tokens used in the more-explicit second example are #, _, and
identifiers. The # indicates that the region is invalid. The _ indicates a Piece
variable for “no piece.” The identifiers also indicate Piece variables.

BGGL only permits one board declaration. This way, a specific coordinate on
the board can always be accessed using the following syntax:

Page 6� of 12�

[x][y]

This means that checking to see if a specific region of the board is empty
would be accomplished using the following statement:
if ([3][3] == _)

Array out of bounds checking is implicit within the program and will print an
error that will not halt execution of the program.

The ability to quickly reference specific rows or columns is also supported
using the following syntax.
row[1]

col[1]

In both of these cases, an array is returned. The structure of this array will be
identical to the initialization syntax. For example, in tac tac toe, to check if
the game is over, you could use
if (row[1] == [X,X,X])

This row and column referencing ability can also be used during
initialization.
row[1] = [X,X,X]

6.3 Rule Syntax Conventions

Rules are blocks of code which automatically check move’s that involve
movement of pieces for validity. For example:
Rule rulename:piece1, piece2 {
 length == 1;
 movement == orthogonal;
 jump == false;
 emptysquare == true;
 x2 > x1;

}

This sets the four basic parameters that define the movement of a piece to the
values specified.

• length is how many valid board squares (not including any squares
that might have been marked invalid when the board is declared) the
piece is allowed to move.

• movement defines the direction in which the piece is allowed to
move. 'orthogonal' is along the x and y axes and 'diagonal' is
diagonal.

• jump defines if the piece is allowed to jump over any other region

Page 7� of 12�

when moving.

• emptysquare flag is set when the piece can only end up in a region
that is empty.

• If any of these parameters are not set, any arbitrary movement is
possible.

• It is also possible to include other Boolean statements involving
coordinates of the old region and new square that allow greater
flexibility in defining the movement.

6.4 Additional Conventions

• A rule is satisfied only if all statements in the rule block are true.

• function numPieces(piece) returns the number of pieces on
the board.

• function makemove(m) first calls the isValidMove
function(), then atomically applies move(s) m to the board. If
any move fails any rule, the entire move is not done.

• syntax of move variable is x:y:piece:direction, where
direction is either + or -. For example to remove a black piece from
(3,3), you could use m = 3:3:B:-; makemove(m);

• There are special variables: thisplayer, winner, board

• The main game must be contained in the Game section.

• A turn block loops thru the code inside the block until an exit
statement is called

• Typically, in the function definition for isValidMove(), a
statement like move1 : rule1 || rule2; would check all the
submoves of move1 and look to see if any of rule1 and rule2 act upon
any of the moving pieces involved in move1 and if the movements are
valid according to the Rules.

• Most of the basic elements of movement checking for pieces will be
covered by the Rules. The programmer is expected to have additional
code in functions like isValidMove() to check for special cases
while determining the legality of a move.

Page 8� of 12�

7. Sample Program - Checkers

Player p1;

Player p2;

Piece W, B, Wk, Bk; //white, white king, black, black king

//player 1 = White, player2 = black

Board = [[#,B,#,B,#,B,#,B]

 [B,#,B,#,B,#,B,#]

 [#,B,#,B,#,B,#,B]

 [_,#,_,#,_,#,_,#]

 [#,_,#,_,#,_,#,_]

 [W,#,W,#,W,#,W,#]

 [#,W,#,W,#,W,#,W]

 [W,#,W,#,W,#,W,#]];

boolean isGameOver() {

 if (numPieces(B) + numPieces(Bk) == 0) {

 winner = p1;

 return true;

 else if (numPieces(W) + numPieces(W k)== 0) {

 winner = p2;

 return true;

 }

 return false;

}

Page 9� of 12�

Player nextPlayer() {

 if (thisplayer == p1) {

 return p2;

 }

 else {

 return p1;

 }

}

//specifies rules for valid coordinates

Rule validCoord: W,Wk,B,Bk {

 movement = diagonal;

 emptysquare = true;

 jump = true;

}

Rule whiteForward: W {

 m[1].x > m[0].x; // whites can move up

}

Rule blackForward: B {

 m[0].x > m[1].x; // black pieces can only move
down

}

Rule correctPlayer1: W { //player 1 moves white pieces

 thispayer == p1;

}

Page 10� of 12�

Rule correctPlayer2: B { //player 2 moves black pieces

 thisplayer == p2;

}

Rule capturePiece: B,W {

 m[0].piece != m[2].piece; //capturing opponents piece

}

//main code for all pieces manipulation is here

Move[] getMove() {

 Move m[3]; // up to 3 moves at a time

 // (x1, y1) = piece to be moved

 // (x2, y2) = where to place

 x1 = input ("Enter x1:");

 x2 = input ("Enter x2:");

 y1 = input ("Enter y1:");

 y2 = input ("Enter y2:");

 m[0] = x1:y1:[x1][x2]:-; //remove piece from square

 m[1] = x2:y2:[x2][y2]:+; //place piece on destination
square

 //if jumping over a piece, remove the piece jumped over

 if (length(m) == 2) {

 m[2] =
(x1+x2)/2:(y1+y2)/2:[(x1+x2)/2]:[(y1+y2)/2]:-;

 }

 return m;

Page 11� of 12�

}

isValidMove(m) {

 //check that move m follows all the rules (for the
piece for each rule)

 m: validCoord && nonKing && whiteForward &&
blackForward && correctPlayer1 && correctPlayer2 &&
capturePiece;

}

Game

{

 thisplayer=p1;

 turn mainturn

 {

 Move m[] = getMove(); //two moves, one removes
piece, one adds piece

 makemove m;

 }

 else {

 gototurn mainturn;

 }

 if (isGameOver()) {

 print "Game Over! Winner is " + winner);

 }

 thisplayer = nextPlayer();

 }}

Page 12� of 12�

	BGGL Language Reference Manual
	1. Lexical Conventions
	2. Types
	3. Expressions
	4. Statements
	5. Functions
	6. BGGL-Specific Conventions
	 7. Sample Program - Checkers

