
Page 1 of 8

d-File Language Reference Manual
Erwin Polio
Amrita Rajagopal
Anton Ushakov
Howie Vegter

COMS 4115.001
Thursday, October 20, 2005
Fall 2005
Columbia University
New York, New York

Note: Much of the content and structure of this document is based on the C Reference Manual [1].

1. Introduction
d-File is a new computer language that introduces the notion of a delimited text file as an object for data
manipulation. d-File may be used on any computer using the Java Virtual Machine. As d-File is text-based,
d-File programs may be written using any text editor such as emacs, vi, Notepad, etc.

2. Syntax notation
For this manual, any italic notation signifies examples. Keywords are signified by Courier New font.

3. Lexical conventions
d-File’s grammar consists of combined tokens to form expressions and statements. d-File uses the
following tokens: keywords, identifiers, strings, and expression operators. Spaces, tabs, comment tags, and
newlines are ignored, but they may be used to separate tokens.

3.1 Comments
The characters // (double forward slash) introduce a comment. The comment is terminated with the newline
character. Comments only span the length of strings from the start of the double forward slash to the end of
the first found newline. To do multiple line comments, each line must be preceded by //. d-File will ignore
all text after the double forward slash //. This comment form will be familiar to C/C++ and C#
programmers.
Example:
 // The d-File compiler will ignore this line

3.2 Identifiers (Names)
An identifier is a sequence of letters, digits, and underscores ("_"). The first character must be a capital
letter; this helps the programmer distinguish between keywords (which are all lowercase) and identifiers
(which must begin with a capital letter). d-File is case sensitive with regard to identifiers; Bob = 1 is not
equivalent to bOB = 1.

3.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

print source
delimiter where
for if
function else
number string
datafile column
return footer

3.4 Constants
d-File has two types of constants: number and string. The number is further internally identified as an

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 2 of 8

integer or a decimal.

3.4.1 Number constants
A number constant is a sequence of digits without a decimal point.
Example:
 1232
 2
 12
 92134123

3.4.1.1 Decimal constant
d-File has a second number datatype called the decimal. A decimal constant consists of an integer part, a
decimal point, and a fraction part. The integer and fraction parts both consist of a sequence of digits. The
integer part is mandatory. The fraction part is optional. If there is no decimal point, the number will be
treated as an integer. d-File’s compiler will internally distinguish between an integer number and a decimal
number by the presence of a decimal point.
Example:
 12.123
 34552.009

3.4.2 String constants
A string constant is one or more ASCII characters enclosed within double quotes: ‘‘"’’.
Example:
 "My pants are on fire."

4 Statements
Program lines are composed of statements. Statements are executed in sequence. Each statement in turn is
made of expressions. Each statement line, except where noted later, ends in a semi-colon (;). Exceptions
to semi-colon terminating lines are in comments, function definitions, if and else definitions, and
the for loop definitions. This rule applies to the definitions only and not to the body of the function,
if..else, and for loop definitions. For examples, please see the appropriate sections below.

4.0 Expressions
Expressions are of one of the following forms:
 identifier
 constant
 String
 (expression)

4.1 identifier
See section 3.2.

4.2 constant
See section 3.4.

4.3 string
See section 3.4.2.

4.4 (expressions)
An expression enclosed within a left parenthesis and right parenthesis is also an expression. Expressions of
this form are used by the programmer to override default precedence rules or just to provide clarity to other
programmers who might read the code.
Example:
 (3 + 4)

5. Objects

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 3 of 8

d-File introduces a data storage object of type DataFile.

5.1 DataFile
A datafile is an object used for abstracting the delimited text file. The datafile consists of several
attributes and methods: source, where, delimiter, column, footer, and print.

5.1.1 Source
The datafile source attribute is used to associate the delimited text file with the datafile. It will
be the source of all the record manipulation. The source method is in the following form:
 source = statement;
Example:
 source = “c:\Accounting\GL\December-2004\Reconciliation.txt”;

5.1.2 Where
The where method is used to filter the records identified by the source method. The where clause is a
statement consisting of strings, numbers, and operators (including the equality operand). The where
clause is in the following form:
 where = statement;
Example:
 where = column(0) > 1000 && column (4) = “California”;

5.1.3 Delimiter
The delimiter specifies the character used for delimiting the source text file. If none is specified, the
comma (,) is the default value. The delimiter attribute is used in the following form:

delimiter = statement;
Example:
 delimiter = ":";

5.1.4 Column
The column attribute is for specifying a vertical set of tupels in the datafile. This identification is
made by an index number relating to the delimited file where an index of 0 relates to the first column, an
index of 1 relates to the second column, and so on. It is possible to index beyond the number of columns
available, but no data will be returned. The column attribute is used in the following form:
 column(index);
Example:
 column(3) ;

5.1.5 Footer
The footer attribute is for specifying string constants to be printed at end of a report. It is used in the
following form:

footer(index) = statement;

5.1.6 Print
Calling print will begin the report creation on the format specified in the argument. It has the form of
 print(argument);
 argument : “XML” or “HTML”
Example: to output a report in HTML format:
 print(“HTML”);

6. Operators
d-File’s operators include the logical, relational, multiplicative, additive, equality, and assignment
operators.

6.1. Logical Operators
The logical operators are || (logical or), && (logical and).

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 4 of 8

6.1.1 expression && expression
The && operator returns “true” if both its operands are nonzero, “false” otherwise.

6.1.2 expression || expression
The || operator returns “true” if either of its operands is nonzero, and “false” otherwise.

6.2 Relational operators
The relational operators < (less than), > (greater than), == (equal compare), and != (not equal compare)
group left to right.

6.2.1 expression < expression
6.2.2 expression > expression
The operators < (less than), > (greater than), == (equal compare), and != (not equal) all yield “false” if the
specified relation is false and “true” if it is true.

6.3 Equality operators
The equality operators ==, and != group from left to right. Both yield “false” if the specified relation is
false and “true” if it is true.

6.3.1 expression == expression
6.3.2 expression != expression
The equality operators are analogous to the relational operators except for their lower precedence.

6.4 Multiplicative
The multiplicative operators * and / group left to right.

6.4.1 expression * expression
The binary * operator indicates multiplication. If both operands are number integers, the result is a
number integer. If both are number decimals, the result is a number decimal. If one is a number
integer and one is a number decimal, the result is a decimal. Both expressions must be of type number.

6.4.2 expression / expression
The binary / operator indicates division. The same type considerations specified above for multiplication
apply for division as well.

6.5 Additive operators
The additive operators + and − group left to right.

6.5.1 expression + expression
The result is the sum of the expressions where the expressions are both numbers. No other type of
combination is allowed.

6.5.2 expression - expression
The result is the difference of the operands where the expressions are both numbers. No other type of
combination is allowed.

6.6. Assignment
The assignment operator is = (equal) and it groups right to left.
It requires an lvalue as the left operand, and the type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the assignment has taken place.

6.6.1. lvalue = expression
The value of the expression replaces that of the object referred to by the lvalue. Since d-File only has
strings, numbers, and the datafile object as data types, lvalue may be assigned by either type.

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 5 of 8

6.7. Operator Precedence
Operator precedence is (from higher to lower):
() {}
!
* /
+ -
< > == !=
&& ||
,

7. Declarations
Declarations specify the interpretation given to each identifier. If the declaration reserves storage space,
then it is called a definition. The data type of an identifier is inferred from its first usage. The programmer
does not explicitly specify data types using keywords such as int or float.

7.1. Type specifiers
Type specifiers are number and string, which are implied and which cause the compiler to allocate the
necessary memory for each specifier.
As an example, the declarations
MyNumber = 1234;
MyOtherNumber = 123.34;
MyString = “MyFile.txt”;
declare a number (integer), a number (decimal), and a string.

8. Functions
Functions use a postfix expression followed by parentheses containing either an empty list or a comma-
separated argument list. This argument list constitutes the arguments to the function. The argument
becomes a parameter once the body of the function is being executed.

8.1 Function declaration
Functions are declared as follows:
 function identifier (argument_expression_list) function_body;

8.1.1 Function Calls
Function calls are of the following form:
 identifier (optional) = identifier(argument list);
Example:
 Mysum = AddNumbers(5, 8);

8.1.2 Return
A function may include a return statement. This assigns the value to the specifier that called the function.

return ;
return (expression) ;

8.1.3 Construction
Functions are of the following form:
 function declaration

{
 Function body
 Statements;
 return (expression);
}

Example:
 function AddNumbers(number x, number y)

{
 number tmp;

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 6 of 8

 tmp = x + y;
 return tmp;
}

9. Flow Control
The two forms for program flow control are the if..else statement and the for loop.

9.1. Conditional statement
The two forms of the conditional statement are
if (expression) statement
if (expression) statement else statement
In both cases, the expression is evaluated and, if it is nonzero, the first sub-statement is executed. In the
second case the second substatement is executed if the expression is 0. As usual, the ‘‘else’’ ambiguity is
resolved by connecting an else with the last encountered if.
Example:
 if (x == 1)

{
 Statement;
}

 else
 {
 Statement;

}

9.2. For statement
The for statement has the form
for (expression1 = range specifier)

{
 Statement;
}

Example:
 // this will increment the y five times

for(x=5:10)
{

y = y + 4;
}

9.3. Break statement
The statement break ; causes termination of the innermost enclosing for statement; control passes to
the statement following the terminated statement.

10. Scope rules
Lexical scope of an identifier is essentially the region of a program during which it may be used without
drawing ‘‘undefined identifier’’ diagnostics.

10.1 Lexical scope
The lexical scope of names declared at the head of functions (either as formal parameters or in the
declarations heading the statements constituting the function itself) is the body of the function. It is an
error to re-declare identifiers already declared within the body of the program. Since we do not allow
nested functions, there are thus two lexical scopes: 1) the body of the program; and 2) the body of a
function. These two scopes are separate; consequently, they cannot access each other's identifiers.

10.2 Namespace
d-File will not reconcile namespace collisions – only one namespace is allowed. This means that an error
will be raised if an identifier is declared more than once within the same lexical scope regardless of the
identifier's data type or whether it is the identifier for a function.

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 7 of 8

11. d-File Example
Here is a complete d-File program which reads a document, sets a delimiter, sets the source, and produces
an XML report.

// Set location of file
source = "C:\RevenueStatsJulyAugust2005.txt";

// Set character delimited
delimeter = “:”;

// Unless specified, the field names will be taken from the file header.
//Column(0) name is “Product”;
//Column(1) name is “Quantity”;
//Column(6) name is “Revenue”;
//Column(7) name is“Net Revenue”;

// Criteria for selecting data
where = column(1) > 2000 && column(6) > 5000;

// Sum the revenue (Profit)
Profit = SumRevenue();

//Set footer using variables resturned from functions
footer(1)= "Total Profit: USD" + Profit

//Create report
print(“XML”);

Function SumRevenue()
{
 // Sum Revenue rows 0 through 30
 tmp = 0;
 for(i = 0:30)

{
 // Only do positive
 if (column(7) > 0)
 {
 tmp = tmp + column(7);
 }
 }
 return tmp;
}

d-File Language Reference Manual Polio, Rajagopal, Ushakov, Vegter

Page 8 of 8

REFERENCES

1. Kernighan, B. W, and Ritchie, D. M. ‘‘The C Programming Language.’’ Upper Saddle River, New

Jersey, Prentice Hall Software Press, 1988, Appendix A.

