
G!
A programming language for 2D games

Language Reference Manual
Rachit Parikh rnp2102@columbia.edu
Divya Arora da2254@columbia.edu

Steve Lianoglou sl2585@columbia.edu
Amortya Ray ar2566@columbia.edu

COMS W4115: Programming Languages and Translators
Department of Computer Science

Columbia University

October 19, 2006

CONTENTS

1. Introduction……………………………………………………………………………………3
2. Lexical Conventions……………………………………………………………….…………..4

2.1. Tokens…………………………………………………………………………………….4
2.2. Comments………………………………………………………………………………...4
2.3. White Space………………………………………………………………………………5
2.4. Identifiers…………………………………………………………………………………5
2.5. Keywords…………………………………………………………………………………5

3. Operators………………………………………………………………………………………6
3.1. ! operator………………………………………………………………………………….6
3.2. @ operator………………………………………………………………………………...7
3.3. Arithmetic………………………………………………………………………………...8
3.4. Relational…………………………………………………………………………………9
3.5. Logical……………………………………………………………………………………9
3.6. Dot operator……………………………………………………………………………..10
3.7. Colon operator.………………………………………………………………………….10
3.8. Other operators.………………………………………………………………………….10

4. Functions……………………………………………………………………………………..12
4.1. Function definition………………………………………………………………………13
4.2. Function calls……………………………………………………………………………13
4.3. Built-in functions………………………………………………………………………..13
4.4. User-defined functions…………………………………………………………………..13

5. Data Types……………………………………………………………………………………13
5.1. Basic data types………………………………………………………………………….13
5.2. Higher level data types…………………………………………………………………..14

6. Statements…………………………………………………………………………………….15
6.1. Structure of a program…………………………………………………………………...15
6.2. Structure of a statement………………………………………………………………….17
6.3. Loops…………………………………………………………………………………….18
6.4. Control Statements………………………………………………………………………18
6.5. Blocks……………………………………………………………………………………18

7. Complete ANTLR grammar………………………………………………………………….19
8. Sample program in G! ………………………………………………………………………..30

2 2

1. INTRODUCTION

The minutia of game development is a tedious and complicated affair. In general, game
developers are forced to write repetitive code that requires a lot of bookkeeping in order to
ensure its proper function. If one takes a moment to think about the details involved in writing
code to figure out if two objects run into each other, or moving an object on the screen in
response to a keyboard press, the details of this process will quickly come to the light.

Enter G! The goal of G! is a game developing language which specializes in making
interactive 2D games. G! will enable the game developer to focus on the overall game play
of the target game instead of the rote details of the game play implementation.

3 3

2 Lexical Conventions

2.1 Tokens
The lexical conventions used in G! can be roughly divided into 6 categories- tokens, comments,
white space, identifiers, keywords, operators, line separators, line terminators and constants.

2.2 Comments
G! allows for two types of comments. Inspired by C/ Java, we allow the programmer to include
single line comments using the double forward slash ‘//’. The comments that begin with the ‘//’
token run till the end of the line.

G! also follows the C/ Java convention for multi-line tokens. Multi-line comments begin with a
forward slash ‘/’, followed by an asterisk ‘*’. They run till the next asterisk ‘*’ followed by the
forward slash ‘/’ is encountered.

Example:
// This is an example of a single-line comment in G!

/* This is
an example
of a multi-line
comment in
G! */

Nesting comments doesn’t really make much of a difference. In other words, the multi-line
comment begins at the first slash-star ‘/*’ and ends at the following star-slash ‘*/’ irrespective
whether it encounters a subsequent slash-star ‘/*’ in between. Hence the following nested comment
is redundant.

Example:
/* This is an
example of
//This is a nested comment
nesting comments */

4 4

2.3 White Space
White space is ignored by the G! compiler. White space includes spaces, new line characters ‘\n’,
tabs ‘\t’. They are only used to separate tokens.

2.4 Identifiers
An identifier is a user defined variable that is used by the programmer in the source. As per G!
conventions, an identifier has to begin with a alphabet (A-Z, a-z), and can have any character
following it (A-z, a-z, 0-9, _). Hence, identifiers cannot start with a number or an underscore.
Identifiers are case sensitive. In other words, ‘var’ is different from ‘Var’ and ‘VAR”. Lastly, an
identifier cannot be a reserved keyword.

Example:
Integer count;
Double var;
Sprite car;
SpriteGroup deck;
Sound soundtrack;

(The data types Integer, Double, Sprite, SpriteGroup and sound are explained later in the manual.)

2.5 Keywords
Keywords are special reserved identifiers. An identifier cannot have the same name as a keyword.
Following are the keywords in G!.

for
if
else
while
include
func
break
continue
return
void
when
print
null

G! tries to provide the programmer with a minimum number of keywords, while at the same time
trying to maximize the utility provided by the keywords.

5 5

3. Operators
 G! includes the following 6 categories of operators:

1. ! operator
2. Arithmetic
3. Relational
4. Logical
5. Dot operator
6. Colon Operator
7. Function call operator, Assignment operator , The comma operator and the Array

reference Operator

Here’s a brief on the different operators and their Associativity and Precedence:

3.1 The ! (Bang) Operator
The ! operator has its origins in the G! evolution and is essentially a binary boolean operator that
operates on two Sprite objects, Sprite being a datatype in G!. Since G! is a language specialized in
game development and games are incomplete without collisions and explosions, we provide the
user with a convenient way to denote such collisions using the ! operator. The ! operator can take 5
different forms as follows:

Operator Syntax Description

!
!left

!right
!top

!bottom

SpriteA ! SpriteB
SpriteA !left SpriteB
SpriteA !right SpriteB
SpriteA !top SpriteB

SpriteA !bottom SpriteB

SpriteA collides with SpriteB
SpriteA collides with SpriteB on the left

SpriteA collides with SpriteB from the right
SpriteA collides with SpriteB from the top

SpriteA collides with SpriteB from the bottom

The above ! expressions are generally used in the conditional part of the “WHEN” statements
which are asynchronous statements that are executed whenever a particular condition is true,
irrespective of where these when statements are positioned in the program. They are left-to-right
associative. This is explained in more detail in section 6.

An example of the use of ! operator would be:

when (hero !left wall) {
 // when the hero bangs into the left side of the wall ...
 hero.setHorizontalSpeed(0);
}

3.2 The @ Operator
The @ Operator is used in conjunction with the “Coordinate” datatype in G! which represents the
x and y coordinates of a sprite on the 2-D playfield. The @ Operator is thus, a postfix, right-to-left
associative, unary operator used in the form

Spritename @<location>

6 6

such that it returns the coordinates of the specified location of the Sprite operand on which it
operates, given that the sprite is represented by a 2-D image.

For example:
when (bullet ! enemy) {
 // calls method to play an explosion Sprite at the
 // center of the enemy
 play_sprite_once(sprite: explosion, pos: enemy@center);
}

The location could be left, right, center, top, bottom, topleft, topright, bottomleft, bottomright as
follows:

Operator Meaning
@top coordinates of top middle of sprite on left of @
@right coordinates of right middle of sprite on left of @
@bottom Coordinates of bottom middle of sprite on left of @
@left Coordinates of left middle of sprite on left of @
@center coordinates of center of sprite on left of @
@topleft coordinates of top left corner of sprite on left of @
@topright coordinates of top right corner of sprite on left of @
@bottomleft coordinates of bottom left corner of sprite on left of @
@bottomright coordinates of bottom right of sprite on left of @

3.3 Arithmetic Operators

3.3.1 Unary Operators
Unary operators are operators that operate on a single operand. G! supports four unary operators:
unary + and unary -, unary ++ and unary --. The result of the unary operator + is the value of the
operand while the result of the unary – operator is the negative of its operand. The operand must be
of the arithmetic type. The unary ++ and unary -- operators are used as prefix or postfix operators
i.e. before or after the operand. The ++ operator essentially increments the value of the operand by
1 and the -- decrements the value of the operand by 1. The difference between postfix ++ and
prefix ++ is that a prefix ++ increments the value of t he operand and then uses it in the expression
whereas the
postfix ++, uses the value of the operand first and increments it later.

Examples of unary operators in G! are:
VerticalSpeed = +0.5

7 7

 //Sets vertical speed to 0.5 in the positive read upward
direction

HorizontalSpeed = -1
//Sets horizontal speed to 1 in the negative read left direction

VerticalSpeed2 = 1 + VerticalSpeed
//Results in VerticalSpeed2 increased to 1 + (0.5)) =+2.5,
assuming the above value

HorizontalSpeed2= HorizontalSpeed-- - 1
//Results in HorizontalSpeed2 being set to -2, and HorizontalSpeed
being reduced to -2, assuming the above values.

Expressions with unary operators associate from right to left except for the postfix ++ and postfix
-- operators which have a left-to–right associativity

3.3.2 Multiplicative Operators
Multiplicative operators are binary operators which operate on two operands and perform their
respective operations on the values of both the operands. The following is a table of multiplicative
operators in G!, their syntax and their description:

Operator Syntax Description
*
/
%
^

 A * b
 a / b
 a % b
 a ^ b

a times b
a divided by b
Remainder of a/b
a to the power of b

The multiplicative operators associate from left to right.

3.3.3 Additive Operators
The additive operators + and – are binary and associate from left to right. The result of the +
operator is the sum of the operands. The result of the - operator is the difference of the operands.
The operands must be both arithmetic type.

Operator Syntax Description
+
-

A + b
a - b

a plus b
a minus b

3.4 Relational Operators
The relational operators in G! are mainly comparison operators that associate from left to right.
They include the operators <, >, <=, >= and == which represent less than, greater than, less than or
equal to, greater than or equal to and equal to, respectively. They all yield a result of type integer
with value 0 if the specific relation is false and 1 if it is true.

8 8

Operator Syntax Description
<
>

<=
>=
==

a < b
a > b
a <= b
a >= b
a == b

1 if a < b; 0 otherwise
1 if a > b; 0 otherwise

1 if a <= b; 0 otherwise
1 if a >= b; 0 otherwise

1 if a equal to b; 0 otherwise

3.5 Logical Operators
Logical operators are binary operators, which perform logical operations on the values of the two
operands and return a Boolean value (1 for true or 0 for false). G! supports the following left-to-
right associative logical operators:

Operator Syntax Description

AND
OR

NOT

a AND
b

a OR b
NOT a

Logical AND of a and b (yields 0 or 1)
Logical OR of a and b (yields 0 or 1)

Logical NOT of a (yields 0 or 1)

The motivation behind using the words AND, OR and NOT instead of the more traditional &&, ||
and ! is that the words are more intuitive and do not require the programmer to remember which
out of the variety of symbols apply here.

3.6 The Dot Operator (.)

G! utilizes the dot operator to access variables, or properties. The dot operator is used to test or set
the properties of an object or to execute a method of an object. The dot operator is left-to-right
associative.Generic examples of the dot operator are:

object.property_or_method
instancename.variable

object: An element of the game. This parameter is always to the left of the dot (.) operator.

property_or_method: The name of a property or method associated with an object. This
parameter is always to the right of the dot (.) operator.

9 9

3.7 The Colon Operator (:)
The Colon operator in G! is mainly used in the “for” loop to initialize the iterator, provide the
terminating condition and to indicate an increment or decrement of value every iteration as in the
following example:

for i = 1:10:1
for j = 10:1:-0.5

Here the loop variable i is initialized to 1.The terminating condition is separated by the first colon
and the increment or decrement is separated by the second colon. The second colon and the
increment/decrement specification is optional, in that if the user doesn’t specify the last part of the
expression, then it is set to increment by 1,by default. Eg:

for i = 1:10

3.8 Function call operator, Assignment operators, the comma
operator and the Array Reference operator

Operator Example Description/Meaning
()
=
*=
/=
+=
-=
,
[]

F()
a = b
a*=b
a/=b
a+=b
a-=b

e1,e2
a[10]

Function call
a, after b is assigned to it
a equals a times b
a equals a divided by b
a equals sum of a and b
a equals difference of a and b
e2 is evaluated after e1
Array reference

The precedence of the above operators is as follows:

Operator Symbol Operator Function

.
[]
()
!
@
++
––

Member selection (object)
Array subscript
Function call member initialization
Bang operator
Coordinate operator
Postfix increment
Postfix decrement

NOT
–
+
^

Logical not
Unary minus
Unary plus
To the power of

10 1

*
/
%

Multiplication
Division
Modulus

+
–

Addition
Subtraction

<
>
<=
>=

Less than
Greater than
Less than or equal to
Greater than or equal to

== Equality

AND
OR

Logical AND
Logical OR

: Colon

=
*=
/=
%=
+=
–=

Assignment
Multiplication assignment
Division assignment
Modulus assignment
Addition assignment
Subtraction assignment

, Comma

11 1

4 Functions

4.1 Function Definitions
A function definition is the code which explains the execution of that function. Function
definitions can occur in any order and in different files, although they cannot be nested and one
definition cannot be split across multiple files.

A function definition should have the following format:

func return-type function_name(<data_type param1>, <data_type
param2>, ...) {

function_body
return statement (not required where return-type is void)

}

A function definition should always start with a func keyword. This is followed by a return-type
which could either be void or one of the data types defined in section 5. A function_name has to be
unique (no keywords) and no two functions that are used in one file can share the same name.
Additionally, zero or more parameters can be passed as arguments to a function. The scope of these
arguments, just like the scope of all variables defined within a function, is limited to the function
definition. The body of the function is placed with {} and if the return-type is not void, then a
value must be returned at the end of the function definition. Note that the value returned by a
function is not an lvalue. A function call, therefore, cannot constitute the left side of an assignment
operator.

Example:
func int findMax(int i, int j) {

if(i>j)
return i;

else
return j;

}

G! also allows the programmer to define functions with optional arguments. This is accomplished
by introducing the idea of a keyword argument. To define a keyword argument, the argument in the
function's definition must be assigned a default value (in the function's parameter list). Every
argument to the right of the first argument in the function definition that is assigned a default value
must also be assigned a default value. When the first optional parameter is introduced, the
remaining parameters must also be optional.

The caller of a function that is defined with keyword arguments can reference those arguments by
name. This also allows for the order of the keyword arguments that the caller uses to be arbitrary.

Below is such an example to show how this works by presenting a function which calculates the
distance between two objects (or one object and the origin), and optionally plays an alert before it
returns.

12 1

func int calcDistance(Sprite objectA, Sprite objectB = null,
 Sound alert = null) {
 Coordinate a,b;
 a = objectA@center;

 if (objectB == null) {
 // assume we want to calculate distance from origin
 b.x = 0;
 b.y = 0;
 } else {
 b = object@center;
 }

 if NOT (alert == null) {
 alert.play();
 }
 return sqrt((a.x - b.x)^2 + (a.y - b.y)^2);
}

// This function can now be called like so:

distance = calcDistance(mySprite); // gets distance to origin
distance = calcDistance(mySprite, alert: ding); // distance with alert
distance = calcDistance(mySprite, otherSprite); // dist betw. 2 objects
distance = calcDistance(mySprite, objectB: otherSprite); // same thing

// now calculates distance between two objects and
// plays a soudn to let us know ... something
// note how the order of alert and objectB have changed from
// the original function definitio
distance = calcDistance(mySprite, alert: ding, objectB: otherSprite);

4.2 Function Calls
A function call is a primary expression, usually a function identifier followed by parentheses,
which is used to invoke a function. The parentheses contain a (possibly empty) comma-separated
list of expressions that are the arguments to the function. For example, the call the function
findMax defined in the example in section 4.1, we can do the following:

int max = findMax(x, y);

4.3 Built-in Functions
G! provides a lot of flexibility through its wide range of operators to execute routine gaming tasks.
Hence it provides minimum built in functions. These functions are attached to the G! datatypes and
are meant to be as easy to use (and remember) for the developer as possible. One of the most
useful and common function is the properties(name1: value1, name2: value2, ...) function, which is
used to initialize the Higher Level data type (section 5.2) objects. This function is a good example
of when using keyword arugment functions is helpful.

Example:
Sprite airplane;
//initialize the airplane object
airplane.properties(image: "image_path, 3, 2", height: 300, width:
150, posx: 235, posy: 150, group: "hero", animate: true, loopanim:
true, <parent:playfield>);

13 1

Depending on which properties are set, G! will dynamically determine which type of Sprite
eventually instantiate. For example, if the programmer sets the animate attribute to true, then
G! will (under the covers) instantiate an AnimatedSprite. The underlying library has several
distinct types of Sprites that must be used when the programmer wants specific functionality. G!
frees the programmer from having to memorize what type of Sprites can do what, and figures it out
for us at compile time.

More built-in functions will be added as and when more functionality is developed in the language

4.4 User-defined Functions
G! allows users to add their own functions which implements user-defined functionality. These
functions can be defined and used as per the specifications of sections 4.1 and 4.2. Functions do
not need to be declared (like variables and objects) before being defined but they need to be
preceded by the func keyword. Also, a function defined in one file can be used in another file by
simply including the file with the function definition in the file where it needs to be used.

5. Data Types
The data types in G! can be classified into 2 distinct types.
The first group consists of basic data types:

5.1 Basic Data Types

Integer
These are 32-bit integer numbers corresponding to the ‘int’ data type found in Java

Double
These are 64-bit double precision numbers analogous to the ‘double’ data type found in Java.

String
Variables belonging to the ‘String’ data type consist of a sequence of alphanumeric characters.

Boolean
The boolean data type is used to declare variables that consist of one of the following values- the
logical true or the logical false.

14 1

5.2 Higher level Data Types
The higher level data types provided by G! consist of the following data types:

Sprite
By definition, a sprite is a small graphic that can be moved independently around the screen,
producing animated effects. A sprite is primarily a game object that is placed on screen and that
can be manipulated on the screen as per the developer’s code. It can contain a static image holding
the image of a stationary car, or can contain a gif or a png file containing the animated image of an
airplane with its propellers rotating.

Sound
This data type is used to declare variables that point to an audio file having the midi or wav file
format. A game would be incomplete without any sound effects. Hence, we provide the sound data
type to add an audio element to games.

SpriteGroup
The SpriteGroup data type is used to group a number of sprites as one object to make sprite
manipulation manageable.

Playfield
The Playfield data type is used to declare the canvas on which all the gaming action takes place. It
is the stage on which all the game objects are displayed. It is can be the board on which a card
game is played. It can be the inter-galactic space between the star Orion and the star Vega where
the protagonist of the game Captain Langda Tyagi is trying to destroy a bunch of ALF’s (Alien
Life Forms). The only limit is the developer’s creativity.

Coordinate
The Coordinate data type is one extremely useful component in the language. It facilitates the ease
of development by providing the programmer with a ready to use data type that refers to the
Cartesian X- and Y- coordinates of a point on the Playfield.

6 Statements
6.1 Structure of a Program
G! programs have a somewhat lenient logical order. One constraint though, is that every object
needs to be associated with some properties before it can be used (initialization). After that, the
logic can be described using synchronous statements (similar to a lot of common programming
languages) as well as asynchronous statements, since this is a very event based language. The
compiler will look at the program as a whole to determine the logic of the language.

However, the sequence in which variables or object are initialized and modified depend on the
order in which they are accessed. Hence, while it is possible to define collisions, key press events
or mouse click events for a sprite asynchronously, the x and y positions of the sprite would depend
on the order in which those properties are set in the program.

15 1

In simpler terms, asynchronous statements don’t need to be in any logical order while other
statements need to follow their logical execution order. See section 7.2 for more information on
types of statements.

All statements written inside blocks as well as global declarations must terminate with a semi-
colon (;). There are various types of statements in G!

6.2.1 Empty Statement
The Empty Statement does nothing. It’s denoted by a semi-colon.

Example:
;

6.2.2 Expression Statements
These statements evaluate an expression and set values of variables. Declarations fall under this
category. Expression statements always end in a semi-colon.

6.2.3 Conditionals (if/else)
Conditionals are used to make decisions to decide the flow of the program. G! has the if/else
conditional. It is used as followed:

if (condition) {
//block 1

} else {
//block 2

}

If the condition or conditions defined in condition are fulfilled then block 1 is executed or block 2
will be executed. There are 2 variations of the if/else statements. The first one involves only using
the if statement without the else part. The second one involves using else if.

16 1

Example 1: //using only the if statement
if (x>y) {

print “x is greater”;
}

Example 2: //using if/else
if (x>y) {

print “x is greater”;
} else {

print “y is greater”;
}

Example 3: //using if/else if
if (x>y) {

print “x is greater”;
} else if (y>x){

print “y is greater”;
} else {

print “x equals y”;
}

6.3 Asynchronous Statements
One of the unique features of G! is the use of asynchronous statements. The when keyword is used
to describe an event, which is handled asynchronously in G! To avoid confusion between the if
and when statements consider the following example:

if(x < y) {
do thing1

}
when (y < z) {

do thing2
}

When the above code is executed and the program comes to the line of the if statement, it checks
whether x < y. If that is true, then thing1 is done. If that is false, thing1 is not done.
On the other hand, if the programmer writes the when statement, then whenever y<z evaluates to
true in the whole program, thing2 will be executed at that point. When codeblocks don't wait to be
called after the statements that precede it execute, the can defy space and time and the codebock
runs whenever its boolean conditional evaluates to true.

Since key press, mouse press, collision etc are common in designing games, the incorporation of
asynchronous statements should prove a handy tool for the programmer. Asynchronous statements,
like synchronous ones, have scope. They are only valid inside the block in which they are defined.
However, asynchronous statements defined in the main() method are by default global. One thing
to note is that if multiple asynchronous events are mapped to the same event, then they should be
done only if the programmer is aware of what he or she is doing. For example, mapping the UP

17 1

key press event to different sprites using the when statement within the same block, might give rise
to unexpected results in the game.

6.4 Loops and Control Statements
There are 2 different loop statements available in G! They are: for loop and while loop. Both of
these are defined as blocks as discussed in section 7.5.

The basic structure of a for loop is:
for variable = initial value: final value<: increment> {

one or more G! statements
}

This loop is executed from the time when the initial value of the variable goes from initial value to
the final value in increments of increment which could be positive or negative. Note that
specifying increment is completely optional and the default value is taken to be +1. Unless there is
a break or continue statement or unless a statement throws an exception (see section 7.4), all the
statements within the loop are executed over and over until the variable equals final value.

Example:
for i = 10:100:10 {

print i; //this will print 10, 20, 30,...,100
}

Also, variable in a for loop (i in the above example) does not need to be declared as int. G!
assumes that variable will always be an int.

The structure of a while loop is:
while(condition) {

one or more G! statements
}

This block of while loop is executed as long as the condition defined in condition is met. As soon
as the condition does not meet, the loop will stop executing. Control statements defined in section
7.4 also determine the abrupt finishing of the block while should be defined as per section 7.5

The condition can include one or more conditions separated by a logical operator. Unlike the for
loop, all the variables used in the condition part of the while loop must have pre-declared data
types and all the conditions must be defined clearly (no optional parts to the condition).

Example:
int x = 0, y = 20;
while (x<10 AND y = 20) {

print x:y; //this will print 0:20, 1:20, 2:20, ... , 9:20
x=x+1;

}

18 1

Control Statements
The break, continue and return commands can cause a transfer of control that might
prevent a normal completion of statements that contain them. Also, since statements are not
defined in a logical order and the compiler looks at the program as a whole to determine the logic
(Section 7.1), there might be a case where two or more statements contradict each other cause
ambiguity. This might result in a compile time error or run time exception being thrown (due to
evaluation of certain expressions), which might result in transfer of control that might prevent
normal completion of statements.

Abrupt completion of a substatement will cause abrupt completion of the statement containing it
for the same reason. All succeeding steps for the normal completion of the program are ignored.
On the other hand, if all expressions evaluate and all substatements complete normally, then a
statement will complete normally.

6.5 Blocks
A block of statement is a group of statements as well as variable and object declaration within
braces. Each block should fall under the category of a function, a loop, or a conditional.

Block: {
Variable declarations
Statements
}

When a block is executed, then each statement is executed before exiting the block. One exception
is the use of a control statement. Any control statement might cause the block to not execute
completely, which might in turn give rise to exceptions or errors.

Blocks determine the scope of variables. Any variables declared inside a block or captured as
function arguments would be accessible only within that block or any sub-blocks defined within
that block. Additionally variables can be declared as global outside of any blocks.

19 1

7. ANTLR GRAMMAR
Note that the latest (and plain text) version of this grammar can be found
here:

http://plt.sytes.net:8090/trac/browser/src/java/gbang/antlr/grammar.g

class GBangParser extends Parser;
options {

k = 2; // two token lookahead
exportVocab = GBang; // call the vocab "GBang"
defaultErrorHandler = false;
buildAST = true;

}

// a program is just a series of statements
program

: (statement | func_def)+
;

func_def
: "func" type ID LPAREN! define_arg_list RPAREN! block
;

// arguments/parameters in a function definition need to be able to be given
// default values to enable clean implementation of calling a function with
// keyword arguments once you start giving a variable a default value in the
// definition, the rest of the parameters in the list must have a default value
define_arg_list

: (type ID "=") => define_kwarg_list
| type var_name (COMMA! type var_name)* (define_kwarg_list)?
| /* empty */
;

define_kwarg_list
: type ID "=" rh_assignment (COMMA! type ID "=" rh_assignment)*
;

// list of arguments (used when calling a function)
// the parser leaves it to something down stream to ensure that
// keyword arguments are defined strictly after required arguments
// although this should ideally be done here!
arg_list

: ID (COLON atom)? (COMMA! ID (COLON atom)?)*
| /* empty argument list */
;

expression
: assignment
;

assignment
: var_name (ASSIGN | aug_assign_op) rh_assignment
;

aug_assign_op
: PLUS_ASSIGN

20 2

| MINUS_ASSIGN
| STAR_ASSIGN
| DIV_ASSIGN
;

aug_op
: DEC | INC
;

rh_assignment
: term
;

// Note to self: there is a trailing semi here -- this may cause problems
// if you start changing the "statement" definition
declaration

: type var_name (COMMA var_name)* SEMI!
;

if_statement
: "if"^ LPAREN! test RPAREN! (statement | block)

(// combat the dangling else -- inspired by the java1.5 grammar
options { warnWhenFollowAmbig = false; }:
"else"! (statement | block)

)?
;

when_statement
: "when"^ LPAREN! test RPAREN! (statement | block)
;

for_statement
: "for"^ (type)? var_name ASSIGN NUMBER COLON NUMBER (COLON NUMBER)?

(statement | block)
;

while_statement
: "while"^ (LPAREN)? test (RPAREN)? (statement | block)
;

include_statement
: "include" (rh_assignment) SEMI!
;

break_statement
: "break" SEMI!
;

continue_statement
: "continue" SEMI!
;

return_statement
: "return" (rh_assignment)? SEMI!
;

print_statement

21 2

: "print" rh_assignment SEMI!
;

statement
: declaration
| assignment SEMI!
| atom SEMI! // handles normal and chained (name.name.func()) calls
| if_statement
| when_statement
| for_statement
| while_statement
| include_statement
| break_statement
| continue_statement
| return_statement
| print_statement
;

// conditional test defined by operation precedence
test: and_test ("OR" and_test)*

;

and_test
: not_test ("AND" not_test)*
;

not_test
: NOT not_test
| comparison
;

// compare with traditional "<,>,<=" operators and
// the BANG (!left, !right) operators
comparison

: term (comp_op term)?
| var_name (bang_op) var_name
| key_press_check
;

comp_op
: LT
| GT
| EQUAL
| GEQ
| LEQ
| NOTEQUAL
;

// binary (boolean) operator
// LHS and RHS must be sprites
// Example: srite1 !left sprite2
bang_op

: BANG
("top" { /* sprite on LHS hits the top of sprite on RHS */ }
| "right" { /* sprite on LHS hits the right of RHS */ }
| "bottom" { /* sprite on LHS hits the bot. of sprite on RHS */ }
| "left" { /* sprite on LHS hits the left of sprite on RHS */ }

22 2

| /* just BANG: sprite on LHS hits any part of sprite on RHS*/
)

;

// Unary operator, LHS must be a sprite, returns a Coordinate object
at_op

: AT
("top" { /* top-middle coords of sprite on LHS */ }
| "right" { /* right-middle coords of sprite on LHS */ }
| "bottom" { /* bottom-middle coords of sprite on LHS */ }
| "left" { /* left-middle coords of sprite on LHS */ }
| "center" { /* center coords coords of sprite on LHS */ }
)

;

// the most unit of all things
term: factor ((STAR | SLASH | PERCENT) factor)*

;

factor
: (PLUS | MINUS) factor
| power
;

power
: atom (CARAT factor)?
;

atom: var_name (trailer)?
| truth
| INT_NUM
| DOUBLE_NUM
| STRING
| NULL
;

trailer
: (options {greedy = true;}: DOT var_name)+ (trailer)? // name.name.name ...
| LPAREN (arg_list) RPAREN // embedded function call
| (array_index)+
| at_op
| (DEC | INC)
;

array_index
: LBRACK INTEGER RBRACK
;

var_name
: ID
;

truth: TRUE
| FALSE
;

23 2

type: INTEGER_TYPE
| DOUBLE_TYPE
| STRING_TYPE
| BOOLEAN_TYPE
| SPRITE_TYPE
| SPRITE_GROUP_TYPE
| SOUND_TYPE
| PLAYFIELD_TYPE
| COORD_TYPE
| VOID_TYPE
;

// a multiline block of code.
block

: LCURLY! (statement)* RCURLY!
;

key_press_check
: "KeyPress" DOT STRING
;

// LEXER
class GBangLexer extends Lexer;
options {

k = 2;
exportVocab = GBang;
charVocabulary = '\3'..'\377'; // LATIN charset only (sorry international

unicode)!
testLiterals = false;

// The option below causes ANTLR to not catch exceptions that are generated while
// parsing the grammar. Our unit test framework works in such a way that
// it requires the parser to throw exceptions on malformed syntax
defaultErrorHandler = false;

}

tokens {
INT_NUM; DOUBLE_NUM;

}

protected
Letter

: 'A' .. 'Z'
| 'a' .. 'z'
;

protected
Integer

: '0' .. '9'
;

protected
NonZeroDigit

: '1' .. '9'
;

protected

24 2

DoubleTrailer
: '.' (Integer)*
;

WS : (' '
| '\t'
| '\f'

// handle newlines
| (options { generateAmbigWarnings=false; }

: "\r\n" // DOS / WIN
| '\r' // Macintosh (but old-school mac, I don't think we

need this)
| '\n' // Unix (the right way)
)
{ newline(); }

)+
{ $setType(Token.SKIP); }

;

SL_COMMENT
: "//" (~('\n'|'\r'))*

{$setType(Token.SKIP);}
// newline is matched by the WS rule
;

// multiple-line comments
ML_COMMENT

: "/*"
(/* '\r' '\n' can be matched in one alternative or by matching

'\r' in one iteration and '\n' in another. I am trying to
handle any flavor of newline that comes in, but the language
that allows both "\r\n" and "\r" and "\n" to all be valid
newline is ambiguous. Consequently, the resulting grammar
must be ambiguous. I'm shutting this warning off.
(Taken from Java1.5 grammar from antlr website)

 */
options {

generateAmbigWarnings=false;
}

:
{ LA(2)!='/' }? '*' // match * as long as its not followed by /

| '\r' '\n' {newline();}
| '\r' {newline();}
| '\n' {newline();}
| ~('*'|'\n'|'\r')
)*
"*/"
{$setType(Token.SKIP);}

;

ID options { testLiterals = true; }
: (Letter | '_') (Letter | Integer | '_')*
;

// taken from prof's simple language antlr demo
// this allows for a " to be embedded into a quote-surrounded string

25 2

// in this fashion: "He said, ""Why Hello"" to his friend"
// --> putting to double quotes together
STRING

: '"'! ('"' '"'! | ~('"'))* '"'!
;

NUMBER
: '0'

(DoubleTrailer { $setType(DOUBLE_NUM); } // 0.something isn't an int
| /* nothing */ { $setType(INT_NUM); } // 0 is
)

| NonZeroDigit (Integer)*
(DoubleTrailer { $setType(DOUBLE_NUM); } // 1033729. isn't an int
| /* nothing */ { $setType(INT_NUM); } // 1033729 is an int
)

| DoubleTrailer { $setType(DOUBLE_NUM); } // .873837 is a double
;

// types
INTEGER_TYPE: "Integer";
DOUBLE_TYPE: "Double";
STRING_TYPE: "String";
BOOLEAN_TYPE: "Boolean";
SPRITE_TYPE: "Sprite";
SPRITE_GROUP_TYPE:"SpriteGroup";
SOUND_TYPE: "Sound";
PLAYFIELD_TYPE: "Playfield";
COORD_TYPE: "Coordinate";
VOID_TYPE: "void";

TRUE: "true";
FALSE: "false";

// Operators
NOT: "NOT";
LPAREN: '(';
RPAREN: ')';
LBRACK: '[';
RBRACK: ']';
LCURLY: '{';
RCURLY: '}';
COLON: ':';
COMMA: ',';
DOT: '.';
ASSIGN: '=';
EQUAL: "==";
SLASH: '/';
PLUS: '+';
MINUS: '-';
STAR: '*';
PERCENT: '%';
CARAT: '^';

// AUGMENTING ASSIGNMENT
DIV_ASSIGN: "/=";
PLUS_ASSIGN: "+=";

26 2

INC: "++";
MINUS_ASSIGN: "-=";
DEC: "--";
STAR_ASSIGN: "*=";

// COMPARISON
LEQ: "<=";
LT: '<';
GEQ: ">=";
GT: ">";
BANG: '!'; // !left, !right handled by parser

// OTHER
SEMI: ';';
NULL: "null";
AT: '@'; // @left, @top, etc. get weeded out by parser

27 2

9. Sample G! Program
//This code creates a game where an airplane shoots bullets
// at a block of 28 enemies. A screen shot is attached after the code
// so you get n idea of what is happenning here.

Playfield playfield;

Sprite airplane, bullet, enemy[28];
SpriteGroup badguys;

playfield.properties(background:"bgimage_path", height: 500, width: 500);

// height and width of the airplane sprite are automatically detected
// by G!, but they can be overidden to shrink/grow the image
airplane.properties(image: "image_path", height: 300, width: 150, posx: 235,
posy: 150, group: "hero", animate: true, loopanim: true, <parent:playfield>);

bullet.properties(image: "image_path", group: "projectile", animate: true;
loopanim: false);

// make a grid of enemies and add them to the badguy group
for i=0:3 {
 for j=0: 6 {
 enemy[(2*i)+j].properties(image: "image_path", group: badguys,
posx:i*80, posy:j*70);

}
 }

// a little asynchronisity!

when(bullet !bottom enemy) { shot_enemy(with: bullet, which: enemy); }
when(KeyPress."SPACE") { shoot(from: airplane@top, what: bullet); }
when(KeyPress."LEFT") { move_left(airplane); }
when(KeyPress."RIGHT") {move_right(airplane); }

// now some function definitions
func void shot_enemy(Sprite with, Sprite enemy) {
 Sprite explosion;
 // make the explosion an animated sprite that only plays once
 // it will appear at the center of the enemy
 explosion.properties(image: "image_path", coords: enemy@center, timeout:
100, animate: true, loopanim: false);
 enemy.properties(active:false); // makes sprite disappear
 explosion.play();
}

func void move_left(Sprite airplane) {
 if (airplane@left < playfield@left) {
 // airplane is at edge of board, can't move left
 airplane.setHorizontalSpeed(0);
 } else {
 Coordinate position;
 position = airplane.coords;
 position.x -= 5
 airplane.coords = position;
 }

28 2

}

func void move_right(Sprite airplane) {
 if(airplane@right < playfield@right) {
 airplane.coords.x += 5;
 } else {
 airplane.setHorizontalSpeed(0);
 }
}

func void shoot(Coordinate from, Sprite what) {
 // sets the start coordinates of the bullet and an initialization
 // vertical speed. This sprite will continue to move up until
 // it collides with an enemy, or it flies off of the screen
 what.properties(coords: from, vspeed: 1);
 what.play();
}

The above is a the code that would create a game that looks like the image attached.

29 2

