
Syntax and Parsing
COMS W4115

Prof. Stephen A. Edwards
Fall 2005

Columbia University
Department of Computer Science



Lexical Analysis
(Scanning)



Lexical Analysis (Scanning)
Translates a stream of characters to a stream of tokens

f o o = a + bar(2, q);

ID EQUALS ID PLUS ID LPAREN NUM

COMMA ID LPAREN SEMI

Token Lexemes Pattern
EQUALS = an equals sign
PLUS + a plus sign
ID a foo bar letter followed by letters or digits
NUM 0 42 one or more digits



Lexical Analysis
Goal: simplify the job of the parser.

Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.



Describing Tokens
Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ∅ (the empty language), { 1, 11, 111, 1111 },
all English words, strings that start with a letter followed by
any sequence of letters and digits



Operations on Languages
Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L ∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε, M, MM, MMM, . . .} =

{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . . }



Kleene Closure

The asterisk operator (*) is called the
Kleene Closure operator after the
inventor of regular expressions,
Stephen Cole Kleene, who
pronounced his last name “CLAY-nee.”

His son Ken writes “As far as I am
aware this pronunciation is incorrect
in all known languages. I believe that
this novel pronunciation was invented
by my father.”



Regular Expressions over an
Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}

2. If a ∈ Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r) and L(s),
• (r)|(s) denotes L(r) ∪ L(s)

• (r)(s) denotes {tu : t ∈ L(r), u ∈ L(s)}

• (r)∗ denotes ∪∞
i=0

Li (L0 = {ε} and Li = LLi−1)



Regular Expression Examples
Σ = {a, b}

RE Language
a|b {a, b}

(a|b)(a|b) {aa, ab, ba, bb}

a∗ {ε, a, aa, aaa, aaaa, . . .}

(a|b)∗ {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .}

a|a∗b {a, b, ab, aab, aaab, aaaab, . . .}



Specifying Tokens with REs
Typical choice: Σ = ASCII characters, i.e.,
{ , !,", #, $, . . . , 0, 1, . . . , 9, . . . , A, . . . , Z, . . . ,˜}

letters: A|B| · · · |Z|a| · · · |z

digits: 0|1| · · · |9

identifier: letter ( letter |digit )∗



Implementing Scanners
Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata
Subset Construction

Deterministic Finite Automata

Tables



Nondeterministic Finite Automata

“All strings
containing an
even number of
0’s and 1’s”

A B

C D

0

0

0

0

11 11

start

1. Set of states S:
{

A , B , C , D
}

2. Set of input symbols Σ: {0, 1}
3. Transition function σ : S × Σε → 2S

state ε 0 1
A – {B} {C}
B – {A} {D}
C – {D} {A}
D – {C} {B}

4. Start state s0 : A

5. Set of accepting states F :
{

A
}



The Language induced by an NFA
An NFA accepts an input string x iff there is a path from
the start state to an accepting state that “spells out” x.

A B

C D

0

0

0

0

11 11

start

Show that the string
“010010” is accepted.

A B D C D B A
0 1 0 0 1 0



Translating REs into NFAs

a
start a

r1r2 i fr1 r2

start

r1|r2 i f

r1

r2

start
ε

ε

ε

ε

(r)∗ i fr
start ε ε

ε

ε



Translating REs into NFAs
Example: translate (a|b)∗abb into an NFA

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε

Show that the string “aabb” is accepted.

0 1 2 3 6 7 8 9 10
ε ε a ε ε a b b



Simulating NFAs
Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state

2. For each character c,
• New states: follow all transitions labeled c

• Form the ε-closure of the current states

3. Accept if any final state is accepting



Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: ·aabb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: a·abb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: a·abb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aa·bb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aa·bb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aab·b

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aab·b, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aabb·

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Simulating an NFA: aabb·, Done

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε
ε a b b

ε

ε



Deterministic Finite Automata
Restricted form of NFAs:

• No state has a transition on ε

• For each state s and symbol a, there is at most one
edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.



Deterministic Finite Automata

ELSE: "else" ;
ELSEIF: "elseif" ;

e l s e

i

f



Deterministic Finite Automata

IF: "if" ;
ID: ’a’..’z’ (’a’..’z’ | ’0’..’9’)* ;
NUM: (’0’..’9’)+ ;

ID IF

ID

NUM

i

f

a-z0-9

a-eg-z0-9

a-z0-9
a-hj-z

0-9

0-9



Building a DFA from an NFA
Subset construction algorithm

Simulate the NFA for all possible inputs and track the
states that appear.

Each unique state during simulation becomes a state in
the DFA.



Subset construction for (a|b)∗abb (1)

a

b



Subset construction for (a|b)∗abb (2)

a

b

a

b

b

a



Subset construction for (a|b)∗abb (3)

a

b

a

b

b

a

a

b



Subset construction for (a|b)∗abb (4)

a

b

a

b

b

a

a

b
a

b



Subset Construction
An DFA can be exponentially larger than the
corresponding NFA.

n states versus 2n

Tools often try to strike a balance between the two
representations.

ANTLR uses a different technique.



The ANTLR Compiler Generator
Language and compiler for writing compilers

Running ANTLR on an ANTLR file produces Java source
files that can be compiled and run.

ANTLR can generate

• Scanners (lexical analyzers)

• Parsers

• Tree walkers



An ANTLR File for a Simple Scanner
class CalcLexer extends Lexer;

LPAREN : ’(’ ; // Rules for puctuation
RPAREN : ’)’ ;
STAR : ’*’ ;
PLUS : ’+’ ;
SEMI : ’;’ ;
protected // Can only be used as a sub-rule
DIGIT : ’0’..’9’ ; // Any character between 0 and 9
INT : (DIGIT)+ ; // One or more digits

WS : (’ ’ | ’\t’ | ’\n’| ’\r’) // Whitespace
{ $setType(Token.SKIP); } ; // Action: ignore



ANTLR Specifications for Scanners
Rules are names starting with a capital letter.

A character in single quotes matches that character.

LPAREN : ’(’ ;

A string in double quotes matches the string

IF : "if" ;

A vertical bar indicates a choice:

OP : ’+’ | ’-’ | ’*’ | ’/’ ;



ANTLR Specifications
Question mark makes a clause optional.

PERSON : ("wo")? ’m’ (’a’|’e’) ’n’ ;

(Matches man, men, woman, and women.)

Double dots indicate a range of characters:

DIGIT : ’0’..’9’;

Asterisk and plus match “zero or more,” “one or more.”

ID : LETTER (LETTER | DIGIT)* ;
NUMBER : (DIGIT)+ ;



Free-Format Languages
Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

• keywords (if while)

• punctuation (, ( +)

• identifiers (foo bar)

• numbers (10 -3.14159e+32)

• strings ("A String")



Free-Format Languages
Java C C++ Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.



FORTRAN 77
FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. ’Y’ .OR. IN .EQ. ’y’ .OR.
$ IN .EQ. ’T’ .OR. IN .EQ. ’t’) THEN

1 · · · 5
︸ ︷︷ ︸

Statement label

6
︸︷︷︸

Continuation

7 · · · 72
︸ ︷︷ ︸

Normal

When column 6 is not a space, line is considered part of
the previous.
Fixed-length line works well with a one-line buffer.
Makes sense on punch cards.



Python
The Python scripting language groups with indentation

i = 0
while i < 10:

i = i + 1
print i # Prints 1, 2, ..., 10

i = 0
while i < 10:

i = i + 1
print i # Just prints 10

This is succinct, but can be error-prone.
How do you wrap a conditional around instructions?



Syntax and Langauge Design
Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.

The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.

Verbosity does matter: smaller is usually better.

Too small can be a problem: APL is a compact, cryptic
language with its own character set (!)

E←A TEST B;L
L←0.5
E←((A×A)+B×B)*L



Syntax and Language Design
Some syntax is error-prone. Classic FORTRAN example:

DO 5 I = 1,25 ! Loop header (for i = 1 to 25)
DO 5 I = 1.25 ! Assignment to variable DO5I

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax error

C distinguishes > and >> as different operators.



Parsing



Parsing
Objective: build an abstract syntax tree (AST) for the
token sequence from the scanner.

2 * 3 + 4 ⇒

+

*

2 3

4

Goal: discard irrelevant information to make it easier for
the next stage.

Parentheses and most other forms of punctuation
removed.



Grammars
Most programming languages described using a
context-free grammar.

Compared to regular languages, context-free languages
add one important thing: recursion.

Recursion allows you to count, e.g., to match pairs of
nested parentheses.

Which languages do humans speak? I’d say it’s regular: I
do not not not not not not not not not not understand this
sentence.



Languages
Regular languages (t is a terminal):

A→ t1 . . . tnB

A→ t1 . . . tn

Context-free languages (P is terminal or a variable):

A→ P1 . . . Pn

Context-sensitive languages:

α1Aα2 → α1Bα2

“B → A only in the ‘context’ of α1 · · ·α2”



Issues
Ambiguous grammars

Precedence of operators

Left- versus right-recursive

Top-down vs. bottom-up parsers

Parse Tree vs. Abstract Syntax Tree



Ambiguous Grammars
A grammar can easily be ambiguous. Consider parsing

3 - 4 * 2 + 5

with the grammar

e→ e + e | e− e | e ∗ e | e / e |N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

+

*

-

3 4

2

5



Operator Precedence and
Associativity
Usually resolve ambiguity in arithmetic expressions

Like you were taught in elementary school:

“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition
and subtraction.



Operator Precedence
Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:
(1 * 2) + (3 * 4)

+

*

1 2
*

3 4

+ at higher precedence than *:
1 * (2 + 3) * 4

*
*

1 +
2 3

4



Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-
-

-
1 2

3
4

-
1 -

2 -
3 4

((1 - 2) - 3) - 4 1 - (2 - (3 - 4))
left associative right associative



Fixing Ambiguous Grammars
Original ANTLR grammar specification

expr
: expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| NUMBER
;

Ambiguous: no precedence or associativity.



Assigning Precedence Levels
Split into multiple rules, one per level

expr : expr ’+’ expr
| expr ’-’ expr
| term ;

term : term ’*’ term
| term ’/’ term
| atom ;

atom : NUMBER ;

Still ambiguous: associativity not defined



Assigning Associativity
Make one side or the other the next level of precedence

expr : expr ’+’ term
| expr ’-’ term
| term ;

term : term ’*’ atom
| term ’/’ atom
| atom ;

atom : NUMBER ;



Parsing Context-Free Grammars

There are O(n3) algorithms for parsing arbitrary CFGs,
but most compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have
O(n) parsing algorithms. People use these in practice.



Parsing LL(k) Grammars
LL: Left-to-right, Left-most derivation

k: number of tokens to look ahead

Parsed by top-down, predictive, recursive parsers

Basic idea: look at the next token to predict which
production to use

ANTLR builds recursive LL(k) parsers

Almost a direct translation from the grammar.



Implementing a Top-Down Parser
stmt : ’if’ expr ’then’ expr

| ’while’ expr ’do’ expr
| expr ’:=’ expr ;

expr : NUMBER | ’(’ expr ’)’ ;

stmt() {
switch (next-token) {
case IF:

match(IF); expr(); match(THEN); expr(); break;
case WHILE:

match(WHILE); expr(); match(DO); expr(); break;
case NUMBER or LPAREN:

expr(); match(COLEQ); expr(); break;
}}



Writing LL(k) Grammars
Cannot have left-recursion

expr : expr ’+’ term | term ;

becomes

AST expr() {
switch (next-token) {
case NUMBER : expr(); /* Infinite Recursion */



Writing LL(1) Grammars
Cannot have common prefixes

expr : ID ’(’ expr ’)’
| ID ’=’ expr

becomes

expr() {
switch (next-token) {
case ID:

match(ID); match(LPAR); expr(); match(RPAR); break;
case ID:

match(ID); match(EQUALS); expr(); break;



Eliminating Common Prefixes
Consolidate common prefixes:

expr
: expr ’+’ term
| expr ’-’ term
| term
;

becomes

expr
: expr (’+’ term | ’-’ term )
| term
;



Eliminating Left Recursion
Understand the recursion and add tail rules

expr
: expr (’+’ term | ’-’ term )
| term
;

becomes

expr : term exprt ;
exprt : ’+’ term exprt

| ’-’ term exprt
| /* nothing */
;



Using ANTLR’s EBNF
ANTLR makes this easier since it supports * and -:

expr : expr ’+’ term
| expr ’-’ term
| term ;

becomes

expr : term (’+’ term | ’-’ term)* ;



The Dangling Else Problem
Who owns the else?

if (a) if (b) c(); else d();

if

a if

b c() d()

or if

a if

b c()

d()

?

Grammars are usually ambiguous; manuals give
disambiguating rules such as C’s:

As usual the “else” is resolved by connecting an
else with the last encountered elseless if.



The Dangling Else Problem

stmt : "if" expr "then" stmt iftail
| other-statements ;

iftail
: "else" stmt
| /* nothing */
;

Problem comes when matching “iftail.”

Normally, an empty choice is taken if the next token is in
the “follow set” of the rule. But since “else” can follow an
iftail, the decision is ambiguous.



The Dangling Else Problem
ANTLR can resolve this problem by making certain rules
“greedy.” If a conditional is marked as greedy, it will take
that option even if the “nothing” option would also match:

stmt
: "if" expr "then" stmt

( options {greedy = true;}
: "else" stmt
)?

| other-statements
;



The Dangling Else Problem
Some languages resolve this problem by insisting on
nesting everything.

E.g., Algol 68:

if a < b then a else b fi;

“fi” is “if” spelled backwards. The language also uses
do–od and case–esac.



Statement separators/terminators
C uses ; as a statement terminator.

if (a<b) printf("a less");
else {

printf("b"); printf(" less");
}

Pascal uses ; as a statement separator.

if a < b then writeln(’a less’)
else begin

write(’a’); writeln(’ less’)
end

Pascal later made a final ; optional.



Bottom-up Parsing



Rightmost Derivation

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
A rightmost derivation for Id ∗ Id + Id:

e

t + e

t + t

t + Id
Id ∗ t + Id
Id ∗ Id + Id

Basic idea of bottom-up parsing:
construct this rightmost derivation
backward.



Handles

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

Id ∗ Id + Id
Id ∗ t + Id
t + Id
t + t

t + e

e e

t

Id * t

Id

+ e

t

Id

This is a reverse rightmost derivation for Id ∗ Id + Id.

Each highlighted section is a handle.

Taken in order, the handles build the tree from the leaves
to the root.



Shift-reduce Parsing

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

stack input action
Id ∗ Id + Id shift

Id ∗ Id + Id shift
Id∗ Id + Id shift
Id ∗ Id + Id reduce (4)
Id ∗ t + Id reduce (3)
t + Id shift
t+ Id shift
t + Id reduce (4)
t + t reduce (2)
t + e reduce (1)
e accept

Scan input left-to-right, looking for handles.
An oracle tells what to do



LR Parsing
1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

1. Look at state on top of stack
2. and the next input token
3. to find the next action
4. In this case, shift the token

onto the stack and go to
state 1.



LR Parsing
1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

Action is reduce with rule 4
(t→ Id). The right side is
removed from the stack to reveal
state 3. The goto table in state 3
tells us to go to state 5 when we
reduce a t:

stack input action

0
Id
1

*
3

t

5 + Id $



LR Parsing
1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

0
Id
1

*
3

t

5 + Id $ reduce w/ 3

0
t
2

+ Id $ shift, goto 4

0
t
2

+
4

Id $ shift, goto 1

0
t
2

+
4

Id
1

$ reduce w/ 4

0
t
2

+
4

t

2
$ reduce w/ 2

0
t
2

+
4

e

6
$ reduce w/ 1

0
e
7

$ accept



Constructing the SLR Parse Table
The states are places we could be in a reverse-rightmost
derivation. Let’s represent such a place with a dot.
1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
Say we were at the beginning (·e). This corresponds to
e′ → ·e
e→ ·t + e
e→ ·t
t→ ·Id ∗ t
t→ ·Id

The first is a placeholder. The
second are the two possibilities
when we’re just before e. The last
two are the two possibilities when
we’re just before t.



Constructing the SLR Parsing Table

S7: e
′
→ e·

S0:

e
′
→ ·e

e → ·t + e

e → ·t

t → ·Id ∗ t

t → ·Id

S2: e → t · +e

e → t ·
S4:

e → t + ·e

e → ·t + e

e → ·t

t → ·Id ∗ t

t → ·Id

S1: t → Id · ∗t

t → Id· S6: e → t + e·

S3:
t → Id ∗ ·t

t → ·Id ∗ t

t → ·Id
S5: t → Id ∗ t·

Id + ∗ $ et

0 s1 72
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 62
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

Id

e

t

∗

+

Id
t

e

t

Id



The Punchline
This is a tricky, but mechanical procedure. The parser
generators YACC, Bison, Cup, and others (but not
ANTLR) use a modified version of this technique to
generate fast bottom-up parsers.

You need to understand it to comprehend error messages:

Shift/reduce conflicts are
caused by a state like
t→ Id · ∗t
t→ Id ∗ t·

Reduce/reduce conflicts are
caused by a state like
t→ Id ∗ t·

e→ t + e·


