
Program Security
COMS W4115

Prof. Stephen A. Edwards
Fall 2005

Columbia University
Department of Computer Science

Original by Prof. Angelos Keromytis

Why Security?
Many, many more computers and users than ten years
ago.

Internet changes the whole game: easy to be attacked
from the other side of the planet.

Military-style security of permission levels, groups, etc.
worked for closed mainframes, imperfect for networked
computers.

Trojan Horses
Leave a program running that looks like the login prompt:

Exploits
At least 40/week on BUGTRAQ mailing list

phrack.com is a how-to guide

Construct-your-own exploit wizards? Point-and-click to
breach security?

Code Vulnerabilities
Protocols and algorithms often good; implementations
rarely are

Source is bad code with subtle bugs:

Buffer overflows

Race conditions

SQL injection

What’s Wrong With This Code?
int main(int argc, char **argv) {

char fname[]= "/tmp/testfile";
char buffer[16];
u_long distance;
distance= (u_long)fname - (u_long)buffer;
printf("fname = %p\nbuffer = %p\n

distance = 0x%x bytes\n",
fname, buffer, distance);

printf("fname = %s\n",fname);
strcpy(buffer, argv[1]);
printf(fname = %s\n",fname);
return 0;

}

Stack Smashing Scenario

PC foo()’s
buf[16] activation

record

PC strcpy()’s
activation
record

void foo(char *mystring) {
char buf[16];
strcpy(buf, mystring);

}

Heap Smashing
Similar trick works when buffer is on heap and something
on the heap is treated as a function pointer.

e.g., a C++ virtual table pointer
class C {

virtual void foo();
}

void foo(char * mybuffer) {
C c = new C();
char *buf = new char[10];
strcpy(buf, mybuffer);
c->foo();

}

SQL code injection
SQL queries typically built as a string and passed to the
database
String query =

"select * from mysql.user where username=’" +
uid + "’ and password=password(’" + pwd + "’);";

mydb.submit(query);

But what if the uid the user supplied is malicious? Could
get the query
select * from mysql.user where username=’’ or 1=1; /*

’ and password=password(’whatever’);

Nice way to get, say, all the credit card numbers from an
e-commerce site.

Race Conditions
The Unix filesystem is a shared resource. Things can
change from when you check something to when you use
it. Example from the “passwd” program:

Pick a “random” filename

If the file already exists in /tmp, try again

Open the file

Copy the contents of /etc/passwd to the /tmp file

Remove existing entry; add the new one

Copy the /tmp file to /etc/passwd

Solutions?
Things to ask about any solution:

How much does it slow things down?

How effective is it against existing and future attacks?

How much of a pain is it to use?

Solutions: Code Signing
Somebody you trust “signs” the code cryptographically

You check signature before you install and run it

Works so-so: is it practical to check everything?

What if it doesn’t come from Microsoft?

Do you really trust Bill Gates?

Widely-used: an obvious first line of defense

Sandboxing: Unix’s chroot()
In Unix, everything interesting is part of the filesystem.

So limit what a process can do by changing what
filesystem it sees.

chroot("/usr/ftp");
/* ... public FTP server ... */

FreeBSD’s jail() system call even stronger

Sandboxing: System Call
Monitoring
Monitor pattern of system calls in the OS kernel

If a process deviates from what it’s allowed to do,
terminate it

Works OK for daemons, but what to do for arbitrary
downloaded code?

Who writes these policies?

Java’s Security Manager does something like this

Solutions: Static Analysis
Run a complex compiler-like program on source code that
identifies all vulnerabilities

Really tricky to do quickly and accurately

Fundamentally undecidable; interesting work is on safe
abstractions

An open field of research

Solutions: Dynamic Analysis
Augment buffers with size information

Add checks before all reads and writes

Invasive; difficult to get right

Another approach: Perl’s “taint” model: Track which
information has come from a potentially malicious user
and don’t allow it to be used in certain ways.

Solutions: Software Fault Isolation
Augmenting binary

Insert checking code around each load, store, or jump that
checks it before it is done

Can be done at compile, link, or run time

Slows things down, bloats code

Really a mess for CISC architectures, which always
access memory

Compiler Tricks: StackGuard
Idea: Put a canary on the stack and check if it is still alive
before returning.

PC foo()’s
buf[16] activation

record

canary
PC strcpy()’s

activation
record

void foo(char *mystring) {
char buf[16];
strcpy(buf, mystring);

}

Nice defense against
stack-smashing, but doesn’t do
anything for heap smashing, SQL
injection, etc.

Solutions: Better APIs
C’s string manipulation routines are some of the worst
offenders.

char *strcpy(char *dest,
const char *src);

char *strncpy(char *dest,
const char *src,
size_t n);

Solutions: Better APIs
NAME
tmpnam — create a name for a temporary file
SYNOPSIS
char *tmpnam(char *s);

DESCRIPTION
The tmpnam() function returns a pointer to a string that is
a valid filename, and such that a file with this name did not
exist at some point in time, so that naı̈ve programmers
may think it a suitable name for a temporary file.
BUGS
Never use this function. Use mkstemp(3) instead.

Solutions: Better Languages
We’re language people, so we should be able to solve
everything.

Java, ML, Erlang, etc. aren’t subject to buffer overflow
attacks (we hope)

Cyclone is a “safe subset” of C (we hope)

CCured: Static analysis of C plus runtime checks for what
cannot be determined statically.

