
gscc
A General Search and Compare

Compiler

Eric [G]arrido
Russel [S]antillanes
Casey [C]allendrello
Ho Yin [C]heng

gscc is a text manipulation
language that rivals existing
programmatic solutions. It is

compact, intuitive and lightweight,
giving programmers a means to

quickly manipulate their text-based
targets.

gscc Language Overview

• Text manipulation
– Much like AWK
– Regular Expressions
– Simple commands

• set, replace, delete, insert, print/prerr, and more
– Feature: Location Variables

• @match, @line

High Level Overview

Mary had a little lamb
With fur as white as snow.

text input

[wh.*sn..] line {

set @match, “blue as water”;

}

regex block

[as] global {

set @match, “comme”;

print @line;

}

regex block

@match = “white as snow”

High Level Overview

Mary had a little lamb
With fur as white as snow.

text input

[wh.*sn..] line {

set @match, “blue as water”;

}

regex block

[as] global {

set @match, “comme”;

print @line;

}

regex block

@match = “as”;

High Level Overview

Mary had a little lamb
With fur as white as snow.

text input

[wh.*sn..] line {

set @match, “blue as water”;

}

regex block

[as] global {

set @match, “comme”;

print @line;

}

regex block

@match = “as”;

High Level Overview

Mary had a little lamb
With fur as white as snow.

text input

[wh.*sn..] line {

set @match, “blue as water”;

}

regex block

[as] global {

set @match, “comme”;

print @line;

}

regex block

@match = “white as snow”

@match = “as”;

With fur comme blue as water.
With fur comme blue comme water.

Architecture and Implementation

Basics

Architecture and Implementation

• Front end: Lexer, Parser
• Back end: walker, interpreter

– Type system
– Initial setup: Walker detects program

structure, Interpreter remembers AST
nodes and walks, later, as needed.

Interface: Interpreter.java
• Interacts with walker to execute program

Architecture and Implementation

public interface Interpreter {

public void registerFunction(String name, ParamList paramlist, AST node)

public DataType callFunction(String name, ExpressionList explist)

public void runCommand(String name, String target, ExpressionList exprlist)

public DataType getVariable(String name);
public DataType getAttrib(String name, String attrName);

public void registerRegexBlock(String regex, String type, AST node);

public void runInput(java.io.BufferedReader in, AST program);

public void setReturn(DataType value);

//plus flow-control
}

Architecture

Lexer Parser AST Walker
Eric & Casey

Interpreter

Token Stream AST

ccgsWalker.g

Data Types Functions

Input Stream

gscc.java
Eric

Backend

Program File

Stdin/File

Output Stream

Regex
block

Java Regex

ccgsGrammar.g
Eric

gscc

Location

Type Hierarchy

Locations

m a r y h a d a l i t t l e l a m b . \r \n

@match

@line

• Represented as a linked list internally
• changing @match automatically changes @line
• changing @line may change @match

– the replace @line command may overwrite @match
– @match can become undefined

Tutorial

gscc basics

• All statements must be within regex
blocks and function definitions with the
exception of the SET command.

• Statement can be a command or a
function call.

Your first program
[H*] line {

print $foo() + “\n”;
}
func $foo(){

return “Hello World”;
}

Making it more useful

• Locations give you access to the incoming
text
– @line, @match are global variables.
– @match is the text that matches a regular

expression
– @line is the whole line being operated on

• Modifications to locations affect the next
regular expresson block

Finding 404s

• Example: Parsing an apache logfile
– Say you want to find words that are

misspelled resulting in a 404

Apache logfile format:

221.116.200.62 - - [19/Dec/2005:17:08:36 -0500] "POST /xmlsrv/xmlrpc.php HTTP/1.1" 404 278

A simple example

[".*”\s404] line {
print $substr(@match, 0, @match.length-
4) + “\n”;

}

Refining this

• Somebody is probing for vulnerabilities.
You want to ignore this specific access

[xmlrpc\.php] line { set @line, “”;}
[".*”\s404] line {

print $substr(@match, 0, @match.length-4) +
“\n”;

}

A More Complete Program

• Now say we want to count the number
of 404’s as well as print them out.

set $count, 0;
[xmlrpc\.php] line { set @line, “”;}
[".*”\s404] line {

set $count, $count+1;
print $count + “\t”;
print $substr(@match, 0, @match.length-4) +
“\n”;

}

Other Commands

• The previous example used only a small
set of the available commands.

• Other commands include:
replace, delete, insert, prerr

• We also have location attributes and the
built in function #length for use.

Summary

Project Plan

Lessons Learned
• Start early, Start early, Start early. There is no better

feeling in the world than finishing your duties or a
project ahead of schedule. There is no worse feeling
than missing a hard deadline.

• Deadlines are an important thing to both know and
create. Knowing when what is due keeps people on
track and will prevent any unforeseen mishaps. They
can also serve as a way to enforce team members to
submit work if needed.

More Lessons
• Never compromise on your environment. Spending a few hours

setting it up in the beginning is easily the best thing you can do
with your time.

• Constant communication beyond team meetings can help to
keep things flowing. If any of the members isn't performing for
whatever reason, having people there to remind them serves as
a good motivating factor.

• If you don't know the answer chances are someone else in your
group will or will at the least be able to point you in the right
direction. Keep asking until you get the answer you want.

Essentials
• http://www.eclipse.org -- Eclipse IDE
• http://ANTLReclipse.sourceforge.net/ -- ANTLR

plugin for eclipse
• http://subversion.tigris.org/ -- Subversion version

control system
• http://subclipse.tigris.org/ -- Eclipse SVN plugin
• http://e-p-i-c.sourceforge.net/ -- Eclipse PERL plugin
• http://www.apple.com/macosx/ -- The best

development platform there is

http://www.eclipse.org/

	gscc
	gscc Language Overview
	High Level Overview
	High Level Overview
	High Level Overview
	High Level Overview
	Architecture and Implementation
	Basics
	Interface: Interpreter.java
	Architecture
	Type Hierarchy
	Locations
	Tutorial
	gscc basics
	Your first program
	Making it more useful
	Finding 404s
	A simple example
	Refining this
	A More Complete Program
	Other Commands
	Summary
	Project Plan
	Lessons Learned
	More Lessons
	Essentials

